
Cryptanalysis of Round-Reduced HAS-160

Florian Mendel, Tomislav Nad, and Martin Schläffer

Institute for Applied Information Processing and Communications (IAIK)
Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria.

Tomislav.Nad@iaik.tugraz.at

Abstract. HAS-160 is an iterated cryptographic hash function that is
standardized by the Korean government and widely used in Korea. In
this paper, we present a semi-free-start collision for 65 (out of 80) steps of
HAS-160 with practical complexity. The basic attack strategy is to con-
struct a long differential characteristic by connecting two short ones by
a complex third characteristic. The short characteristics are constructed
using techniques from coding theory. To connect them, we are using an
automatic search algorithm for the connecting characteristic utilizing the
nonlinearity of the step function.

Keywords: differential attack, hash function, coding theory, collision

1 Introduction

In the last years research in cryptanalysis of hash function has made significant
progress. Weaknesses have been shown in many commonly used hash functions
as SHA-1 [19] and MD5 [18]. These breakthrough results in the cryptanalysis of
hash functions were the motivation for intensive research in this field. Especially,
in the ongoing SHA-3 [12] competition several new design strategies and attack
techniques have been proposed. However, it also draws the attention away from
currently used hash function standards, whereas it is important to analyze these
standards to achieve a better understanding of the security margin in critical
applications like e-commerce and e-government systems. In this paper, we focus
on the hash function HAS-160. It is standardized by the Korean government
(TTAS.KO-12.0011/R1) [17] and hence widely used in Korea. It is an iterated
cryptographic hash function that produces a 160-bit hash value. The design of
HAS-160 is similar to SHA-1 and MD5.

In [22], Yun et al. applied the techniques invented by Wang et al. in the crypt-
analysis of MD5 and SHA-1 to the HAS-160 hash function. They show that a
collision can be found for HAS-160 reduced to 45 steps with a complexity of
about 212. This attack was later extended by Cho et al. [3] to HAS-160 reduced
to 53 steps. The attack has a complexity of about 255 53-step HAS-160 computa-
tions. Mendel and Rijmen [10] improved the attack and reduced the complexity
to 235 and presented an actual colliding message pair for HAS-160 reduced to
53 steps. Furthermore, they presented a theoretical attack on 59 steps. Finally,
preimage attacks on 52 steps by Sasaki and Aoki [16] and on 68 steps by Hong

H. Kim (Ed): ICISC 2011, LNCS 7259, pp. 33–47, 2012.
The original publication is available at http://www.springerlink.com/content/235781662l6hl623/
c© Springer-Verlag Berlin Heidelberg 2012

http://www.springerlink.com/content/235781662l6hl623/

34 F. Mendel, T. Nad, M. Schläffer

et al. [6] have been presented. Both attacks have only theoretical complexity and
are only slightly faster than the generic attack which has complexity 2160.

In this paper, we combine different techniques to construct a semi-free start
collision for 65 (out of 80) steps of HAS-160 with practical complexity. A semi-
free-start collision is a collision attack where the adversary can choose the value
of the initial value (IV). The basic idea of our attack is similar to the attack
on a DES based hash function by Rijmen and Preneel [15] and to the recent
attack on the SHA-3 candidate Skein by Yu et al. [21]. The idea is to construct a
long differential characteristic by connecting two short ones by a complex third
characteristic. We show how this idea can be applied on HAS-160 resulting in
a semi-free start collision. Furthermore, we present an actual colliding message
pair and IV fulfilling all conditions of the differential characteristics. This is
so far the best attack in terms of number of steps on HAS-160 with practical
complexity.

The remainder of this paper is structured as follows. A description of the
hash function is given in Section 2. In Section 3 we describe the basic attack
strategy. In Section 4 the search for two short differential characteristics and the
determination of a good position for the connection is explained. In Section 5 we
connect the short characteristics and present the final differential path. Finally,
we present a colliding message pair in Section 5.3 and conclude in Section 6.

2 Description of HAS-160

HAS-160 is an iterative hash function that processes 512-bit input message
blocks, operates on 32-bit words and produces a 160-bit hash value. The de-
sign of HAS-160 is similar to the design principles of MD5 and SHA-1. In the
following, we briefly describe the hash function. It basically consists of two parts:
message expansion and state update transformation. A detailed description of
the HAS-160 hash function is given in [17].

Message Expansion. The message expansion of HAS-160 is a permutation of
20 expanded message words Wi in each round. The 20 expanded message words
Wi used in each round are constructed from the 16 input message words mi as
shown in Table 1.
For the ordering of the expanded message words Wi the permutation in Table 2
is used.

State Update Transformation. The state update transformation of HAS-
160 starts from a (fixed) initial value IV of five 32-bit registers and updates
them in 4 rounds of 20 steps each. Figure 1 shows one step of the state update
transformation of the hash function.
Note that the function f is different in each round: f0 is used in the first round,

Cryptanalysis of Round-Reduced HAS-160 35

Table 1. Message expansion of HAS-160.

Round 1 Round 2 Round 3 Round 4

W0 m0 m0 m0 m0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
W15 m15 m15 m15 m15

W16 W0 ⊕W1 ⊕W2 ⊕W3 W3 ⊕W6 ⊕W9 ⊕W12 W12 ⊕W5 ⊕W14 ⊕W7 W7 ⊕W2 ⊕W13 ⊕W8

W17 W4 ⊕W5 ⊕W6 ⊕W7 W15 ⊕W2 ⊕W5 ⊕W8 W0 ⊕W9 ⊕W2 ⊕W11 W3 ⊕W14 ⊕W9 ⊕W4

W18 W8 ⊕W9 ⊕W10 ⊕W11 W11 ⊕W14 ⊕W1 ⊕W4 W4 ⊕W13 ⊕W6 ⊕W15 W15 ⊕W10 ⊕W5 ⊕W0

W19 W12 ⊕W13 ⊕W14 ⊕W15 W7 ⊕W10 ⊕W13 ⊕W0 W8 ⊕W1 ⊕W10 ⊕W3 W11 ⊕W6 ⊕W1 ⊕W12

Table 2. Permutation of the message words.

step i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Round 1 18 0 1 2 3 19 4 5 6 7 16 8 9 10 11 17 12 13 14 15

Round 2 18 3 6 9 12 19 15 2 5 8 16 11 14 1 4 17 7 10 13 0

Round 3 18 12 5 14 7 19 0 9 2 11 16 4 13 6 15 17 8 1 10 3

Round 4 18 7 2 13 8 19 3 14 9 4 16 15 10 5 0 17 11 6 1 12

f1 is used in round 2 and round 4, and f2 is used in round 3.

f0(x, y, z) = (x ∧ y)⊕ (¬x ∧ z)
f1(x, y, z) = x⊕ y ⊕ z
f2(x, y, z) = (x ∨ ¬z)⊕ y

A step constant Kj ∈ {0, 5a827999, 6ed9eba1, 8f1bbcdc} is added in every step
and is different for each round. While rotation value s2 ∈ {10, 17, 25, 30} is
different in each round of the hash function, the rotation value s1 is different in
each step of a round. The rotation value s1 for each step of a round is given in
Table 3.

Table 3. Permutation of the message words.

step i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

s1 5 11 7 15 6 13 8 14 7 12 9 11 8 15 6 12 9 14 5 13

After the last step of the state update transformation, the initial value and
the output values of the last step are combined, resulting in the final value of
one iteration known as Davies-Meyer hash construction (feed forward). The feed
forward is a word-wise modular addition of the IV and the output of the state
update transformation. The result is the final hash value or the initial value for
the next message block.

36 F. Mendel, T. Nad, M. Schläffer

Ai+1

Ai

Bi+1

Bi

Ci+1

Ci

Di+1

Di

Ei+1

Ei

Kj

Wi

f

≪ S2

≪ S1

Fig. 1. The step function of HAS-160.

2.1 Alternative Description of HAS-160

As one can see in the description of the step update transformation (see Figure 1)
only the state variable Ai is updated in each step. The values of the other state
variables are defined by Ai. Therefore, we can redefine the state update such
that only one state variable is used.

Ai+1 =Ai−4 ≫ s2 +Ai ≪ s1+

f(Ai−1, Ai−2 ≫ s2, Ai−3 ≫ s2)+

Kj +Wi

(1)

Note that s2 need to be adapted accordingly if the update uses A’s between two
rounds. The chaining values are represented by A0, A−1, A−2, A−3, A−4.

3 Basic Attack Strategy

In this section, we briefly describe the attack strategy to construct a semi-free
start collision for 65 steps of HAS-160. A similar attack was done on a DES
based hash function by Rijmen and Preneel [15] and recently on Skein by Yu
et al. [21]. The main idea is to construct a long differential characteristic by
connecting two short ones. First, proper differences in the expanded message
words need to be chosen, such that they result in two short linear characteristics
with low Hamming weight and hence hold with high probability. Second, we
connect the two short differential characteristics by a third one. This one can have
low probability, since we can use message modification to fulfill the conditions.
Figure 2 illustrates the strategy.

Cryptanalysis of Round-Reduced HAS-160 37

MEconnection

linear

linear

Fig. 2. Basic attack strategy. Differences occur only in the parts with background
color.

The attack can be summarized as follows:

1. Choose an optimal position for the connection and find two differential char-
acteristics, which hold with high probability.

2. Find a connecting differential characteristic.

3. Find inputs fulfilling the conditions and use message modification to improve
the attack complexity.

To find two good characteristics and to determine an optimal position, we
use a linearized model of the hash function. Finding a characteristic in a lin-
earized hash function is not difficult. However, we aim for characteristics with
high probability such that the available freedom can be used for the connection.
The probability that the linear characteristic holds in the original hash function
is related to the Hamming weight of the characteristic. In general, a differential
characteristic with low Hamming weight has a higher probability than one with a
high Hamming weight. Finding a characteristic with high probability (low Ham-
ming weight) is related to finding a low weight word in linear codes. Therefore,
we use a probabilistic algorithm from coding theory to find good characteris-
tics. It has been shown in the past, for instance the cryptanalysis of SHA-0 [2],
SHA-1 [13], EnRUPT [7] or SIMD [8] that this technique works well for finding
differential characteristics with low Hamming weight.

We are constructing different linear codes for different positions and lengths
of the connecting part to determine the optimal choice. Afterwards, we use an
automatic search technique to find a connecting differential characteristic. Fi-
nally, we use message modification, introduced by Wang et al. in [20], to find
inputs fulfilling all conditions.

38 F. Mendel, T. Nad, M. Schläffer

4 Finding Two Short Characteristics

As mentioned before the problem of finding characteristics for a linearized hash
function which hold with high probability for the original function is related
to coding theory [8,13,14]. In order to find such characteristics for HAS-160 we
need to linearize the hash function.

4.1 Linearization of HAS-160

Since the message expansion is already linear, only the step update transforma-
tion has to be linearized. The nonlinear parts of this function are the modular
additions and the Boolean functions f0 and f2 (f1 is linear). In the attack, we
replace all modular addition by XORs. For the Boolean functions we tried sev-
eral different linearizations. However, the following variant turned out to be the
best. The function f0 (IF) is replaced by the 0-function, i.e. we block each input
difference in f0. This has probability 1/2 in most cases (cf. [4]). One can see
that there is exactly one input difference for f0 where the output difference is
always one. In that case we discard the characteristic. f2 is approximated by its
second input. which holds with probability higher than 1/2. In summary we get
the following approximation for the Boolean functions:

f ′0(x, y, z) = 0

f ′2(x, y, z) = y

4.2 Construction of the Generator matrix

In this section we explain the standard approach to find collision producing
characteristics for a linearized hash function. As observed by Rijmen and Oswald
[14], all differential characteristics for a linearized hash function can be seen as
the codewords of a linear code. Our goal is to find codewords with low Hamming
weight, i.e. characteristics with high probability. Therefore, we have to include
all intermediate chaining values where differences could decrease the success
probability in the linear code. Based on the alternative description of HAS-160
(see Section 2.1) we include only Ai in the linear code, since the other state
variables do not add any additional information to the code. This decreases the
length of the code significantly and therefore also the running time of the search
algorithm.

Let ∆Ai ∈ {0, 1}32 be the difference vector of the chaining value Ai in bit
representation at step i. Then the vector

cw := (∆A1, · · · , ∆An), (2)

where cw ∈ {0, 1}n·32, represents the differences in the chaining value Ai after
each step of n steps of HAS-160. cw is one codeword of the linear code and
therefore a differential characteristic. To construct the generator matrix for the
linear code, we proceed as follows:

Cryptanalysis of Round-Reduced HAS-160 39

1. Compute cwj with the input difference ∆M = ej , where ej ∈ {0, 1}512
is the j-th unit vector and ∆M the difference of the message block in bit
representation.

2. Repeat the computation for j = 1, . . . , 512.

The resulting generator matrix of the linear code representing linearized HAS-
160 is defined in the following way:

G512×n·32 :=

 cw1

...
cw512

 . (3)

Since we are aiming for a collision in the last step, we need to apply code shorten-
ing on the last 160 bits, i.e. ensuring that all code words are zero in the last 160
bits. This reduces the dimension and length of the code to 352 and (n ·32−160),
respectively.

Using this matrix one can search for low Hamming weight codewords over all
n steps. As explained in Section 3 we are looking for two short characteristics,
which will be connected later. Therefore, we need to modify the linear code to
include this requirement.

Modification. The easiest way to define a linear code for both characteristics
simultaneously and ensuring that both use the same expanded message, is the
following. Firstly, ignore t steps in the middle. Hence, we change the vector (2)
to:

cw := (∆A1, · · · , ∆Al, ∆Al+t+1, · · · , ∆An). (4)

At the beginning of the second characteristic (after step l+t), the state variables
can have any difference, since the differences in the steps before are yet undefined.
Therefore, we need to add the information to the code that after step l + t all
differences are possible. Hence, we add the chaining variables at step l+ t+ 1 to
the linear code. The construction of the generator matrix changes to:

1. Compute cwj with the input difference ∆M = ej , where ej ∈ {0, 1}512
is the j-th unit vector and ∆M the difference of the message block in bit
representation.

2. Repeat the computation for j = 1, . . . , 512.
3. Compute cw512+k as follows:

(a) Set ∆M = 0 and cws = ek, where ek ∈ {0, 1}160 is the k-th unit vector
and

cws = (∆Al+t−3, ∆Al+t−2, ∆Al+t−1, ∆Al+t, ∆Al+t+1).

(b) Compute ∆Ai for (l+ t+ 1) < i ≤ n with cws and ∆M as input. Hence,
we get following codeword:

cw512+k := (∆A1 = 0, · · · , ∆Al = 0, cws, ∆Al+t+2, · · · , ∆An).

4. Repeat the computation for k = 1, . . . , 160.

40 F. Mendel, T. Nad, M. Schläffer

Note that ∆Bl+t+1 = ∆Al+t, ∆Cl+t+1 = ∆Al+t−1, ∆Dl+t+1 = ∆Al+t−2 and
∆El+t+1 = ∆Al+t−3 and therefore all possible chaining values after step l + t
are included in the code. The resulting generator matrix is

G672×(n−t+4)·32 :=

 cw1

...
cw672

 . (5)

Again code shorting is applied to ensure that all codewords result in a collision
after n steps.

Determining l, t and n. There exist several possible choices for the parameters
l, t and n of the linear code. First of all we limit t ≤ 21. The reason for this
is simple. We have 21 words (16 message words and 5 IV words) which can
be choosen freely and hence can be used for message modification to fulfill all
conditions in the connecting part which is usually the most expensive part of
the attack. However, we aimed for a smaller t to reduce the search space for the
connecting part as well.

For the search we constructed generator matrices for 21 ≤ l ≤ (n− 21) and
t = 21. If we have found two characteristics with high probability we reduce t.

4.3 Searching for Low Hamming Weight Codewords

We use the publicly available CodingTool Library [11] which contains all tools
needed to search for codewords with low Hamming weight. It implements the
probabilistic algorithm from Canteaut and Chabaud [1] to search for codewords
with low Hamming weight. This iterative algorithm basically looks for small
Hamming weight codewords in a smaller code. Such a codeword is considered as
a good candidate for a low Hamming weight codeword for the whole code. The
algorithm randomly selects σ columns of it and splits the selection in two sub-
matrices of equal size. By computing all linear combination of p rows (usually
2 or 3) for each sub-matrix and storing their weight, the algorithm searches for
a collision of both weights which allow to search for codewords of 2p. Then two
randomly selected columns are interchanged, followed by one Gaussian elimina-
tion step. This procedure is repeated until a sufficiently small Hamming weight
is found. With this tool we can find good characteristics for different choices of
l and t in few seconds on a standard PC. In Table 4 we present the best (lowest
Hamming weight) characteristics we have found for different parameters. As one
can see after 65 steps the Hamming weight is getting too high such that we
cannot find a characteristic and conforming inputs with practical complexity.

Note that decreasing t always increases the Hamming weight, since more
state variables with differences are included in the linear code. Furthermore,
the Hamming weight in Table 4 includes only differences in A. To estimate the
probability one has to take the differences in all state variables into account.
Therefore, the probability for the linear characteristic can be roughly estimated
by four times the Hamming weight of A.

Cryptanalysis of Round-Reduced HAS-160 41

Table 4. Results for the low weight search.

n l t Hamming weight

53 18 21 3

60 18 21 3

65 18 21 3

66 19 21 25

67 18 21 25

68 18 21 72

69 18 21 72

70 18 21 119

75 19 21 123

80 19 21 247

Using this general approach we can cover the whole (linear) search space and
allow arbitrary differences in the message words. However, it turned out that the
best characteristics we have found are indeed the trivial ones which have only
few differences in the message words and only a one bit difference per message
word.

4.4 Short Differential Characteristics

To describe the differential characteristics we use generalized conditions which
are explained in Section 5.1. We have found several different characteristics,
depending on the choice of l and t. In Table 8 of Appendix A we present two
short characteristics, where t is kept small. To improve readability, we used the
alternative description of HAS-160 (see Section 2.1)

5 Finding Connecting Characteristics

In this section, we show how one can find a connecting differential characteristic
which is the most expensive part in our attack. The main idea to find a connect-
ing characteristic is to use the nonlinearity of the step update function. Con-
structing such complex characteristics is a difficult task. In [5], De Cannière and
Rechberger proposed a new method to find complex characteristics for SHA-1 in
an efficient way. In their concept they allow characteristics to impose arbitrary
conditions on the pairs of bits (referred to as generalized conditions). Based on
this they presented an efficient probabilistic search algorithm. Recently, Mendel
et al.[9] extended this technique and applied it successfully on SHA-2. The basic
idea of the search algorithm is to randomly pick a bit position and impose a
zero-difference. Afterwards, it is calculated how this condition propagates. This
is repeated until an inconsistency is found or all unrestricted bits are eliminated.

42 F. Mendel, T. Nad, M. Schläffer

5.1 Generalized Conditions

To describe the search algorithm in more detail we first repeat the notation
of generalized conditions which was introduced in [5]. Inspired by signed-bit
differences, generalized conditions for differences take all 16 possible conditions
on a pair of bits into account. Table 5 lists all these possible conditions and
introduces notations for the various cases.

Table 5. Notation for possible generalized conditions on a pair of bits [5].

(Xi, Xi
∗) (0, 0) (1, 0) (0, 1) (1, 1)

? X X X X
- X - - X
x - X X -
0 X - - -
u - X - -
n - - X -
1 - - - X
- - - -

(Xi, X
∗
i) (0, 0) (1, 0) (0, 1) (1, 1)

3 X X - -
5 X - X -
7 X X X -
A - X - X
B X X - X
C - - X X
D X - X X
E - X X X

For example, all pairs of 8-bit words X and X∗ that satisfy

{(X,X∗) ∈ {0, 1}8 × {0, 1}8 |X7 ·X∗7 = 0, Xi = X∗i for 1 ≤ i ≤ 5, X0 6= X∗0},

can be conveniently written in the form

∇X = [7?-----x].

5.2 Application to HAS-160

Due to the similarities of HAS-160 to SHA-1 the adaption of the above concept
can be done in a straightforward manner and can be used to find the connecting
characteristic. For more details see [5,9]. We proceed as follow:

1. Pick a random unrestricted bit (?) or an unsigned difference (x).
2. Impose a zero-difference (-) or randomly a sign (u or n), respectively.
3. Check how the new condition propagates.
4. If an inconsistency occurs jump back to the point where the last sign was

imposed and make a different decision.
5. Repeat this until all unrestricted bits are eliminated

Using a small number of unrestricted words reduces the search space and run-
ning time of the algorithm significantly. Therefore, we reduced this number by
extending the two short linear characteristics linearly. Since there are only few
differences at the end of the first linear characteristic and at the beginning of
the second linear characteristic, we can extend them forward and backward re-
spectively, without increasing the Hamming weight too much. In fact for the

Cryptanalysis of Round-Reduced HAS-160 43

characteristic in Table 8 in Appendix A we extended the linear characteristics
linearly forward by two and backwards by ten steps. Table 6 shows the starting
point of the search algorithm using the notation of generalized conditions leaving
only five words unrestricted.

Table 6. Steps free of conditions at the beginning of the search algorithm.

step ∇A ∇W
...

...
...

20 x------------------x--x--------- --------------------------------

21 ???????????????????????????????? --------------------------------

22 ???????????????????????????????? --------------------------------

23 ???????????????????????????????? --------------------------------

24 ???????????????????????????????? --------------------------------

25 ???????????????????????????????? x-------------------------------

26 -x-x------x---x-xxx--x-------x-- --------------------------------

...
...

...

Applying the above algorithm on this starting point the algorithm converges
already after an hour (on a standard PC) to a complete characteristic for 65
steps. Determining the complexity of the probabilistic algorithm in general is
still an open problem. Among others it depends on the hash function, search
strategy, start characteristic and implementation. The complete characteristic
is given in Table 8 of Appendix A. Note that with this approach we can find
several different characteristics.

5.3 Finding a Message Pair

Almost all of the differences in the characteristic of Table 8 in Appendix A are
within 21 steps. Since we can choose up to 21 words (16 message and 5 IV)
freely we can use message modification to find efficiently inputs which fulfill
all the conditions of the characteristic. The conditions for the characteristic are
listed in Table 9 in Appendix A. The resulting colliding message pair and IV is
given in Table 7.

6 Conclusions

The progress in the cryptanalysis of hash functions in the last years shows that
the security of existing standards need to be reevaluated. Therefore, we analyze
in this paper the Korean hash function standard (TTAS.KO-12.0011/R1) HAS-
160. The main idea of our attack is to construct two short linear differential
characteristics which hold with high probability and connect them by a com-
plex third characteristic by using the nonlinearity of the state update function.

44 F. Mendel, T. Nad, M. Schläffer

Table 7. A colliding message pair and IV for HAS-160.

IV ed3c8ca6 38127dc3 bcf7b374 264eeb2b 73be1247

M
467d7948 3c433177 981f570c 6bf43c12 3dc04b7c cb85a46d 3356206e bff3ea04
9603f6ca 252c37eb 3a1d6197 479ca8d1 badbe3d9 4e23c48c c52a6189 53f1ea06

M ′
467d7948 3c433177 981f570c 6bf43c12 3dc04b7c cb85a46d 3356206e bff3ea04
9603f6ca 252c37eb 3a1d6197 479ca8d1 3adbe3d9 4e23c48c 452a6189 53f1ea06

∆M
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 80000000 00000000 80000000 00000000

h 4b0a28ae bc82dbb1 a4805bfd cd226435 7cb7eb52

h′ 4b0a28ae bc82dbb1 a4805bfd cd226435 7cb7eb52

We use techniques from coding theory to search efficiently for the short char-
acteristics and simultaneously determine an optimal position and length of the
connecting characteristic. In a second step we use an automatic search algorithm
to find a connecting characteristic taking the nonlinearity of the state update
into account.

We present a semi-free-start collision for 65 (out of 80) steps HAS-160 with
practical complexity. Extending the attack to more rounds seems to be difficult.
One can always extend the size of the connecting part, but this also increases
the complexity of finding the connecting characteristic, which running time is
hard to estimate. If we limit the length of the connecting part to 21 steps, then
the best short characteristics we can find with probability below the generic
complexity of a collision attack, are for up to 65 steps.

Even though we only present a semi-free-start collision, it is a step forward
in the analysis of HAS-160. This is so far the best known attack with practical
complexity in terms of attacked steps for HAS-160.

Acknowledgments

The work in this paper has been supported by the European Commission un-
der contract ICT-2007-216646 (ECRYPT II) and by the Austrian Science Fund
(FWF, project P21936).

References

1. Anne Canteaut and Florent Chabaud. A New Algorithm for Finding Minimum-
Weight Words in a Linear Code: Application to McEliece’s Cryptosystem and
to Narrow-Sense BCH Codes of Length 511. IEEE Transactions on Information
Theory, 44(1):367–378, 1998.

2. Florent Chabaud and Antoine Joux. Differential Collisions in SHA-0. In Hugo
Krawczyk, editor, CRYPTO, volume 1462 of LNCS, pages 56–71. Springer, 1998.

3. Hong-Su Cho, Sangwoo Park, Soo Hak Sung, and Aaram Yun. Collision Search
Attack for 53-Step HAS-160. In Min Surp Rhee and Byoungcheon Lee, editors,
ICISC, volume 4296 of LNCS, pages 286–295. Springer, 2006.

Cryptanalysis of Round-Reduced HAS-160 45

4. Magnus Daum. Cryptanalysis of Hash Functions of the MD4-Family. PhD thesis,
Ruhr-Universität Bochum, May 2005. Available online: http://www.cits.rub.

de/imperia/md/content/magnus/dissmd4.pdf.
5. Christophe De Cannière and Christian Rechberger. Finding SHA-1 Characteris-

tics: General Results and Applications. In Xuejia Lai and Kefei Chen, editors,
ASIACRYPT, volume 4284 of LNCS, pages 1–20. Springer, 2006.

6. Deukjo Hong, Bonwook Koo, and Yu Sasaki. Improved Preimage Attack for 68-
Step HAS-160. In Donghoon Lee and Seokhie Hong, editors, ICISC, volume 5984
of Lecture Notes in Computer Science, pages 332–348. Springer, 2009.

7. Sebastiaan Indesteege and Bart Preneel. Practical Collisions for EnRUPT. In Orr
Dunkelman, editor, FSE, volume 5665 of LNCS, pages 246–259. Springer, 2009.

8. Florian Mendel and Tomislav Nad. A Distinguisher for the Compression Func-
tion of SIMD-512. In Bimal K. Roy and Nicolas Sendrier, editors, INDOCRYPT,
volume 5922 of LNCS, pages 219–232. Springer, 2009.

9. Florian Mendel, Tomislav Nad, and Martin Schläffer. Finding SHA-2 Character-
istics: Searching Through a Minefield of Contradictions. In Dong Hoon Lee and
Xiaoyun Wang, editors, ASIACRYPT, LNCS. Springer, 2011. To appear.

10. Florian Mendel and Vincent Rijmen. Colliding Message Pair for 53-Step HAS-160.
In Kil-Hyun Nam and Gwangsoo Rhee, editors, ICISC, volume 4817 of LNCS,
pages 324–334. Springer, 2007.

11. Tomislav Nad. The CodingTool Library. Workshop on Tools for Crypt-
analysis 2010, 2010. http://www.iaik.tugraz.at/content/research/krypto/

codingtool/.
12. National Institute of Standards and Technology. Cryptographic Hash Algorithm

Competition, November 2007. Available online: http://csrc.nist.gov/groups/
ST/hash/sha-3/index.html.

13. Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Exploiting Cod-
ing Theory for Collision Attacks on SHA-1. In Nigel P. Smart, editor, IMA Int.
Conf., volume 3796 of LNCS, pages 78–95. Springer, 2005.

14. Vincent Rijmen and Elisabeth Oswald. Update on SHA-1. In Alfred Menezes,
editor, CT-RSA, volume 3376 of LNCS, pages 58–71. Springer, 2005.

15. Vincent Rijmen and Bart Preneel. Improved Characteristics for Differential Crypt-
analysis of Hash Functions Based on Block Ciphers. In Bart Preneel, editor, FSE,
volume 1008 of LNCS, pages 242–248. Springer, 1994.

16. Yu Sasaki and Kazumaro Aoki. A Preimage Attack for 52-Step HAS-160. In
Pil Joong Lee and Jung Hee Cheon, editors, ICISC, volume 5461 of LNCS, pages
302–317. Springer, 2008.

17. Telecommunications Technology Association. Hash Function Standard Part 2:
Hash Function Algorithm Standard (HAS-160), TTAS.KO-12.0011/R1, 2008.

18. Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Crypt-
analysis of the Hash Functions MD4 and RIPEMD. In Ronald Cramer, editor,
EUROCRYPT, volume 3494 of LNCS, pages 1–18. Springer, 2005.

19. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full
SHA-1. In Victor Shoup, editor, CRYPTO, volume 3621 of LNCS, pages 17–36.
Springer, 2005.

20. Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions.
In Ronald Cramer, editor, EUROCRYPT, volume 3494 of LNCS, pages 19–35.
Springer, 2005.

21. Hongbo Yu, Jiazhe Chen, Ketingjia, and Xiaoyun Wang. Near-Collision Attack on
the Step-Reduced Compression Function of Skein-256. Cryptology ePrint Archive,
Report 2011/148, 2011.

http://www.cits.rub.de/imperia/md/content/magnus/dissmd4.pdf
http://www.cits.rub.de/imperia/md/content/magnus/dissmd4.pdf
http://www.iaik.tugraz.at/content/research/krypto/codingtool/
http://www.iaik.tugraz.at/content/research/krypto/codingtool/
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

46 F. Mendel, T. Nad, M. Schläffer

22. Aaram Yun, Soo Hak Sung, Sangwoo Park, Donghoon Chang, Seokhie Hong, and
Hong-Su Cho. Finding Collision on 45-Step HAS-160. In Dongho Won and Se-
ungjoo Kim, editors, ICISC, volume 3935 of LNCS, pages 146–155. Springer, 2005.

A Characteristic

Table 8. Characteristic for 65 steps HAS-160 using generalized conditions. The
rows with darkgray background represent the connecting part. The rows with
lightgray background represent the two linear characteristics. All conditions can
be fulfilled using message modification.

step ∇A ∇W
-4 --------------------------------

-3 --------------------------------

-2 --------------------------------

-1 --------------------------------

0 --------------------------------
...

...
...

16 -------------------------------- --------------------------------

17 u------------------------------- x-------------------------------

18 ------------------u------------- --------------------------------

19 n------------u------------------ x-------------------------------

20 u------------------u--u--------- --------------------------------

21 -------n-uuuuuu--u----n----u---- --------------------------------

22 u--n---uu-nu---uu---nn--------uu --------------------------------

23 --n-n-nnnu-n-u--nu------nu------ --------------------------------

24 uuun-nu--u-u----n-n-unnuuuuuuu-n --------------------------------

25 --n----uu---uu-un-u-----nu-n-n-- x-------------------------------

26 -n-n------n---n-uun--u-------n-- --------------------------------

27 -unu------u-n---uu---u-n-u-u---n --------------------------------

28 --n---u---u---u--u-n---u-----u-n --------------------------------

29 --------n---u--------n-------u-n --------------------------------

30 --u-----n-u----------u---------- --------------------------------

31 --n-------n----------------n-n-- --------------------------------

32 --------------n--------------n-- --------------------------------

33 ----------n--------------------- x-------------------------------

34 ----------n------------------u-- --------------------------------

35 -----------------------------u-- --------------------------------

36 -------------------------------- --------------------------------

37 -------------------------------- --------------------------------

38 -------------------------------- --------------------------------

39 -------------------------n------ --------------------------------

40 -------------------------------- --------------------------------

41 -------------------------------- --------------------------------

42 -------------------------------- x-------------------------------

43 -------------------------------- --------------------------------

44 -------------------------------- x-------------------------------

45 -------------------------------- --------------------------------
...

...
...

65 -------------------------------- --------------------------------

Cryptanalysis of Round-Reduced HAS-160 47

Table 9. Set of conditions for the semi-free-start collision for 65 steps.

step set of conditions #

16 A16,3 = 0, A16,21 = A15,21 2

17 A17,3 = 1, A17,31 = 1 2

18 A18,9 = 1, A18,13 = 1, A18,8 6= A17,8 3

19 A19,18 = 1, A19,31 = 0, A19,23 6= A17,13, A19,27 6= A18,2, A19,9 6= A18,31, A19,24 = A18,31 6

20 A20,9 = 1, A20,12 = 1, A20,31 = 1, A20,16 6= A18,6, A20,3 = A18,25, A20,0 6= A19,0, A20,1 = A19,1, A20,2 = A19,2,
A20,3 = A19,3, A20,4 = A19,4, A20,5 = A19,5, A20,23 6= A19,6, A20,7 = A19,7, A20,19 = A19,19, A20,24 = A19,24,
A20,29 6= A19,29

16

21 A21,4 = 1, A21,9 = 0, A21,14 = 1, A21,17 = 1, A21,18 = 1, A21,19 = 1, A21,20 = 1, A21,21 = 1, A21,22 = 1,
A21,24 = 0, A21,26 6= A19,9, A21,29 = A19,12, A21,3 6= A20,3, A21,6 6= A20,6, A21,7 6= A20,7, A21,11 6= A20,11,
A21,15 6= A20,15, A21,16 6= A20,16, A21,3 6= A20,18, A21,25 6= A20,25, A21,26 = A20,26, A21,30 = A20,30

22

22 A22,0 = 1, A22,1 = 1, A22,10 = 0, A22,11 = 0, A22,15 = 1, A22,16 = 1, A22,20 = 1, A22,21 = 0, A22,23 = 1,
A22,24 = 1, A22,28 = 0, A22,31 = 1, A22,2 = A20,17, A22,3 = A20,18, A22,4 6= A20,19, A22,5 6= A20,20, A22,6 = A20,21,
A22,7 6= A20,22, A22,9 = A20,24, A22,3 6= A21,3, A22,5 = A21,5, A22,6 6= A21,6, A22,7 = A21,7, A22,8 = A21,8,
A22,12 6= A21,12, A22,29 6= A21,12, A22,29 = A21,29, A22,30 = A21,30

28

23 A23,6 = 1, A23,7 = 0, A23,14 = 1, A23,15 = 0, A23,18 = 1, A23,20 = 0, A23,22 = 1, A23,23 = 0, A23,24 = 0, A23,25 =
0, A23,27 = 0, A23,29 = 0, A23,17 = A21,0, A23,28 6= A21,11, A23,0 6= A21,15, A23,1 6= A21,16, A23,8 = A21,23,
A23,13 = A21,28, A23,16 = A21,31, A23,3 = A22,3, A23,21 6= A22,4, A23,5 = A22,5, A23,8 = A22,8, A23,9 6= A22,9,
A23,26 = A22,9, A23,12 6= A22,12, A23,13 6= A22,13, A23,2 = A22,17, A23,17 6= A22,17, A23,3 = A22,18, A23,4 6= A22,19,
A23,19 6= A22,19, A23,26 6= A22,26, A23,30 6= A22,30

34

24 A24,0 = 0, A24,2 = 1, A24,3 = 1, A24,4 = 1, A24,5 = 1, A24,6 = 1, A24,7 = 1, A24,8 = 1, A24,9 = 0, A24,10 = 0,
A24,11 = 1, A24,13 = 0, A24,15 = 0, A24,20 = 1, A24,22 = 1, A24,25 = 1, A24,26 = 0, A24,28 = 0, A24,29 = 1,
A24,30 = 1, A24,31 = 1, A24,23 = A22,6, A24,24 6= A22,7, A24,12 = A22,27, A24,14 = A22,29, A24,17 6= A23,0,
A24,1 6= A23,1, A24,18 6= A23,1, A24,27 = A23,10, A24,12 6= A23,12, A24,1 = A23,16, A24,17 6= A23,17, A24,19 = A23,19,
A24,21 = A23,21, A24,16 6= A23,31

35

25 A25,2 = 0, A25,4 = 0, A25,6 = 1, A25,7 = 0, A25,13 = 1, A25,15 = 0, A25,16 = 1, A25,18 = 1, A25,19 = 1, A25,23 = 1,
A25,24 = 1, A25,29 = 0, A25,17 6= A23,0, A25,20 = A23,3, A25,21 = A23,4, A25,22 6= A23,5, A25,25 6= A23,8, A25,26 6=
A23,9, A25,27 = A23,10, A25,28 = A23,11, A25,30 = A23,13, A25,11 = A23,26, A25,17 = A24,17, A25,3 = A24,18,
A25,8 = A24,23, A25,9 = A24,24, A25,12 = A24,27

27

26 A26,2 = 0, A26,10 = 1, A26,13 = 0, A26,14 = 1, A26,15 = 1, A26,17 = 0, A26,21 = 0, A26,28 = 0, A26,30 = 0,
A26,1 = A24,16, A26,3 = A24,18, A26,4 6= A24,19, A26,8 = A24,23, A26,9 = A24,24, A26,20 6= A25,3, A26,22 6= A25,5,
A26,25 6= A25,8, A26,26 = A25,9, A26,27 = A25,10, A26,11 = A25,11, A26,12 = A25,12, A26,5 = A25,20, A26,7 = A25,22,
A26,25 6= A25,25, A26,11 = A25,26, A26,16 6= A25,31

26

27 A27,0 = 0, A27,4 = 1, A27,6 = 1, A27,8 = 0, A27,10 = 1, A27,14 = 1, A27,15 = 1, A27,19 = 0, A27,21 = 1, A27,28 = 1,
A27,29 = 0, A27,30 = 1, A27,27 6= A25,10, A27,2 = A25,17, A27,13 = A25,28, A27,23 6= A26,6, A27,24 = A26,7,
A27,12 6= A26,12, A27,1 6= A26,16, A27,3 6= A26,18, A27,23 = A26,23, A27,9 = A26,24, A27,27 6= A26,27

23

28 A28,0 = 0, A28,2 = 1, A28,8 = 1, A28,12 = 0, A28,14 = 1, A28,17 = 1, A28,21 = 1, A28,25 = 1, A28,29 = 0,
A28,23 = A26,6, A28,4 = A26,19, A28,19 6= A27,2, A28,30 6= A27,13

13

29 A29,0 = 0, A29,2 = 1, A29,10 = 0, A29,19 = 1, A29,23 = 0, A29,29 = A27,12, A29,4 6= A28,4, A29,21 6= A28,4,
A29,6 = A28,6, A29,27 6= A28,10, A29,4 = A28,19, A29,13 = A28,28, A29,15 = A28,30

13

30 A30,10 = 1, A30,21 = 1, A30,23 = 0, A30,29 = 1, A30,27 = A28,10, A30,4 = A28,19, A30,8 6= A28,23, A30,4 = A29,4,
A30,25 = A29,8, A30,12 6= A29,12, A30,2 6= A29,17, A30,17 = A29,17, A30,6 6= A29,21, A30,14 6= A29,29

14

31 A31,2 = 0, A31,4 = 0, A31,21 = 0, A31,29 = 0, A31,6 6= A29,21, A31,14 = A29,29, A31,0 6= A30,0, A31,17 6= A30,0,
A31,19 6= A30,2, A31,17 6= A30,17

10

32 A32,2 = 0, A32,17 = 0, A32,19 = A30,2, A32,21 = A30,4, A32,27 = A31,10, A32,8 6= A31,23 6

33 A33,21 = 0, A33,2 6= A31,17, A33,4 6= A32,4, A33,6 = A32,21, A33,14 = A32,29 5

34 A34,2 = 1, A34,21 = 0, A34,6 6= A32,21, A34,19 6= A33,2, A34,17 = A33,17 5

35 A35,2 = 1, A35,19 = A33,2 2

36 A36,6 6= A35,21 1

37 A37,21 = 0, A37,19 6= A36,2 2

39 A39,6 = 0 1

41 A41,31 = 1 1

	Introduction
	Description of HAS-160
	Message Expansion.
	State Update Transformation.

	Alternative Description of HAS-160

	Basic Attack Strategy
	Finding Two Short Characteristics
	Linearization of HAS-160
	Construction of the Generator matrix
	Modification.
	Determining l, t and n.

	Searching for Low Hamming Weight Codewords
	Short Differential Characteristics

	Finding Connecting Characteristics
	Generalized Conditions
	Application to HAS-160
	Finding a Message Pair

	Conclusions
	Characteristic

