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Abstract. Boole is a hash function designed by Gregory Rose and was
submitted to the NIST Hash competition. It is a stream cipher based
hash function which produces digests up to 512 bits. Different variants
exist, namely Boole16, Boole32 and Boole64 where the number refers
to word size in bits. Boole64 is considered as the official submission.
In this paper we demonstrate a collision attack with complexity 265 for
the 64-bit variant and 233 for the 32-bit variant. The amount of memory
required is negligible. Since the attack on Boole32 is practical, we present
an example for a collision.

1 Introduction

A hash functions maps an input of arbitrary finite length to an output of a fixed
length. The basic security requirements for a cryptographic hash function are:

– collision resistance – it is computationally infeasible to find two different
inputs, which hash to the same output.

– second preimage resistance – for a given input, it is computationally infea-
sible to find a second input with the same hash value.

– preimage resistance – for a given output of a hash function, it is computa-
tionally infeasible to find an input that hashes to that output.

Recently, the NIST hash function competition [1] started. In this public com-
petition to find an alternative hash function to replace the SHA-1 and SHA-2
hash functions, many new designs have been proposed. In November 2008, round
one has started and in total 51 algorithms were have been accepted. One of the
submitted hash functions is Boole designed by Gregory Rose [2]. It is a stream
cipher based design like PANAMA [3]. Boole is an expansion of the stream ci-
pher Shannon [4] but is also influenced by other cryptographic primitives. Boole
is a cryptographic primitive that can be used as a hash function, message au-
thentication code (MAC) and a synchronous stream cipher.

In this paper we will describe a method to construct a collision for the Boole
hash function. A collision occurs if two different messages result in the same hash
value. Boole maps messages of arbitrary length to a hash result of 224, 256, 384
or 512 bits. A generic collision attack for the strongest version producing a 512
bit hash values requires about 2256 hash function computations. We will show
that with our method a collision can be found with a complexity of less than 265

state update transformations and negligible amount of memory.
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2 Description of Boole

Boole operates on W -bit words, W ∈ {16, 32, 64}. We refer to Boole16, Boole32
and Boole64 if we need to distinguish between the different word sizes. The Boole
hash function supports output lengths up to 8 ·W bits. The internal memory
consists of a 16-word register R and three word accumulators, namely x, r and l.
The register is a nonlinear feedback shift register and at the end an output filter
function is applied. Boole consist of three phases: input phase, mixing phase and
output phase. In the following we explain these phases in more detail.

2.1 Input Phase

In the input phase, the accumulators and register words are updated with the
message words mt. Each message word is used once in the input phase.

temp = f1(l(t))⊕mt

l(t+1) = temp ≪ 1

x(t+1) = x(t) ⊕mt

r(t+1) = (r(t) ⊕ temp) ≫ 1

R
(t+1)
3 = R

(t)
3 ⊕ l(t+1)

R
(t+1)
13 = R

(t)
13 ⊕ r(t+1)

(1)

Afterwards the whole message has been processed and the register is cycled:

R
(t+1)
i = R

(t)
i+1, for i = 1, · · · , 14

R
(t+1)
15 = f1(R(t)

12 ⊕R
(t)
13 )⊕ (R(t)

0 ≪ 1)

R
(t+1)
0 = R

(t)
1 ⊕ f2(R(t+1)

2 ⊕R(t+1)
15 )

(2)

In Figure 1 we have drafted the update step of the input phase.

2.2 Mixing phase

After the input phase, the bit length of the input data, the output length and
accumulators are mixed into the register. By length we denote the length of the
input in bits, represented as a 64-bit integer and split into W -bit words. h is
the length of the resulting hash value. The mixing phase is applied twice and is
accomplished as follows:

R0 = R0 ⊕ length
R4 = R4 ⊕ l ⊕ h
Ri = Ri ⊕ l,∀i ∈ {7, 10, 13}
Ri = Ri ⊕ x, ∀i ∈ {5, 8, 11, 14}
Ri = Ri ⊕ r, ∀i ∈ {6, 9, 12, 15}
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Fig. 1. Scheme of the update step

2.3 Output Phase

In the output phase, the content of the register and the output filter function is
used to produce the hash value. First, the register is cycled as in Equation (2)
and then, one word of the hash is computed as follows:

v = R0 ⊕R8 ⊕R12

These steps are repeated until the required output length is reached.

2.4 Boolean Functions

The two nonlinear Boolean functions f1 and f2 depend on the the word size W .
For Boole64 they are defined as follows:

t = w ⊕ 0x6996c53a

t = t⊕ ((t ≪ C) ∨ (t ≪ D))
t = t⊕ ((t ≪ B) ∨ (t ≪ E))
t = t⊕ ((t� A) ∨ (t ≪ F ))

For f1(w) = t the constants {A,B,C,D,E, F} are set to {3, 20, 34, 42, 55, 60},
and for f2(w) = t the constants {A,B,C,D,E, F} are to {5, 27, 35, 46, 52, 55}.
In the case of Boole32 the Boolean functions are defined as follows:

t = t⊕ ((w ≪ A) ∨ (w ≪ B))
t = t⊕ ((t ≪ C) ∨ (t ≪ D))

For f1(w) = t the constants {A,B,C,D} are {5, 7, 19, 22} and for f2(w) = t the
constants {A,B,C,D} are {7, 22, 5, 19}. In Boole16, the Boolean functions are
defined as follows:

t = t⊕ ((w ≪ A) ∨ (w ≪ B))
t = t⊕ ((¬t ≪ C) ∨ (t ≪ D))
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For f1(w) = t the constants {A,B,C,D} are {9, 13, 10, 15} and for f2(w) = t
the constants {A,B,C,D} are {3, 14, 9, 10}.

3 A Differential Attack on Boole

In this section, we first analyze the differential properties of the components of
Boole. We show that the Boolean functions f1 and f2 are not invertible and
can be used to cancel differences. Then, we show how to find a collision in the
accumulators and the register of Boole. Finally, we present a differential path
which leads to a collision in the input phase. Since there are no message words
used during the mixing and output phase, the collision in the input phase results
in a collision of the full hash function Boole as well.

3.1 Collisions in the Boolean Functions

The Boolean functions f1 and f2 are used in every update step of the accumulator
and the register of Boole. The main observation used in our attack is:

Observation 1 The Boolean functions f1 and f2 are not invertible.

Hence, we can find collisions in these functions and differences cancel out within
the functions f1 and f2. In the following, we analyze which differences can be
canceled and give the required conditions.

For Boole32 and Boole16 we get a zero output value for both f1 and f2 for the
input values 0x0 and 0xF· · · F. For Boole64 the input of the Boolean functions is
first XORed with the constant 0x6996c53a. Therefore, f1 and f2 collide for the
values 0x6996c53a and its inverted value 0x96693ac5. The XOR difference for
all variants of Boole is 0xF· · · F. Note that there are more input values for f1 and
f2 which collide. Table 1 shows all colliding input pairs with all-one difference for
Boole32. Note that there are also more colliding input differences for the Boolean
functions. However, in our attack we only use the all-one difference since this
difference is rotation invariant and we can use the same difference in every step
of Boole.

Table 1. Colliding input values for f1 and f2 with all-one difference for Boole32.

w fk(w) fk(w ⊕ 0xFFFFFFFF)

0x0 0x0 0x0

0x55555555 0x0 0x0

0xaaaaaaaa 0x0 0x0

0xFFFFFFFF 0x0 0x0
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3.2 Difference Propagation in the Accumulator

In this section we show, how differences propagate and can be canceled in the
accumulator. Whenever we injecting a message difference, we will first get a
difference in all three accumulators x, r and l and the register words R2 and
R12. Remember that we can cancel the difference 0xF· · · F in the function f1 of
the accumulator. Hence, the shortest differential path which leads to a collision
in the accumulator is by injecting the same message difference 0xF· · · F in two
subsequent steps.

However, in this case the resulting differential path has a higher attack com-
plexity. Therefore, we cancel the differences in the accumulator by injecting a
second message difference after 3 steps. In this case, five differences are injected
into the register.

The differences in the accumulators x and r are canceled by injecting the
same difference in a subsequent message word. Whenever we inject the all-one
difference using a message word, the resulting difference in the accumulator l is
canceled using the function f1 in the next step. According to Section 3.1, the
difference 0xF· · · F cancels if the input value of f1 (lt) is 0x0 for Boole32 and
Boole16 or 0x6996c53a for Boole64. If we inject the message difference 0xF· · · F
in step t, the following equation needs to hold for Boole64:

l(t+1) = f1(l(t))⊕mt = 0x6996c53a (3)

Hence, the difference 0xF· · · F in mt will cancel in the following function f1 if the
value of mt equals:

mt = f1(l(t))⊕ 0x6996c53a (4)

3.3 The Differential Path

The full differential path, which leads to a collision in Boole is given in Table 2.
Note that we only work with the all-one difference 0xF· · · F in the whole path.
This has a number of advantages. First, we can and do always cancel the differ-
ence in the functions f1 and f2. Second, whenever two differences are XORed,
the resulting difference is zero. This is especially useful in the XOR prior to the
functions f1 and f2, since we do not need any condition in these cases.

We inject the first message difference in message word m3 since we need the
previous message words to fulfill the conditions on the following functions f1
and f2 (see Section 5). We inject two differences into the register and cancel
the differences in the accumulator using the message word m6. Afterwards we
have five differences in the register. By canceling input differences for the Boolean
functions, the five differences are moving through the register and after 16 cycles
they are again at the same positions. By injecting the same differences in the
message words ∆m19 and ∆m22, the five differences in the register are canceled.
Hence, we get a collision in the register, accumulators and the full hash function
Boole after 23 update steps.
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Figure 3 of Appendix A shows the beginning (step 3-7) and Figure 4 shows
the end of the differential path (FF denotes the all-one difference). From these
figures it is easy to see in which step we need to cancel differences in f1 and f2
by defining conditions on the input. The last column of Table 2 lists all occuring
non-zero input differences in f1 and f2 of the register.

4 Message Modification

In the this section, we explain how to modify the message words to get a zero
output difference in Boole. Message modification was introduced by Wang et
al. in [5]. The basic idea of message modification is to use the degrees of freedom
one has on the choice of the message words to fulfill conditions on the state
variables.

In our attack we distinguish between three different types of message modi-
fication, depending on how the conditions for the inputs f1 and f2 occur. Note
that it is more difficult to fulfill the conditions, if they occur for both Boolean
functions in the same step or if a message difference is introduced in the same
step.

4.1 Type I Message Modification

This type covers the situation where a non-zero input difference for f1 occurs and
a message difference is injected in the same step. In that case, we have to adept
a previous message word to get a zero output difference. Figure 2 shows how
the previous message word influences the input of f1 and we get the following
message modification equations:

x = ((mt−1 ⊕ f1(l(t−1))⊕ r(t−1)) ≫ 1⊕ f1(l(t))⊕mt) ≫ 1⊕R(t)
13

y = (mt−1 ⊕ f1(l(t−1))⊕ r(t−1)) ≫ 1⊕R(t−1)
13

(5)

Hence, we have to find a message word mt−1 such that following equation
holds:

x⊕ y = c,

where c is one of the values mentioned in Section 3.1. Instead of computing the
message word itself, we compute the difference which is needed to change the
current message word:

mnew
t−1 = δmt−1 ⊕mt−1

Then, equations (5) changes to

δx = δmt−1 ≫ 2
δy = δmt−1 ≫ 1.
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Fig. 2. Modification path for a collision in f1.

Note that we ignore f1(l(t))⊕mt, since it has always the same value, indendent
of the previous message words (see Section 3.2). We can then set up the following
equation which expresses the needed difference for the input of f1:

δf = δx⊕ δy = δmt−1 ≫ 2⊕ δmt−1 ≫ 1 (6)

For the value c = 0, δf is given by the following equation:

δf = R
(t+1)
12 ⊕ ((r(t) ≫ 1)⊕R(t)

13 ) (7)

Equation (6) defines a linear system of equations and mt−1,j denotes the jth bit
of mt−1:

δmt−1,i+1 = δmt−1,i + δfi (8)

for i = 0, · · ·W − 1. To solve this system, we first choose a random value for
δmt−1,0. Then, we compute the remaining bits. Afterwards we check if the solu-
tion is correct by comparing

δmt−1,0 = δmt−1,W−1 + δfW−1

to the randomly chosen value. A solution exists with probability 2−1. If the
solution is not correct we can choose a new message word mt−1.

4.2 Type II Message Modification

The second case is much simpler and occurs if we have an input difference for f1
in the register but we do not inject a message difference in the same step. Hence,
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we can achieve the needed input values for the Boolean function by modifying
the message word in the same step t. The message is then computed as follows:

mt = (R(t)
12 ⊕R

(t)
13 ) ≪ 1⊕ r(t) ⊕ f1(l(t))

m′t = mt

By this modification we get a zero output difference for f1 with probability 1.

4.3 Type III Message Modification

For the case where a non-zero input difference for f2 in step t occurs, we simply
achieve a zero output difference by exhaustive search over all values of mt or
a previous message word, if in the same step also an other type of message
modification has to be done.

5 The Collision Attack on Boole

In this section, all required steps to construct a collision for the Boole hash
function, together with their complexities, are given.

1. The message words m0,m1 and m2 are set to random values.
2. We inject a difference for m3 and get a non-zero input difference for f1 and
f2. We use type I message modification for f1 and type III for f2. Messages
m2 and m0 are modified. The complexity of this step is 2W+1−d update
steps, where 2d denotes the number of colliding input pairs for f2 with all-
one difference (d = 2 for Boole32).

3. Next we inject a difference in m6 and get a condition for f1. We solve this
condition by type I modification of m5. The complexity is about 21.

4. In step 9 we get again a non-zero input difference for f2. A zero ouput
difference is achieved by exhaustive search over all values of m8. Additionally,
a condition for f1 is given which is solved by modifying m9 according to type
II message modification. The complexity of this step is 2W−d.

5. In step 10 we get a non-zero input difference for f1. We create a collision for
f1 by modifying m10 according to type II.

6. We do the same in step 12.
7. In step 13 we have conditions for f1 and f2. We do message modification

of type II and III. For a zero output difference for f2, m11 is used for the
exhaustive search since m12 and m13 are already fixed. For each new value
of m11, m12 and m13 are recomputed. The complexity is again 2W−d.

8. In step 14 we do an type II message modification of m14 to get a zero output
difference for f2. The same is done for step 15 and m15, step 16 and m16, step
17 and m17 and for step 18 and m18. Each modification has a complexity of
2W−d.

9. Finally, differences in m19 and m22 are injected which cancel all remaining
differences.
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The result is a collision in the register R and the accumulators x, r and l
after the 23 step updates. Since all exhaustive searches are independent from
each other, the overall attack complexity is given by 8 · 2W−d = 2W+3−d. For
Boole64 this gives 267−d and we assume d to be at least 2. For Boole32 d is equal
to two and therefore, the complexity is 233 update steps.

5.1 Example collision for Boole32

An example of two colliding message pairs for Boole32 is given in Table 3. The
common hash value for both messages is

3f71dd7bd86ac4731bc1567791d6fc8479c411530e3c8230d97cbca36c19e01f.

Table 3. Two colliding messages for Boole32

m a0bc0dbe a1e5e09e bcb01824 3403415f 0b177f21 7b31b82d f5db2a23 a866bb7c

004ebc0f e11adc45 55b36c86 f59ed7ba d7eb4405 c3265558 556eaf94 980d9839

596fd2d9 d55ecff1 5df3155c 10dc14fa 22672d75 87fbd016 af0c15b8 4719bfdd

m′ a0bc0dbe a1e5e09e bcb01824 cbfcbea0 0b177f21 7b31b82d 0a24d5dc a866bb7c

004ebc0f e11adc45 55b36c86 f59ed7ba d7eb4405 c3265558 556eaf94 980d9839

596fd2d9 d55ecff1 5df3155c ef23eb05 22672d75 87fbd016 50f3ea47 4719bfdd

6 Conclusions

We presented a method to construct a collision for the Boole hash function.
Boole was submitted to the NIST Hash competition, where the goal is to find
a new secure hash algorithm (SHA-3). Boole is a stream cipher based design
similar to PANAMA. However, we have shown in this paper, that Boole is not
collision resistant. We are able to construct a collision in the internal register
during the input phase. Since in the mixing and output phase no message inputs
are used, this results in a collision for the whole hash function. In our attack we
inject four message differences and have to modify a few messages words and
after 23 steps the messages collide.

The main observation used in the attack is that the Boolean functions f1
and f2 are not invertible and we can construct collisions in these functions. The
collision attack has a complexity of about 2W+3−d, where W refers to the word
size and 2d the number of different colliding pairs for the Boolean functions f1
and f2. We provide an example of a colliding message pair for Boole32, since the
attack complexity for this variant is about 233 update steps and thus, feasible
in practice.
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