
Exploiting Coding Theory for Collision Attacks
on SHA-1?

Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen

Institute for Applied Information Processing and Communications (IAIK)
Graz University of Technology, Austria

{Norbert.Pramstaller,Christian.Rechberger,Vincent.Rijmen}@iaik.tugraz.at

Abstract. In this article we show that coding theory can be exploited
efficiently for the cryptanalysis of hash functions. We will mainly focus
on SHA-1. We present different linear codes that are used to find low-
weight differences that lead to a collision. We extend existing approaches
and include recent results in the cryptanalysis of hash functions. With
our approach we are able to find differences with very low weight. Based
on the weight of these differences we conjecture the complexity for a
collision attack on the full SHA-1.
Keywords: Linear code, low-weight vector, hash function, cryptanalysis,
collision, SHA-1

1 Introduction

Hash functions are important cryptographic primitives. A hash function pro-
duces a hash value or message digest of fixed length for a given input message of
arbitrary length. One of the required properties for a hash function is collision
resistance. That means it should be practically infeasible to find two messages
m and m∗ 6= m that produce the same hash value.

A lot of progress has been made during the last 10 years in the cryptanalysis
of dedicated hash functions such as MD4, MD5, SHA-0, SHA-1 [1,5,6,12]. In
2004 and 2005, Wang et al. announced that they have broken the hash functions
MD4, MD5, RIPEMD, HAVAL-128, SHA-0, and SHA-1 [14,16]. SHA-1, a widely
used hash function in practice, has attracted the most attention and also in this
article we will mainly focus on SHA-1.

Some of the attacks on SHA-1 exploit coding theory to find characteristics
(propagation of an input difference through the compression function) that lead
to a collision [10,12]. The basic idea is that the set of collision-producing differ-
ences can be described by a linear code. By applying probabilistic algorithms
the attacker tries to find low-weight differences. The Hamming weight of the
resulting low-weight differences directly maps to the complexity of the collision
attack on SHA-1. Based on [10,12] we present several different linear codes that
we use to search for low-weight differences. Our new approach is an extension of
? The work in this paper has been supported by the Austrian Science Fund (FWF),

project P18138.

N.P. Smart (Ed.): Cryptography and Coding 2005, LNCS 3796, pp. 78–??, 2005.
http://www.springerlink.com/content/l0qp10m607864m72
c© Springer-Verlag Berlin Heidelberg 2005

http://www.springerlink.com/content/l0qp10m607864m72

the existing methods and includes some recent developments in the cryptanalysis
of SHA-1. Furthermore, we present an algorithm that reduces the complexity of
finding low-weight vectors for SHA-1 significantly compared to existing proba-
bilistic algorithms. We are able to find very low-weight differences within minutes
on an ordinary computer.

This article is structured as follows. In Section 2, we present the basic at-
tack strategy and review recent results on the analysis of SHA-1. How we can
construct linear codes to find low-weight collision-producing differences is shown
in Section 3. Section 4 discusses probabilistic algorithms that can be used to
search for low-weight differences. We also present an algorithm that leads to
a remarkable decrease of the search complexity. The impact of the found low-
weight differences on the complexity for a collision attack on SHA-1 is discussed
in Section 5. In Section 6 we compare our low-weight difference with the vectors
found by Wang et al. for the (academical) break of SHA-1. Finally, we draw
conclusions in Section 7.

2 Finding collisions for SHA-1

In this section we shortly describe the hash function SHA-1. We present the
basic attack strategy and review recent results in the analysis of SHA-1. For the
remainder of this article we use the notation given in Table 1. Note that addition
modulo 2 is denoted by ‘+’ throughout the article.

Table 1. Used notation

notation description

A + B addition of A and B modulo 2 (XOR)
A ∨B logical OR of two bit-strings A and B

Mt input message word t (32-bits), index t starts with 0
Wt expanded input message word t (32-bits), index t starts with 0

A � n bit-rotation of A by n positions to the left
A � n bit-rotation of A by n positions to the right
step the SHA-1 compression function consists of 80 steps

round the SHA-1 compression function consists of 4 rounds = 4× 20 steps
Aj bit value at position j
At,j bit value at position j in step t
A′

j bit difference at position j
A′

t,j bit difference at position j in step t

2.1 Short description of SHA-1

The SHA family of hash functions is described in [11]. Briefly, the hash functions
consist of two phases: a message expansion and a state update transformation.
These phases are explained in more detail in the following. SHA-1 is currently

79

the most commonly used hash function. The predecessor of SHA-1 has the same
state update but a simpler message expansion. Throughout the article we will
always refer to SHA-1.

Message expansion. In SHA-1, the message expansion is defined as follows.
The input message is split into 512-bit message blocks (after padding). A single
message block is denoted by a row vector m. The message is also represented by
16 32-bit words, denoted by Mt, with 0 ≤ t ≤ 15.

In the message expansion, this input is expanded linearly into 80 32-bit words
Wt, also denoted as the 2560-bit expanded message row-vector w. The words Wt

are defined as follows:

Wt = Mt, 0 ≤ t ≤ 15 (1)
Wt = (Wt−3 + Wt−8 + Wt−14 + Wt−16)� 1, 16 ≤ t ≤ 79 . (2)

Since the message expansion is linear, it can be described by a 512 × 2560
matrix M such that w = mM. The message expansion starts with a copy of the
message, cf. (1). Hence, there is a 512× 32(80− 16) matrix F such that M can
be written as:

M512×2560 = [I512 F512×2048] . (3)

State update transformation. The state update transformation starts from
a (fixed) initial value for 5 32-bit registers (referred to as iv) and updates them
in 80 steps (0,. . . ,79) by using the word Wt in step t. Figure 1 illustrates one
step of the state update transformation. The function f depends on the step
number: steps 0 to 19 (round 1) use the IF-function and steps 40 to 59 (round
3) use the MAJ-function:

fIF (B,C,D) = BC + BD (4)
fMAJ(B,C,D) = BC + BD + CD . (5)

The remaining rounds 2 and 4, use a 3-input XOR referred to as fXOR. A step
constant Kt is added in every step. There are four different constants; one for
each round. After the last application of the state update transformation, the
initial register values are added to the final values (feed forward), and the result
is either the input to the next iteration or the final hash value.

We linearize the state update by approximating fIF and fMAJ by a 3-input
XOR. The linear state update can then be described by a 2560× 160 matrix S,
a 160× 160 matrix T, and a vector k that produce the output vector o from the
input message vector m:

o = mMS + ivT + k . (6)

The (linear) transformation of the initial register value iv is described by the
matrix T. The constant k includes the step constants.

80

At Bt Ct Dt Et

Bt+1 Ct+1 Dt+1 Et+1

<< 5

At+1

>> 2

+

+

+

+

f
Wt

Kt

Fig. 1. One step of the linearized state update transformation of SHA-1

2.2 The basic attack strategy

Recent collision attacks on SHA-1 use the following strategy. First, a characteris-
tic, i.e. the propagation of an input difference through the compression function
of the hash function, is constructed. Second, messages are constructed, which
follow the characteristic. This strategy is based on the attack on SHA-0 by
Chabaud and Joux [5].

They observed that every collision for the linearized compression function of
SHA (SHA-0, SHA-1) can be written as a linear combination of local collisions.
These local collisions consist of a perturbation and several corrections. Rijmen
and Oswald [12] described the first extension of this attack to SHA-1. Their
method extends the Chabaud-Joux method and works with any characteristic
that produces output difference zero.

Since a characteristic propagates in a deterministic way through a linear
function, the characteristic is determined completely by the choice of the input
difference. Hence, there are 2512 different characteristics. A fraction of 2−160 of
these, results in a zero output difference (a collision). A difference corresponding
to a characteristic is called a collision-producing difference.

Two messages m1 and m2 = m1 + δ collide if

(m1 + δ)MS−m1MS = 0⇐⇒ δMS = 0, (7)

where δ is the input difference. Therefore, we are interested in solutions of the
following equation:

vS = 0, (8)

whereas v = δM represents a collision-producing difference. Among the set of
2352 solutions we are searching for a small subset where

81

– v has a low Hamming weight
– the probability for the characteristic to hold is maximal.

There is a strong correlation between these two requirements, which will be
explained in Section 3. Using a suitable low-weight difference, the attack proceeds
as follows:

– conditions for following the characteristic are derived
– some conditions are pre-fulfilled by setting certain bits in the message
– during the final search, the most naive approach to fulfill all remaining con-

ditions is to preform random trials. The time-complexity of this final search
is determined by the number of conditions which are not pre-fulfilled.

The problem of finding low-weight difference vectors is the main topic of this
article. We present efficient algorithms to cover this search space in Section 4.
Using the found low-weight difference, we describe a general way to derive con-
ditions that need to hold in order to follow this difference in Section 5.

2.3 Overview of existing attacks on SHA-1

We now review recent advances in the analysis of SHA-1. The conclusions drawn
in this section will be used in subsequent sections.

Using more than one message block. In multi-block collisions, we can also
use characteristics that do not result in a zero output. For instance, for a two-
block collision, all we require is that the output difference in both blocks is equal,
because then, the final feed-forward will result in cancelation of the differences
(with a certain probability). For an i-block collision, we get 512i − 160 free
bits (512i− 320 if we require that the perturbation pattern is a valid expanded
message).

Easy conditions. For the second step of the attack, constructing a pair of
messages that follows this characteristic, a number of conditions on message
words and intermediate chaining variables need to be fulfilled. As already ob-
served in [5], conditions on the first steps can be pre-fulfilled. Using the idea of
neutral bits, this approach was extended to cover the first 20 steps of the com-
pression function of SHA-0 [1]. Wang et al. and Klima do something similar for
MD4 and MD5 to pre-fulfill conditions, which is there called message modifica-
tion [8,15,17]. For this reason, whenever we refer to a weight of a characteristic
(collision-producing difference), we omit the weight of the first 20 words, unless
stated otherwise.

Exploiting non-linearity. The state update is a non-linear transformation,
and this can be exploited during the construction of the characteristic. While for
a linear transformation the characteristic is determined completely by the input

82

difference, in a non-linear transformation, one input difference can correspond
to several characteristics.

Using a characteristic different from the one constructed from the linear
approximation results in an overall increase of the number of equations. However,
as explained before, the conditions in the first 15 steps are easy to fulfill. A good
strategy is to look for a characteristic that has low weight and follows the linear
approximation after the first 15 steps. This appears to be the strategy followed in
[16]. A similar observation is made in [2,7]. We will use this strategy in Section 3.3
and Section 3.4.

3 From a set of collision-producing differences to a linear
code

With the message expansion described by the matrix M512×2560 = [I512 ×
F512×2048] and the linearized state update described by the matrix S2560×160,
the output (hash value) of one SHA-1 iteration is o = mMS + ivT + k (cf.
Section 2.1). Two messages m1 and m∗

1 = m1 + m′
1 collide if:

o∗1 − o1 = (m1 + m′
1)MS + k − (m1MS + k) = m′

1MS = 0 . (9)

Hence, the set of collision-producing differences is a linear code with check matrix
H160×512 = (MS)t. The dimension of the code is 512−160 = 352 and the length
of the code is n = 512.

Observation 1 The set of collision-producing differences is a linear code. There-
fore, finding good low-weight characteristics corresponds to finding low-weight
vectors in a linear code.

Based on this observation we can now exploit well known and well studied
methods of coding theory to search for low-weight differences. We are mainly in-
terested in the existing probabilistic algorithms to search for low-weight vectors,
since a low-weight difference corresponds to a low-weight codeword in a linear
code. In the remainder of this section we present several linear codes represent-
ing the set of collision-producing differences for the linearized model of SHA-1
as described in Section 2. Note that if we talk about SHA-1 in this section, we
always refer to the linearized model. For the different linear codes we also give
the weights of the found differences. How the low-weight vectors are found is
discussed in Section 4.

As described in Section 2, we are interested in finding low-weight differences
that are valid expanded messages and collision producing. Later on, we apply
the strategy discussed in Section 2.3, i.e. we do not require the difference to
be collision-producing. With this approach we are able to find differences with
lower weight. The found weights are summarized in Table 4.

83

3.1 Message expansion and state update—Code C1

For our attack it is necessary to look at the expanded message words and there-
fore we define the following check matrix for the linear code C1 with dimension
dim(C1) = 352 and length n = 2560:

H12208×2560 =
[

St
160×2560

Ft
2048×512 I2048

]
. (10)

This check matrix is derived as following. First, we want to have a valid expanded
message. Since mM = w = m1×512[I512F512×2048] and M is a systematic genera-
tor matrix, we immediately get the check matrix [Ft

2048×512I2048]. If a codeword
w fulfills w[Ft

2048×512I2048]t = 0, w is a valid expanded message. Second, we
require the codeword to be collision-producing. This condition is determined by
the state update matrix S. If wS = 0 then w is collision-producing. Therefore,
we have the check matrix St. Combining these two check matrices leads to the
check matrix H1 in (10).

The resulting codewords of this check matrix are valid expanded messages
and collision-producing differences. When applying a probabilistic algorithm to
search for codewords in the code C1 (see Section 4) we find a lowest weight of
436 for 80 steps. The same weight has also been found by Rijmen and Oswald
in [12]. As already described in Section 2.2, we do not count the weight of the
first 20 steps since we can pre-compute these messages such that the conditions
are satisfied in the first 20 steps. The weights for different number of steps are
listed in Table 2.

Table 2. Lowest weight found for code C1

steps 0 . . . 79 steps 15 . . . 79* steps 20 . . . 79

436 333 293

*weight also given in [12]

A thorough comparison of these results with the weights given by Matusiewicz
and Pieprzyk in [10] is not possible. This is due to the fact that in [10] perturba-
tion and correction patterns have to be valid expanded messages. Furthermore,
Matusiewicz and Pieprzyk give only the weights for the perturbation patterns.

3.2 Message expansion only and multi-block messages—Code C2

Instead of working with a single message block that leads to a collision, we can
also work with multi-block messages that lead to a collision after i iterations (cf.
Section 2.3). For instance take i = 2. After the first iteration we have an output
difference o′1 6= 0 and after the second iteration we have a collision, i.e. o′2 = 0.

84

The hash computation of two message is then given by

o1 = m1MS + ivT + k

o2 = m2MS + o1T + k

= m2MS + m1MST + ivT2 + kT + k︸ ︷︷ ︸
constant

.

Based on the same reasoning as for the check matrix H1 in Section 3.1, we can
construct a check matrix for two block messages as follows:

H24256×5120 =

 STt
160×2560 St

160×2560

Ft
2048×512I2048 02048×2560

02048×2560 Ft
2048×512I2048

 . (11)

The same can be done for i message blocks that collide after i iterations. The
output in iteration i is given by

oi =
i−1∑
j=0

mi−jMSTj + ivTi + k
i−1∑
l=0

Tl

︸ ︷︷ ︸
constant

. (12)

Searching for low-weight vectors for a two-block collision in C2 with H2 and
a three-block collision with the check matrix HM2 given in Appendix A, leads
to the weights listed in Table 3.

Table 3. Weight for two and three message blocks

weight of collision-producing differences for steps 20-79

two-block collision three-block collision

exp. message 1 exp. message 2 exp. message 1 exp. message 2 exp. message 3

152 198 107 130 144

As it can be seen in Table 3, using multi-block collisions results in a lower
weight for each message block. The complexity for a collision attack is deter-
mined by the message block with the highest weight. Compared to the weight
for a single-block collision in Table 2 (weight = 293), we achieve a remarkable
improvement. However, as shown in Table 4, the weight of the chaining variables
is very high. Why this weight is important and how we can reduce the weight of
the chaining variables is presented in the following section.

3.3 Message expansion and state update—Code C3

For deriving the conditions such that the difference vector propagates for the
real SHA-1 in the same way as for the linearized model, we also have to count

85

the differences in the chaining variables (see Section 5). That means that for the
previously derived collision-producing differences we still have to compute the
weight in the chaining variables. It is clear that this leads to an increase of the
total weight (see Table 4). Therefore, our new approach is to define a code that
also counts in the chaining variables and to look for low-weight vectors in this
larger code. This leads to lower weights for the total.

Furthermore, we now apply the strategy discussed in Section 2.3. In terms
of our linear code, this means that we only require the codewords to be valid
expanded messages and no longer to be collision-producing, i.e. they correspond
to characteristics that produce zero ouput difference in the fully linearized com-
pression function. This can be explained as follows. Our code considers only 60
out of 80 steps anyway. After 60 steps, we will have a non-zero difference. For a
collision-producing difference, the ‘ordinary’ characteristic over the next 20 steps
would bring this difference to zero. But in fact, for any difference with very large
probability to hold (see Section 2.2), we will later be able to construct a special
characteristic that maps the resulting difference to a zero difference in less than
the remaining 20 steps. Hence, we can drop the requirement that the difference
should be collision-producing. If we place the special steps at the beginning, then
the number of conditions corresponding to the special steps can be ignored.

Searching for the codeword producing the lowest number of conditions in
the last 60 steps, we will work backwards. Starting from a collision after step
79 (chaining variables A80, . . . , E80), we will apply the inverse linearized state
update transformation to compute the chaining variables for step 78,77,. . . ,20.
We obtain a generator matrix of the following form:

G3512×11520 = [Mj×nAj×nBj×nCj×nDj×nEj×n], (13)

where j = 512 and n = 1920. The matrices Aj×n, . . . ,Ej×n can easily be con-
structed by computing the state update transformation backwards starting from
step 79 with A′

80 = B′
80 = · · · = E′

80 = 0 and ending at step 20. The matrix
Mj×n is defined in Section 2.1.

The matrix defined in (13) is a generator matrix for code C3 with dim(C3) =
512 and length n = 11520. The lowest weight we find for code C3 is 297. Note,
that this low-weight vector now also contains the weight of the chaining variables
A′

t, . . . , E
′
t. The weight for the expanded message is only 127. Compared with the

results of the previous sections (code C1) we achieve a remarkable improvement
by counting in the weight of the chaining variables and by only requiring that
the codewords are valid expanded messages.

3.4 Message expansion, state update, and multi-block
messages—Code C4

As shown in Section 3.2, we are able to find differences with lower weight if we
use multi-block messages. We will do the same for the code C4. A multi-block
collision with i = 2 is shown in Figure 2.

As it can be seen in Figure 2, if we have the same output difference for each
iteration we have a collision after the second iteration due to the feed forward.

86

 state update

msg expansion

 state update

msg expansion

m’1 m’2

 = 0

20 2079 79

20 0 20 0o’1 = o’2 =

o’ = 0

Fig. 2. Multi-block collision for SHA-1

We can construct a generator matrix as in Section 3.3 but we have to extend
it such that we do not require a collision after the first iteration, i.e. we want an
output difference of o′1 = o′2 = δ. Therefore, we add 160 rows to the generator
matrix in (13) that allow an output difference o′1 = o′2 = δ. For the code C4 we
get a generator matrix

G4672×11520 =
[
Mj×n Aj×n Bj×n Cj×n Dj×n Ej×n

0l×n A′
l×n B′

l×n C′
l×n D′

l×n E′
l×n

]
, (14)

where j = 512, l = 160, and n = 1920. The matrix in (14) is a generator matrix
for code C4 with dim(C4) = 672 and n = 11520. Searching for low-weight vectors
in C4 results in a smallest weight of 237. As we will show in Section 4, for this
code it is infeasible to find codewords with weight 237 by using currently known
algorithms (the same holds for code C3). We found this difference vector by using
an efficient way to reduce the search space as will be discussed in Section 4.2.
Again, this weight includes also the weight of the chaining variables. For the
message expansion only we have a weight of 108 (for one block we had 127). The
difference vector is shown in Table 7, Appendix B.

3.5 Summary of found weights

To give an overview of the improvements achieved by constructing different codes
we list the weights of the found codewords in Table 4.

Table 4. Summary of found weights

Code C1 Code C2 Code C3 Code C4

single block two-block single-block two-block
msg 1 msg 2 msg 1 msg 2

weight expanded message 293 152 198 127 108 108

weight state update 563 4730 4817 170 129 129

total weight 856 4882 5015 297 237 237

87

4 Finding low-weight vectors for linear codes representing
the linearized SHA-1

In this section we describe different probabilistic algorithms that can be used
to find low-weight vectors in linear codes. We describe the basic idea of these
algorithms and present an algorithm that improves the low-weight vector search
for SHA-1 significantly.

4.1 Probabilistic algorithms to find low-weight vectors

We will briefly discuss some probabilistic algorithms presented by Leon [9] and
modified by Chabaud [4], Stern [13], and by Canteaut and Chabaud [3]. The
basic approach of these algorithms is to take a (randomly permuted) subset of a
code C and to search for low-weight vectors in this punctured code C•. A found
low-weight codeword in the punctured code is a good candidate for a low-weight
codeword in the initial code C.

A modified variant of Leon’s algorithm [9] was presented by Chabaud [4]. It is
applied to the generator matrix Gk×n of a code C and defines the parameters p
and s. The length of the punctured code C• with generator matrix Z = Zk×(s−k)

is defined by s, where s > dim(C•) = k. For computing the codewords in C• all
linear combinations of at most p rows of Z are computed. The parameter p is
usually 2 or 3. Values for the parameter s are k +13, . . . , k +20 (see for instance
[4]).

Stern’s algorithm [13] is applied to the check matrix H(n−k)×n. The param-
eters of the algorithm are l and p. The generator matrix Z = Zl×k for the
punctured code C• is determined by k and l. The columns of Z are further split
into two sets Z1 and Z2. Then the linear combinations of at most p columns are
computed for both Z1 and Z2 and their weight is stored. Then searching for a
collision of both weights allows to search for codewords of weight 2p. Usually,
the parameter p is 2 or 3 and l is at most 20 (see for instance [13]).

To compare these two algorithms we used the work-factor estimations to find
an existing codeword with weight wt given by Chabaud [4]. For the comparison
we used code C4 (cf. Section 3.4) with dim(C4) = 672, length n = 11520,
and the weight wt = 237. The optimal parameters for Stern’s algorithm are
p = 3 and l = 20 for C4. To find a codeword with wt = 237 in C4 requires
approximately 250 elementary operations. Leon’s algorithm, with parameters
p = 3 and s = dim(C4) + 12, requires approximately 243 elementary operations.

Canteaut and Chabaud [3] have presented a modification of these algorithms.
Instead of performing a Gaussian elimination after the random permutation in
each iteration, Canteaut and Chabaud use a so-called ‘Delta-Gauss’ algorithm.
More precisely, only two randomly selected columns are interchanged in each
iteration, that is, only one step of a Gaussian elimination has to be performed.
Even if this reduces the probability of finding a ‘good’ subset of the code, this
approach leads to considerable improvements as they have shown for several
codes in [3].

88

4.2 Improving low-weight search for SHA-1

During our research on the different codes we observed that the found low-
weight vectors all have in common that the ones and zeroes occur in bands.
More precisely, the ones in the expanded message words usually appear in the
same position (see also Tables 6 and 7). This observation has also been reported
by Rijmen and Oswald in [12]. This special property of the low-weight differ-
ences for SHA-1 can be used to improve the low-weight vector search as follows.
By applying Algorithm 1 to the generator matrix we force certain bits in the
codewords to zero. With this approach we are able to reduce the search space
significantly. As already mentioned, the basic idea of the probabilistic algorithms
described in the beginning of this section, is to use a randomly selected set of
columns of the generator matrix G to construct the punctured code. This cor-
responds to a reduction of the search space. If we apply Algorithm 1 to G, we
actually do the same but we do not have any randomness in constructing the
punctured code. Algorithm 1 shows the pseudo-code.

Algorithm 1. Forcing certain bits of the generator matrix to zero

Input: generator matrix G for code C, integer r defining the minimum rank of Z
Output: generator matrix Z for punctured code C• with rank(Z) = r
1: Z = G
2: while rank(Z) > r do
3: search in row x (0 ≤ x < rank(Z)) for a one in column y (0 ≤ y < length(Z))
4: add row x to all other rows that have a one in the same column
5: remove row x
6: end while
7: return Z

Prior to applying the probabilistic search algorithms we apply Algorithm 1 to
reduce the search space of the code. Since we force columns of the codewords to
zero, we do not only reduce the dimension of the code but also the length. For the
low-weight search we remove the zero-columns of G. Computing the estimations
for the complexities of this ‘restricted code’ shows that the expected number
of operations decreases remarkably. For instance, applying Algorithm 1 to the
generator matrix for code C4 with r = 50 leads to the following values for the
punctured code C•

4 : dim(C•
4) = 50 and length n = 2327 (zero-columns removed).

Stern’s algorithm with optimal parameter p = 2 and l = 4 requires approx. 237

elementary operations. For Leon’s algorithm we get a work factor of approx. 225

with p = 3 and s = dim(C•
4) + 8. With all the above-described algorithms we

find the 237-weight difference within minutes on an ordinary computer by using
Algorithm 1.

89

5 Low-weight vectors and their impact on the complexity
of the attack

In this section we show how we can derive conditions for the low-weight differ-
ences found in Section 3. Based on the low-weight difference of code C4, we will
show some example conditions. The complexity for a collision attack depends on
the number of conditions that have to be fulfilled. Since the number of conditions
directly depends on the weight of the difference vector we see the correlation be-
tween weight and complexity: the lower the weight of the difference the lower
the complexity for the attack.

The low-weight difference found for code C4 leads to a collision after step 79
of the second compression function for the linearized SHA-1. Now, we want to
define conditions such that the propagation of this difference is the same for the
real SHA-1. In other words the conditions ensure that for this difference the real
SHA-1 behaves like the linearized model.

As already mentioned in Section 2, the non-linear operations are fIF , fMAJ ,
and the addition modulo 232. Since we pre-compute message pairs such that all
conditions in the first 20 steps are fulfilled, we only have to deal with fMAJ and
with the modular addition. For the addition we have to ensure that no carry
occurs in the difference. For fMAJ , we have to define conditions such that the
differential behavior is the same as for fXOR. Table 5 shows these conditions.
For the sake of completeness also the conditions for fIF are listed. Depending
on the input difference we get conditions for the bit values of the inputs. For
instance, if the input difference is B′

jC
′
jD

′
j = 001 then Bj and Cj have to be

opposite, i.e. Bj + Cj = 1. The differential behavior of fMAJ and fXOR is the
same if this condition is satisfied.

Table 5. Conditions that need to be fulfilled in order to have a differential behavior
identical to that of an XOR

input difference
B′

jC
′
jD

′
j fXOR(B′

j , C
′
j , D

′
j) fIF (B′

j , C
′
j , D

′
j) fMAJ(B′

j , C
′
j , D

′
j)

000 0 always always
001 1 Bj = 0 Bj + Cj = 1
010 1 Bj = 1 Bj + Dj = 1
011 0 never Cj + Dj = 1
100 1 Cj + Dj = 1 Cj + Dj = 1
101 0 Bj + Cj + Dj = 0 Bj + Dj = 1
110 0 Bj + Cj + Dj = 0 Bj + Cj = 1
111 1 Cj + Dj = 0 always

Now, we show an example how to derive conditions for fXOR and fMAJ .
First, we take from Table 7 the difference corresponding to step t = 28 and bit
position j = 30. We obtain the following:

A′
t,j = 0, B′

t,j = 0, C ′
t,j = 1, D′

t,j = 0, E′
t,j = 0, A′

t+1,j = 0,W ′
t,j = 1 .

90

For the following description we denote the output of fXOR and fMAJ by Ft,j .
Since 20 ≤ t < 40, the function f is fXOR. Due to the input difference

C ′
t,j = 1 we always have F ′

t,j = 1. Also W ′
t,j = 1, and we have to ensure that

there is no difference in the carry. This can be achieved by requiring that Ft,j

and Wt,j have opposite values, i.e. Ft,j +Wt,j = 1. With Ft,j = Bt,j +Ct,j +Dt,j

we get Bt,j + Ct,j + Dt,j + Wt,j = 1. Since Bt = At−1, Ct = At−2 � 2,
Dt = At−3 � 2, and Et = At−4 � 2, the condition for this example is:

At−1,j + At−2,j+2 + At−3,j+2 + Wt,j = 1 .

Second, we consider the difference for t = 46 and j = 31. This is the same
difference as before but now f is fMAJ , and therefore we have to ensure that
fMAJ behaves like fXOR. For the input difference B′

t,jC
′
t,jD

′
t,j = 010, we first get

the following condition (cf. Table 5): Bt,j +Dt,j = 1. If this condition is satisfied
we have the same situation as for fXOR, namely F ′

t,j = C ′
t,j . Different to the

previous example we do not get any further condition because the difference
occurs in bit-position 31. The difference for this example is:

At−1,j + At−3,j+2 = 1 .

If we derive the equations (conditions) for the complete low-weight vector
in Table 7 we get a set of 113 equations. The equations are either in A only
or in A and W . We can rework some of the equations to get (linear) equations
involving bits of the expanded message words W only. This equations can easily
be solved since they can directly be mapped to conditions on the message words.
After reworking the 113 equations, we get 31 in W only and 82 equations in A,
and in A and W . The overall complexity of the attack is determined by the
(nonlinear) equations involving bits of the chaining variables and/or expanded
message words. This is due to the fact that after pre-fulfilling the conditions
for the first 20 steps the remaining conditions are fulfilled using random trials.
Hence, solving this 82 (nonlinear) equations takes at most 282 steps.

6 Comparison with results of Wang et al.

In this section we compare the results of Wang et al. in [16] with the found low-
weight difference given in Table 7. The difference in Table 7 is the lowest weight
we found. The next higher weight we found (weight = 239) with the probabilistic
search algorithms can also be constructed directly from the vector in Table 7.
This is done by computing another iteration (see (2) and Figure 1) at the end
and omitting the values of the first row such that we have again 60 steps. Since
it is only a shifted version of the vector in Table 7 we can still use this vector for
the comparison. The difference in Table 7, chaining variable A′

t+1, is the same
disturbance vector as the one used by Wang et al. for near-collisions given in [16,
Table 5] (italicized indices 20,. . . ,79). To compare the two tables consider that
Wang et al. index the steps from 1,. . . ,80 (we from 0,. . . ,79) but because Wang
et al. use the shifted version the indices are the same except that the last pattern

91

(index 80 for Wang et al.) is missing in Table 7. Also the Hamming weight for
round 2-4 given in [16, Table 6] for 80 steps is the same. In [16, Table 7] one can
find the difference vectors and the according number of conditions. The number
of conditions and the conjectured attack complexity we stated in the previous
section is remarkable higher than the values from [16]. However, no details on
the exact way to derive conditions is given in [16].

7 Conclusions

In this article we have shown how coding theory can be exploited efficiently for
collision attacks on the hash function SHA-1. We gave an overview of existing at-
tack strategies and presented a new approach that uses different linear codes for
finding low-weight differences that lead to a collision. We also presented an algo-
rithm that allows to find the low-weight differences very efficiently. Furthermore,
we gave an outline on how we can derive conditions for the found low-weight dif-
ference. We have shown that the number of conditions and hence the complexity
for a collision attack on SHA-1, directly depends on the Hamming weight of the
low-weight differences found.

Currently we are still working on improving the condition generation phase
to reduce the overall complexity of the collision attack on SHA-1. We will also
extend our approach such that we can perform similar analyses of alternative
hash functions such as the members of the SHA-2 family and RIPEMD-160.

Acknowledgements

We would like to thank Mario Lamberger for fruitful discussions and comments
that improved the quality of this article.

References

1. Eli Biham and Rafi Chen. Near-Collisions of SHA-0. In Proccedings of CRYPTO
2004, volume 3152 of LNCS, pages 290–305. Springer, 2004.

2. Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault, Christophe Lemuet, and
William Jalby. Collisions of SHA-0 and Reduced SHA-1. In Proceedings of EU-
ROCRYPT 2005, volume 3494 of LNCS, pages 36–57. Springer, 2005.

3. Anne Canteaut and Florent Chabaud. A New Algorithm for Finding Minimum-
Weight Words in a Linear Code: Application to McEliece’s Cryptosystem and
to Narrow-Sense BCH Codes of Length 511. IEEE Transactions on Information
Theory, 44(1):367–378, 1998.

4. Florent Chabaud. On the Security of Some Cryptosystems Based on Error-
correcting Codes. In Proceedings of EUROCRYPT 1994, volume 950 of LNCS,
pages 131–139. Springer, 1995.

5. Florent Chabaud and Antoine Joux. Differential Collisions in SHA-0. In Proceed-
ings of CRYPTO 1998, volume 1462 of LNCS, pages 56–71. Springer, 1998.

6. Hans Dobbertin. Cryptanalysis of MD4. In Proceedings of FSE 1996, volume 1039
of LNCS, pages 53–69. Springer, 1996.

92

7. Antoine Joux, Patrick Carribault, William Jalby, and Christophe Lemuet. Full
iterative differential collisions in SHA-0, 2004. Preprint.

8. Vlastimil Klima. Finding MD5 Collisions on a Notebook PC Using Multi-message
Modifications, 2005. Preprint, available at http://eprint.iacr.org/2005/102.

9. Jeffrey S. Leon. A probabilistic algorithm for computing minimum weights of large
error-correcting codes. IEEE Transactions on Information Theory, 34(5):1354–
1359, 1988.

10. Krystian Matusiewicz and Josef Pieprzyk. Finding good differential patterns for
attacks on SHA-1. In Proccedings of WCC 2005. Available online at http://www.
ics.mq.edu.au/~kmatus/FindingGD.pdf.

11. National Institute of Standards and Technology (NIST). FIPS-180-2: Secure
Hash Standard, August 2002. Available online at http://www.itl.nist.gov/

fipspubs/.
12. Vincent Rijmen and Elisabeth Oswald. Update on SHA-1. In Proceedings of CT-

RSA 2005, volume 3376 of LNCS, pages 58–71. Springer, 2005.
13. Jacques Stern. A method for finding codewords of small weight. In Proccedings

of Coding Theory and Applications 1988, volume 388 of LNCS, pages 106–113.
Springer, 1989.

14. Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Xiuyuan Yu. Collisions for Hash
Functions MD4, MD5, HAVAL-128 and RIPEMD, August 2004. Preprint, avail-
able at http://eprint.iacr.org/2004/199, presented at the Crypto 2004 rump
session.

15. Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Crypt-
analysis for Hash Functions MD4 and RIPEMD. In Proceedings of EUROCRYPT
2005, volume 3494 of LNCS, pages 1–18. Springer, 2005.

16. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full
SHA-1. In Proceedings of CRYPTO 2005, volume 3621 of LNCS, pages 17–36.
Springer,2005.

17. Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions. In
Proceedings of EUROCRYPT 2005, volume 3494 of LNCS, pages 19–35. Springer,
2005.

A Check matrix for 3-block collision

The hash output for three message blocks, is given by

o3 = m3MS + m2MST + m1MST2 + ivT3 + kT2 + kT + k︸ ︷︷ ︸
constant

.

The set of collision-producing differences is a linear code with check matrix:

HM26304×7680 =


(ST2)t

160×2560 STt
160×2560 St

160×2560

Ft
2048×512I2048 02048×2560 02048×2560

02048×2560 Ft
2048×512I2048 02048×2560

02048×2560 02048×2560 Ft
2048×512I2048

 . (15)

93

http://eprint.iacr.org/2005/102
http://www.ics.mq.edu.au/~kmatus/FindingGD.pdf
http://www.ics.mq.edu.au/~kmatus/FindingGD.pdf
http://www.itl.nist.gov/fipspubs/
http://www.itl.nist.gov/fipspubs/
http://eprint.iacr.org/2004/199

B Found low-weight differences

Table 6. Lowest weight found for code C2 — weight = 436

step Wt step Wt

t=0 06E00000 t=40 1A780000
t=1 D9000000 t=41 F5000000
t=2 A2E00000 t=42 B7700000
t=3 82E00000 t=43 06800000
t=4 CD580000 t=44 78B00000
t=5 57500000 t=45 00000000
t=6 9B660000 t=46 6A900000
t=7 C0CE0000 t=47 60F00000
t=8 C0B20000 t=48 6C200000
t=9 D1F00000 t=49 E7100000
t=10 7D980000 t=50 8BC00000
t=11 C3BC0000 t=51 85D00000
t=12 3A500000 t=52 08000000
t=13 54C00000 t=53 80100000
t=14 BD840000 t=54 35000000
t=15 47BC0000 t=55 25900000
t=16 60E40000 t=56 82700000
t=17 6F280000 t=57 23200000
t=18 AB380000 t=58 C3200000
t=19 EDD00000 t=59 02400000
t=20 068C0000 t=60 B2000000
t=21 D0CC0000 t=61 47800000
t=22 17000000 t=62 63E00000
t=23 501C0000 t=63 20E00000
t=24 1A040000 t=64 44200000
t=25 D4C80000 t=65 84000000
t=26 99D80000 t=66 C0000000
t=27 C1500000 t=67 87400000
t=28 AB200000 t=68 16000000
t=29 B4D00000 t=69 44000000
t=30 16600000 t=70 A7A00000
t=31 47500000 t=71 50A00000
t=32 CA100000 t=72 82E00000
t=33 80A00000 t=73 C5800000
t=34 E6780000 t=74 23000000
t=35 6CB80000 t=75 80C00000
t=36 74180000 t=76 04C00000
t=37 44F00000 t=77 00C00000
t=38 EFB80000 t=78 01400000
t=39 8F380000 t=79 01000000

94

Table 7. Lowest weight found for code C4 — weight = 237

step W ′
t A′

t+1 B′
t+1 C′

t+1 D′
t+1 E′

t+1
t=20 80000040 00000000 00000002 00000000 a0000000 80000000
t=21 20000001 00000003 00000000 80000000 00000000 a0000000
t=22 20000060 00000000 00000003 00000000 80000000 00000000
t=23 80000001 00000002 00000000 c0000000 00000000 80000000
t=24 40000042 00000002 00000002 00000000 c0000000 00000000
t=25 c0000043 00000001 00000002 80000000 00000000 c0000000
t=26 40000022 00000000 00000001 80000000 80000000 00000000
t=27 00000003 00000002 00000000 40000000 80000000 80000000
t=28 40000042 00000002 00000002 00000000 40000000 80000000
t=29 c0000043 00000001 00000002 80000000 00000000 40000000
t=30 c0000022 00000000 00000001 80000000 80000000 00000000
t=31 00000001 00000000 00000000 40000000 80000000 80000000
t=32 40000002 00000002 00000000 00000000 40000000 80000000
t=33 c0000043 00000003 00000002 00000000 00000000 40000000
t=34 40000062 00000000 00000003 80000000 00000000 00000000
t=35 80000001 00000002 00000000 c0000000 80000000 00000000
t=36 40000042 00000002 00000002 00000000 c0000000 80000000
t=37 40000042 00000000 00000002 80000000 00000000 c0000000
t=38 40000002 00000000 00000000 80000000 80000000 00000000
t=39 00000002 00000002 00000000 00000000 80000000 80000000
t=40 00000040 00000000 00000002 00000000 00000000 80000000
t=41 80000002 00000000 00000000 80000000 00000000 00000000
t=42 80000000 00000000 00000000 00000000 80000000 00000000
t=43 80000002 00000002 00000000 00000000 00000000 80000000
t=44 80000040 00000000 00000002 00000000 00000000 00000000
t=45 00000000 00000002 00000000 80000000 00000000 00000000
t=46 80000040 00000000 00000002 00000000 80000000 00000000
t=47 80000000 00000002 00000000 80000000 00000000 80000000
t=48 00000040 00000000 00000002 00000000 80000000 00000000
t=49 80000000 00000002 00000000 80000000 00000000 80000000
t=50 00000040 00000000 00000002 00000000 80000000 00000000
t=51 80000002 00000000 00000000 80000000 00000000 80000000
t=52 00000000 00000000 00000000 00000000 80000000 00000000
t=53 80000000 00000000 00000000 00000000 00000000 80000000
t=54 80000000 00000000 00000000 00000000 00000000 00000000
t=55 00000000 00000000 00000000 00000000 00000000 00000000
t=56 00000000 00000000 00000000 00000000 00000000 00000000
t=57 00000000 00000000 00000000 00000000 00000000 00000000
t=58 00000000 00000000 00000000 00000000 00000000 00000000
t=59 00000000 00000000 00000000 00000000 00000000 00000000
t=60 00000000 00000000 00000000 00000000 00000000 00000000
t=61 00000000 00000000 00000000 00000000 00000000 00000000
t=62 00000000 00000000 00000000 00000000 00000000 00000000
t=63 00000000 00000000 00000000 00000000 00000000 00000000
t=64 00000000 00000000 00000000 00000000 00000000 00000000
t=65 00000004 00000004 00000000 00000000 00000000 00000000
t=66 00000080 00000000 00000004 00000000 00000000 00000000
t=67 00000004 00000000 00000000 00000001 00000000 00000000
t=68 00000009 00000008 00000000 00000000 00000001 00000000
t=69 00000101 00000000 00000008 00000000 00000000 00000001
t=70 00000009 00000000 00000000 00000002 00000000 00000000
t=71 00000012 00000010 00000000 00000000 00000002 00000000
t=72 00000202 00000000 00000010 00000000 00000000 00000002
t=73 0000001a 00000008 00000000 00000004 00000000 00000000
t=74 00000124 00000020 00000008 00000000 00000004 00000000
t=75 0000040c 00000000 00000020 00000002 00000000 00000004
t=76 00000026 00000000 00000000 00000008 00000002 00000000
t=77 0000004a 00000040 00000000 00000000 00000008 00000002
t=78 0000080a 00000000 00000040 00000000 00000000 00000008
t=79 00000060 00000028 00000000 00000010 00000000 00000000

weight 108 26 25 25 26 27

95

	Introduction
	Finding collisions for SHA-1
	Short description of SHA-1
	The basic attack strategy
	Overview of existing attacks on SHA-1

	From a set of collision-producing differences to a linear code
	Message expansion and state update---Code C1
	Message expansion only and multi-block messages---Code C2
	Message expansion and state update---Code C3
	Message expansion, state update, and multi-block messages---Code C4
	Summary of found weights

	Finding low-weight vectors for linear codes representing the linearized SHA-1
	Probabilistic algorithms to find low-weight vectors
	Improving low-weight search for SHA-1

	Low-weight vectors and their impact on the complexity of the attack
	Comparison with results of Wang et al.
	Conclusions
	Check matrix for 3-block collision
	Found low-weight differences

