A Distinguisher for the Compression Function of
SIMD-512

Florian Mendel and Tomislav Nad

Institute for Applied Information Processing and Communications (TAIK)
Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria.
Tomislav.Nad@iaik.tugraz.at

Abstract. SIMD is one of the round 2 candidates of the public SHA-3
competition hosted by NIST. It was designed by Leurent et al.. In this
paper, we present a distinguisher attack on the compression function of
SIMD-512. By linearizing the compression function we construct a linear
code. Using techniques from coding theory to search for low Hamming
weight codewords, we can find differential characteristics with low Ham-
ming weight (and hence high probability). In the attack the differences
are introduced only in the V. Such a characteristic is the base for our dis-
tinguisher, which can distinguish the compression function of SIMD-512
from random with a complexity of 5 - 225-2% compression function calls.
Furthermore, we can distinguish the output transformation of SIMD-512
from random with a complexity of about 22 - 242528 compression func-
tion calls. So far this is the first cryptanalytic result for the SIMD hash
function.

Keywords: SHA-3 candidate, SIMD, cryptanalysis, distinguisher.

1 Introduction

Recently, the NIST hash function competition [I3] has started. In this pub-
lic competition to find an alternative hash function to replace the SHA-1 and
SHA-2 hash functions, many new designs have been proposed. In November
2008, round one has started and in total 51 out of 64 submissions have been
accepted. Recently, the 14 round 2 candidates were announced. SIMD, designed
by Leurent et al. [9], is one of them. It is an iterative hash function based on
the Merkle-Damgard design principle [6J12]. It is a wide-pipe design [I0] pro-
ducing a hash value up to 512 bits, denoted by SIMD-n, where n is the output
length. For the remainder of this paper wherever we mention SIMD we refer to
SIMD-512. The design of the compression function is similar to the MD4 family.
Furthermore, there exist several proofs [BIT] for the mode of operation used
by SIMD. The designers additionally provide bounds for a large class of differ-
ential attacks. Most of the security is based on the message expansion. In this
paper, we present a distinguisher attack on the compression function of SIMD-
512 with a complexity of 5 - 2425-28 compression function calls. Including the
output transformation we can distinguish the output of SIMD-512 from random

B. Roy and N. Sendrier (Eds.): INDOCRYPT 2009, LNCS 5922, pp. 219-233] 2009.
The original publication is available at http://www.springerlink.com/content/7487g5076g087v48
(© Springer-Verlag Berlin Heidelberg 2009

http://www.springerlink.com/content/7487g5076g087v48

220 Florian Mendel and Tomislav Nad

with a complexity of about 22 - 2425-2% compression function calls. The distin-

guisher is based on a differential characteristic with differences only in the IV.
A characteristic with high success probability is found by using techniques from
coding theory. By linearizing the compression function we define a linear code
where each codeword represents a differential characteristic. Using an algorithm
to find low Hamming weight codewords, we found characteristics which lead to
the above attack complexity.

Even if we do not attack the whole hash function, we show unexpected non-
random properties of the SIMD-512 compression function. However, our attack
does not invalidate the security claims of the designers, since most of the security
comes from the message expansion, but note that the non-randomness of the
compression function of SIMD effects the applicability of the proofs for the mode
of operation build upon it.

The structure of this paper is as follows. A short description of SIMD is given
in Section [2] Section [3] gives an overview of the basic attack strategy. Section
shows in which way we linearized the compression function of SIMD. Followed
by Section [5| containing the description of the techniques from coding theory to
find good characteristics. Finally, the distinguisher for full SIMD is presented in
Section

2 Description of SIMD

SIMD is an iterative hash function that follows the Merkle-Damgard design.
The main component of a Merkle-Damgard hash function is the compression
function. In the case of SIMD-512 to compute the hash of a message M, it
is first divided into k£ chunks of 1024 bits. By the use of a message expansion
one block is expanded to 8192 bits. Then the compression function is used to
compress the message chunks and the internal state. The padding rule to fill
the last blocks is known as the Merkle-Damgard strengthening. The initial value
of the internal state is called IV and is fixed in the specification of the hash
function. The output of the hash function is given by computing a finalization
function on the last internal state, which is a truncation for SIMD. The internal
state of SIMD contains 32 32-bit words and is therefore twice as large as the
output. SIMD consist of 4 rounds where each round consist of 8 steps. The feed-
forward consists of four additional steps with the I'V as message input. Since we
apply a compression function attack independent from the message expansion,
we omit the description of the message expansion. For a detailed description of
the hash function we refer to [9].

2.1 SIMD Step Function

The core part of SIMD is the step function of the state update. Figure |1 il-
lustrates the step function at step t. The state update consists of eight step
functions in parallel. To make the step function dependent from each other,

A Distinguisher for the Compression Function of SIMD-512 221

La st | at [ot]

——
£ -

- E}4_A§;&><<<rf
La Jla Jla J[o

Fig. 1. Update function of SIMD at step t. it =0, -+, 7.

(A;t_(li) < r') is included in a modular addition, where pt(i) is a permutation,
which is different for each step.

Equation is the formal definition of the step function, where B denotes
the addition modulo 232.

A= (DI B BO(AT BT CITY) < M B (AL <<)

Bl = Al <« ot
ct=pBi~! M
Dl =ct !

The permutation p is separated in 4 different permutations:

0(x) z+1 (mod 8), if z=0 (mod 2)
xT) =
P 2 —1 (mod 8), otherwise

() = x+2 (mod 8), if x=0 (mod 4) or =1 (mod 4)
P ~ |z —2 (mod 8), otherwise

p?(r) =7 -2 (mod 8)
p*(x) =z +4 (mod 8)

The permutation used at step ¢ is pt MOd 4. Ag mentioned before, the 32 steps of
SIMD are divided into 4 rounds, each consisting of 8 steps. The boolean function
@ and the rotation constants (s and r) for a round are given in Table[T} In Table[2]
the rotation constants for each round are given. The feed-forward consist of four
steps using the same step function. Table [3|lists the used Boolean function and
the rotation constants for the feed-forward.

222 Florian Mendel and Tomislav Nad

Table 1. @ and rotation constants for a round.

step] & [[s]
IF |« 071
IF |« 1|72
IF |72 |73

IF T3 |70
MAJ To |71
MAJ|m|m2
MAJ T2 (T3
MAJ T3 |70

| O O x| W N[O

Table 2. Rotation constants for each round.

[round|mo |7y [z [ms]

0 3120|1427
1 26| 4 (23|11
2 19|28 7 |22
3 15| 5 (29| 9

Table 3. @ and rotation constants for the feed-forward of SIMD

step[Z[7]
IF|15| 5
IF| 5 |29
IF'[29| 9
IF| 9 |15

W =O

A Distinguisher for the Compression Function of SIMD-512 223

3 The Basic Attack Strategy

In this section, we briefly describe the attack strategy to construct a distinguisher
for the compression function. The attack can be summarized as follows:

1. Find a differential characteristic for the compression function of SIMD with
differences in the IV, which holds with high probability.
2. Use message modification technique to increase the probability.

To find a good characteristic for the compression function, we use a linearized
model of it. Finding a characteristic in a linear code is not difficult. Since the
security of SIMD is heavily based on the message expansion, we concentrate on
characteristics with differences only in the IV. The probability that the char-
acteristic holds in the original compression function is related to the Hamming
weight of the characteristic. In general, a differential characteristic with low
Hamming weight has a higher probability than one with a high Hamming weight.
Finding a characteristic with high probability (low Hamming weight) is related
to finding a low weight word in linear codes. Therefore, we use the probabilis-
tic algorithm from Canteaut and Chabaud [3] to find a good characteristic for
the compression function of SIMD. It has been shown in the past, for instance
the cryptanalysis of SHA-0 [4], SHA-1 [14] or EnRUPT [g] that this technique
works well for finding differential characteristics with low Hamming weight. Fur-
thermore, we can improve the probability of the characteristic using message
modification, which was introduced by Wang et al. in [16].

4 Linearization of SIMD

Since we have only differences in the IV, we can omit the message expansion and
assume that the message words have no differences. The step function is the
only part of SIMD which has to be linearized. The nonlinear parts of this function
are the modular additions and the Boolean function &. In the attack, we replace
all modular addition by XORs. The function ¢ depends on the current step and
is either the IF function or the MAJ function. To have a good approximation
for those, we have to take a closer look on the differential behavior of them.

4.1 Differential Behavior of IF and MAJ

The differential behavior of IF and MAJ is already discussed in [7]. IF and MAJ
have three inputs. Table [4] shows the differential propagation of the Boolean
functions regarding XOR-differences.

Since we aim for a low weight characteristic, we replace the Boolean function
@ with the O-function, i.e. we block each input difference in @, no matter if
IF or MAJ is used. This has probability 1/2 in most cases. One can see that
there is exactly one input difference for IF and one for MAJ where the output
difference is always one. We discard characteristics with such properties, except
in the feed-forward. There we manually correct the characteristic, resulting in a

224 Florian Mendel and Tomislav Nad

Table 4. Differential Propagation of IF and MAJ

[Ax Ay Az AIF [AMAJ]

0 0 O 0 0

0 0 1 z®1 Dy
0 1 0 x TPz
0o 1 1 1 y®ze1
1 0 O YDz Yyobz
1 0 1 TDYDz |[rdzd1
1 1 0|zeydzallzdydl
1 1 1 yPhzd1 1

slightly higher Hamming weight. Furthermore, we use the non-linearity of the IF
function in the feed-forward to decrease the Hamming weight significantly (see

Section .

Finally, the linearized step function looks as follows:
Al=(DI'ouwl o)« s @ (A;:(li) <«
Bl = A « ot
Cct = gt—1
D=t !

Note that for the feed-forward w} is equal to one word of the IV.

5 Finding Good Characteristics

As observed by Rijmen and Oswald [I5], all differential characteristics for a
linearized hash function can be seen as the codewords of a linear code. Our aim
is to find good characteristics. Therefore, we have to include each part where
differences could decrease the success probability. Let the vector

Acv' = (AALAB!ACE| ADY), (3)

fori=0,---,7and cv’ € {0,1}'°?4 be the concatenated difference of all chaining
values (in bit representation) at step t. Then the vector

Adc := (AIV, Acv', - -+ | Acv®°),

where Adc € {0,1}371924 represents the differences in the IV, chaining values
after each step and the output of the SIMD compression function, including the
feed-forward. Adc is one codeword of the linear code and therefore a differential
characteristic. To construct the generator matrix for the linear code, we proceed
as follows:

A Distinguisher for the Compression Function of SIMD-512 225

1. Compute Adc; with the input difference AIV; = e;, where e; € {0,1}19%4 is
the j-th unit vector.
2. Repeat the computation for j =1,...,1024.
The resulting systematic generator matrix of the linear code for the linearized
SIMD compression function is defined in the following way:

G1024x37.1024 = [11024x1024|C V], (4)
where C'V is defined by
AdC1
Adcio24

5.1 Reducing the Code Length

Depending on the number of steps, the linear code can get large. If we take a
closer look on the dependencies of each chaining value, one can see that only
the A;’s are updated at each step and the other values only depend on them.
Therefore, we can reduce the code size by only considering the A;’s at each step
function. The definition of Acv? in Equation (3)) changes to

Acv' = (AAL), (5)

Following the same procedure above, the resulting generator matrix is much
smaller, namely
G1024x10240 = [l1024x1024|CV]. (6)

Therefore, the performance of the search for low Hamming weight codewords is
increased.

5.2 Low Weight Search

We implemented the probabilistic algorithm from Canteaut and Chabaud [3]
to search for codewords with low Hamming weight and applied some optimiza-
tions to speed up the search. This iterative algorithm basically looks for small
Hamming weight codewords in a smaller code. Such a codeword is considered
as a good candidate for a low Hamming weight codeword for the whole code.
Considering a systematic generator matrix like @ the algorithm randomly se-
lects o columns of it and split the selection in two submatrices of equal size. By
computing all linear combination of p rows (usually 2 or 3) for each submatrix
and storing their weight, the algorithm searches for a collision of both weights
which allow to search for codewords of 2p. Then two randomly selected columns
are interchanged, followed by one Gaussian elimination step. This procedure is
repeated until a sufficiently small Hamming weight was found. Additionally, we
check for each codeword if each difference at the input of the Boolean function
can be blocked. If it is not possible we discard the codeword. We omit this check
in the feed-forward (see Section .

In the case of the codes originating from the linearized SIMD compression
function we found several low weight codewords in less than an hour on a PC.

226 Florian Mendel and Tomislav Nad

5.3 Estimating the Probability for a Characteristic

To compute the probability of the found differential characteristic, we have to
consider the differences entering the Boolean function @ and the modular addi-
tions.

The Boolean Function @. The probability for blocking a difference in one
bit at the input of @ is 1/2 or 0 for some cases, but then the characteristic is
discarded (see Section. Hence, the total probability is determined by the sum
of all differences at the input. Note, that differences at the same bit positions are
counted only once. The overall probability for step ¢ is defined by 27%, where x
is given by
7
> hw(AATV ABIT v ACHT
i=0

and hw(-) is the bit-wise Hamming weight of a 32-bit word.

The Modular Additions. Consider the additions from the step func-

tion .

(AD;™' B Awj) << s" B (AAL L) << 1) (7)
We could consider each modular addition separately and prevent a carry for
each bit difference, but this would result in a rather conservative approximation.
Therefore, we want to give a more detailed analysis. By allowing carries in the
first addition, we can compensate them at the second addition. However, this is
not that easy, because of the rotation after the first modular addition.

First we take a look at the following addition:

ADIT B Awt.

If we have a difference at the same bit position, we can cancel them out with
probability 1/2. The overall probability to cancel out such differences for step ¢
is 27Y, where y is defined by

7
Z hw(AD!™! A Awt).
=0

Note that Aw! # 0 only for the feed-forward. If there is only a difference in one
input of the modular addition (bit-wise), we allow carries. However, we do not
want that the carry expansion is destroyed, due to the rotation to left by s’ bits,
since we cannot compensate this in the second addition. To take care of this
problem we have to consider two cases.

Let be [; the bit position of the j-th difference in AD!™" before the rotation,
I after the rotation and dusg(l;) (duss(lj)) the distance of I; (I%) to the most
significant bit (MSB). The first case is dusg(l;) < s, i.e. the difference is rotated
over the MSB. Therefore, we have to ensure that the carry expands at most to

A Distinguisher for the Compression Function of SIMD-512 227

the MSB from the position of the difference before the rotation. The probability

for that is
1 — 2 dss(ly)

The second case considers dusg(l;) > st, i.e. the difference is not rotated over
the MSB. In this case we have to ensure that the carry expands at most to the
MSB from the position of the difference after the rotation. The probability for
that is
1 — 2 dss(lh)
This differentiation has to be done for each difference in ADf_l. The overall
probability is given by the product of all single probabilities.
In the last modular addition
(AD;™! << s") B (A4 <)

we first cancel out differences at the same bit positions of both variables with
probability 1/2 for each such difference. In the last step we compensate the
carries from the first addition with the same probability. Finally, the overall
success probability for the second modular addition is 277, where z is defined as

follows:
7

Y hw(ADIT << stV AALTL <<).

i=0
Note, that we ignore differences in the MSB for these calculations, which results
in a small improvement.

Message Modification. To improve the success probability of the differential
characteristic we use message modification. We have the freedom to choosing the
actual values of the IV and the message words. Regarding the message words,
we assume that we can increase the success probability in the first 4 steps to
1. Since one message block in SIMD has 1024 bit and is expanded to 8192, we
can at least choose the first 32 expanded message words w, but not completely
arbitrary. The message modification for the first 4 steps results in a significant
improvement of the overall success probability, since this probability is low in
these steps. However, the message expansion needs to be studied in more detail
to get a good view on the security of SIMD. It might be possible to improve the
attack by using more sophisticated message modification techniques.

6 Distinguisher for Full SIMD

In this section, we present a distinguisher for the full (32 steps and feed-forward)
compression function of SIMD. It is based on the differential multicollision dis-
tinguisher introduced by Biryukov et al. [I] and high probability differential
characteristics for the compression function of SIMD. This characteristic was
found by using the techniques described in the previous section. Before describ-
ing the differential characteristic in detail, we first have to discuss the setting we
use to show non-randomness in the compression function of SIMD.

228 Florian Mendel and Tomislav Nad

6.1 Differential g-multicollision

The notion of differential g-multicollision was introduced by Biryukov et al. in
the cryptanalysis of AES-256. They show that differential ¢g-multicollision can
be found for AES-256 with a complexity of ¢ - 267, while for an ideal cipher an
adversary needs at least

O(¢- 272 ™) (8)

time. Note that in [I] the attack is described for a block cipher. However, it can
be easily adapted for a random function. Below we repeat the basic definition
and lemma, we need for the distinguishing attack for the compression function
of SIMD.

Definition 1. A set of two differences and q pairs
{AIV,AM; (IVy, M), (IVa, M), - -+, (IVy, M)}
is called a differential g-multicollision for frv(-) if

frvi (ML) @ frviearv (M @ AM) = frv,(M2) © frvaearv (Me & AM)
== frv,(Mg) ® frv,earv(My & AM).

In the case of SIMD, f is the compression function and AM is equal 0.

Lemma 1. To construct a differential g-multicollision for an ideal function with
2

g—=
an n-bit output an adversary needs at least O(q-24+2 n) queries on the average.

The proof for Lemma works similar as in [I] for an ideal cipher.

In this section, we show how to find a differential g-multicollision for the
SIMD compression function with a complexity of about ¢ - 242528 instead of the
expected

q

—2
q- 2@-1024.

This is described in detail in the subsequent sections.

6.2 The Differential Characteristic

We have found several characteristics with low Hamming weight. The best ones
have a weight of 504 in all chaining variables. We can further reduce the weight
by using the non-linearity of the IF function in the feed-forward. If we do not
block all input differences in the Boolean function, we can cancel out additional
differences, which results in a lower Hamming weight for the subsequent steps.
Thus, the overall success probability of the characteristic is increased. In that
way we can improve the characteristics to a weight of 486. By a detailed analysis
(see Section we determine the success probability of the characteristics with
~ 2750734 without message modification. If we use additionally message mod-
ification as described in Section we increase the probability to a2 27425:28,

A Distinguisher for the Compression Function of SIMD-512 229

Table [8] presents one of the differential characteristics with weight 486. Due to
space restriction we do not show the complete characteristic but the differences
in the IV, which is enough to reconstruct the whole differential path. In Ap-
pendix [A] the characteristic in the steps of the feed-forward, including the above
modifications, is given.

Table 5. Differences in the IV.

A, | B | ¢] DI |
00000000{00000000{00000000(00000000
00000000{00000000{00000000(00000000
00000000{00000000{00000000(00000000
00000000{104804a0{00000000|00000000
00000000{00000000(050€0010({00000000
00000000{00000000{00000000(00000000
00000000{00000000{00000000|68801201
04004400{00000000{00000000(00000000

| O| U x| W N —| O] =

Table @] splits the probability estimation into rounds and steps (for readability
the probabilities are given in log,).

Table 6. Probabilities in log, for each round and step.

step|| 1 2 3 4 5 | 6| 7
round
0 —23.85|—23.03|—19.09|—16.19|—15.12|—12.09| —9 | —8.03
1 —7.09 -5 —4 —4 -3 -2 -2 -2
2 -1 —1 -1 -2 -3 —4 —4 -3
3 —4.19 —6 -9 —12 —16 |—19.42|—19|—23.30
feed-forward ||—31.05|—46.09|—69.46|—77.34

The characteristic in Table [§|leads to a guaranteed difference in one bit at the
output of @ in the third step of the feed-forward. By correcting this manually,
the success probability is slightly decreased, which is already included in the
overall probability.

6.3 The Complexity of the Attack

The differential characteristic described in the previous section can be used to
construct a distinguisher for the compression function of SIMD. It is easy to

230 Florian Mendel and Tomislav Nad

see that by using the differential characteristic ¢ times one can find a differen-
tial g-multicollision with a complexity of about ¢ - 2°°7-3* compression function
evaluations. Furthermore, by using message modification (see Section in the
first 4 steps the complexity of the attack can be significantly reduced, resulting
in a complexity of about g-2%2°2%. Note that the generic attack has a complexity
of about)
.- 23_72-1024

compression function evaluations. Hence, one can distinguish the compression
function of SIMD from a random function with a complexity of about ¢ - 2°07-34
and ¢ - 242528 for ¢ = 6 and ¢ = 5, respectively.

In a similar way as we can distinguish the compression function of SIMD
from random, we can also distinguish the output transformation (last iteration
of SIMD) from random. While the complexity for constructing a differential ¢-
multicollision for the output transformation using the differential characteristic
described in the previous section is the same as before, the complexity of the
generic attack has changed, since the output is only 512 instead of 1024 bits in
the last iteration due to the truncation at the end. Hence, the complexity of the
generic attack is

q—2

However, by setting ¢ = 438 and ¢ = 22 for the case with message modification in
the first 4 rounds, we can distinguish the output transformation of SIMD from
random with a complexity of about 438 - 250734 and 22 . 242528 yespectively.
Table [7] provides a summary of the complexities for our distinguisher and the
generic complexities.

Table 7. Summary of the attack complexities.

‘ compression function | output transformation
message modiﬁcation“ generic [our attack| generic lour attack

7 1306
no G.9281024| ¢ 950734 |4a0 o735°512| 43¢ . 9507.34

ves 5. 2%1024 5.9425.28 | 99 2%{,12 99 . 9125.28

7 Conclusions

In this paper, we presented a distinguishing attack on the compression function
of SIMD-512. We used techniques from coding theory to search for differential
characteristics with low Hamming weight. We have found several characteris-
tics with weight 486. Our attack strategy for the distinguisher is similar to the

A Distinguisher for the Compression Function of SIMD-512 231

multicollision distinguisher introduced by Biryukov et al. [I]. By using the char-
acteristic with the highest success probability, we are able to construct a dis-
tinguisher, which complexity is below the generic bound in [I], even with a still
conservative probability estimation. We are able to distinguish the compression
function from random with a complexity of 5-2425-28 compression function calls.
Including the output transformation the complexities are still below the generic
bound, i.e. we can distinguish the output transformation of SIMD from random
with a complexity of about 22 - 242528 compression function calls.

Even if we do not attack the whole hash function, we show unexpected prop-
erties for the SIMD-512 compression function. However, our attack does not
invalidate the security claims of the designers, since most of the security comes
from the message expansion, but note that the non-randomness of the com-
pression function of SIMD effect the applicability of the proofs for the mode of
operation build upon it.

This is the first external cryptanalysis of the SIMD hash function. However,
the desigerns have tweaked the design to avoid this attack.

Acknowledgements

The authors wish to thank Gaétan Leurent for validating our attack, Christian
Rechberger, Vincent Rijmen and the anonymous referees for useful comments
and discussions. The work in this paper has been supported in part by the
European Commission under contract ICT-2007-216646 (ECRYPT II) and by
the Austrian Science Fund (FWF), project P19863.

References

1. Alex Biryukov, D.K., Nikoli¢, I.: Distinguisher and Related-Key Attack on the
Full AES-256. In: Halevi, S. (ed.) Crypto. Lecture Notes in Computer Science, vol.
5677, pp. 231-249. Springer (2009)

2. Brassard, G. (ed.): Advances in Cryptology - CRYPTO ’89, 9th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 20-24,
1989, Proceedings, Lecture Notes in Computer Science, vol. 435. Springer (1990)

3. Canteaut, A., Chabaud, F.: A New Algorithm for Finding Minimum-Weight Words
in a Linear Code: Application to McEliece’s Cryptosystem and to Narrow-Sense
BCH Codes of Length 511. IEEE Transactions on Information Theory 44(1), 367—
378 (1998)

4. Chabaud, F., Joux, A.: Differential Collisions in SHA-0. In: Krawczyk, H. (ed.)
CRYPTO. Lecture Notes in Computer Science, vol. 1462, pp. 56—71. Springer
(1998)

5. Chang, D., Nandi, M.: Improved Indifferentiability Security Analysis of chopMD
Hash Function. In: Nyberg, K. (ed.) FSE. Lecture Notes in Computer Science, vol.
5086, pp. 429-443. Springer (2008)

6. Damgard, I.: A Design Principle for Hash Functions. In: Brassard [2], pp. 416-427

7. Daum, M.: Cryptanalysis of Hash Functions of the MD4-Family. Ph.D. the-
sis, Ruhr-Universitdt Bochum (May 2005), http://www.cits.rub.de/imperia/
md/content/magnus/dissmd4.pdf

http://www.cits.rub.de/imperia/md/content/magnus/dissmd4.pdf
http://www.cits.rub.de/imperia/md/content/magnus/dissmd4.pdf

232

8.

10.

11.

12.
13.

14.

15.

16.

A

Florian Mendel and Tomislav Nad

Indesteege, S., Preneel, B.: Practical Collisions for EnRUPT. In: Dunkelman, O.
(ed.) FSE. Lecture Notes in Computer Science, vol. 5665, pp. 246-259. Springer
(2009)

Leurent, G., Bouillaguet, C., Fouque, P.A.: SIMD Is a Message Digest. Submission
to NIST (2008), http://www.di.ens.fr/~leurent/files/SIMD.pdf

Lucks, S.: A Failure-Friendly Design Principle for Hash Functions. In: Roy, B.K.
(ed.) ASIACRYPT. Lecture Notes in Computer Science, vol. 3788, pp. 474-494.
Springer (2005)

Maurer, U.M., Tessaro, S.: Domain Extension of Public Random Functions: Beyond
the Birthday Barrier. In: Menezes, A. (ed.) CRYPTO. Lecture Notes in Computer
Science, vol. 4622, pp. 187-204. Springer (2007)

Merkle, R.C.: One Way Hash Functions and DES. In: Brassard [2], pp. 428-446
National Institute of Standards and Technology: Announcing Request for Can-
didate Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-
3) Family. Federal Register Notice (November 2007), available online at: http:
//csrc.nist.gov

Pramstaller, N.,; Rechberger, C., Rijmen, V.: Exploiting Coding Theory for Col-
lision Attacks on SHA-1. In: Smart, N.P. (ed.) IMA Int. Conf. Lecture Notes in
Computer Science, vol. 3796, pp. 78-95. Springer (2005)

Rijmen, V., Oswald, E.: Update on SHA-1. In: Menezes, A. (ed.) CT-RSA. Lecture
Notes in Computer Science, vol. 3376, pp. 58—71. Springer (2005)

Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer,
R. (ed.) EUROCRYPT. Lecture Notes in Computer Science, vol. 3494, pp. 19-35.
Springer (2005)

Differential characteristic for the 4 steps in the
feed-forward

http://www.di.ens.fr/~leurent/files/SIMD.pdf
http://csrc.nist.gov
http://csrc.nist.gov

A Distinguisher for the Compression Function of SIMD-512 233

Table 8. Differences in the chaining values in the feed-forward.

(@] AT [Bf [& | Di |
)||00000000{00000000{00000000{00000000
){/00000000(00000000|{00000000|00000000
){/00000000({00000000{00000000|00000000
)||00000000{00000000{83801001|00000000
){/00000000{00000000{00000000|0000c008
){/00000000({00000000{00000000|00000000
)|/84d0c901[{00000000{00000000|00000000
)|/80088000(8410c1c0{00000000|00000000
){/00000000({00000000{00000000|00000000
)||00000000{00000000{00000000{00000000
)|/00000000{00000000|{00000000|00000000
){/02090094 [00000000{00000000|83801001
)||92193831(00000000{00000000|00000000
){/01100010{00000000|{00000000|00000000
)|/00000000(92192030|{00000000|00000000
){/00000000({01100010{8410c1c0|00000000
)|/00000000(00000000|{00000000|00000000
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

w

w

00000000{00000000{00000000|00000000
00220002{00000000{00000000|00000000
21620401|80412012{00000000{00000000
8c010008|33432706{00000000({00000000
00000000{00220002|00000000|00000000
00000000{00000000{9a192030{00000000
20000000{00000000(01100010|8410c1c0
02001118{00000000{00000000|00000000
00000000{00000000{00000000|00000000
00000000{44000400(00000000|00000000
00000040{c4080242|80412012|00000000
00000000{02001118|33432706|00000000
00000000{00000000{00220002|00000000
4d00b040{00000000{00000000(92192030
a4e04042|00000040|{00000000{01100010

w

w

w

w

w

w

w

w

w

w

w

w

e e o o e e e B e e e e e e e e e e e e e e e e B B e e B B B B

w w
O O O O | | | O O v T | Oy v Ot Ot
~N| O Y| W N O U W N —=O

	Introduction
	Description of SIMD
	SIMD Step Function

	The Basic Attack Strategy
	Linearization of SIMD
	Differential Behavior of IF and MAJ

	Finding Good Characteristics
	Reducing the Code Length
	Low Weight Search
	Estimating the Probability for a Characteristic

	Distinguisher for Full SIMD
	Differential q-multicollision
	The Differential Characteristic
	The Complexity of the Attack

	Conclusions
	Differential characteristic for the 4 steps in the feed-forward

