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Abstract—Memory tagging allows to establish memory safety
for software developed in unsafe languages like C/C++.
Since it is an effective mechanism with low architectural
complexity, ISA extensions, like ARM MTE or SPARC ADI,
already integrate memory tagging on the architectural level
for commodity computer systems. However, despite being in
high demand, memory tagging features are currently absent
in modern x86 processors.

This work presents IntegriTag, a hardware-enforced
memory tagging solution for existing commodity x86 CPUs.
We leverage the Intel® Total Memory Encryption-Multi-
Key (Intel® TME-MK) hardware feature that was initially
envisioned for virtual machine isolation to instead provide
memory tagging capabilities on off-the-shelf x86 processors.
Unlike ARM MTE and SPARC ADI, this does not require
the integration of a separate tagged memory architecture,
which would increase the overall system complexity. Instead,
our solution allows us to implicitly enforce the desired
security policies by incorporating them into the existing
memory encryption integrity checks. In addition, our de-
sign addresses security issues that affect tagged memory
architectures with small tag spaces. Intel® TME-MK allows
for a greater number of key identifier bits, thus offering
significantly stronger security compared to the 4-bit tags
of ARM MTE and SPARC ADI. We implement a holistic
open-source software framework based on Intel® TME-
MK, supporting several software-controlled and hardware-
enforced memory safety policies. Moreover, we evaluate
our design’s performance overhead and security properties,
underlining the practicability and efficacy of our approach.
Our design is binary-compatible with existing software and
provides both temporal and spatial memory safety while
imposing an overhead of 32–41%, which is significantly lower
than the overheads of memory safety schemes in software
on commodity hardware that provide comparable security
properties.

Index Terms—Memory Safety, Memory Sanitization, Intel®
TME-MK, Memory Encryption, Memory Tagging

1. Introduction

System-level software written in unsafe programming
languages like C/C++ is susceptible to memory safety
vulnerabilities. Memory safety issues occur frequently in
large software products such as web browsers and operat-
ing systems. Recent studies conducted by Microsoft [38]
highlight that approximately 70 % of security bugs in their
products are categorized as memory safety errors, i.e.,
temporal and spatial memory safety vulnerabilities [65].
Many large and complex software projects will continue
to use unsafe languages for the foreseeable future and
only incrementally adopt safety improvements (e.g., via
partial rewrites). A recent Google whitepaper also notes
that an evolution of C/C++ towards full memory safety is
unlikely [49].

To mitigate memory safety vulnerabilities, various
countermeasures have been proposed in recent years [24],
[31], [74], [76], [80], which complement the slow
transition toward memory-safe languages. Traditionally,
bounds-checking mechanisms [11]–[13], [32] are pro-
posed to protect against spatial memory violations, such
as linear buffer overflows and (non-adjacent) out-of-
bounds (OOB) errors. These additional bounds checks
can be implemented in software [7], [41], [45] and hard-
ware [10], [25], [40]. In general, countermeasures imple-
mented in software [3], [5], [7], [24], [45], [59] tend
to introduce high runtime overheads, while hardware-
enforced mechanisms [47], [50], [51], [57], [60], [79] can
be challenging to deploy on a large scale. Since system
performance is a crucial aspect of software systems, there
is a noticeable shift by CPU vendors toward adopting
hardware-supported mechanisms for security.

Memory tagging can mitigate a wide variety of both
spatial and temporal memory safety vulnerabilities, and



it can be enforced in hardware [55], [56]. With mem-
ory tagging, metadata in the form of a memory tag
is associated with each memory location and compared
with a tag value embedded in available pointer bits to
enforce different security policies. Memory tagging is
adopted in commercial products like the ARM memory
tagging extension (MTE) [55] and SPARC application
data integrity (ADI) [1], [56] hardware features. These
instruction set architecture (ISA) extensions implement a
so-called lock-and-key approach to ensure memory safety.
During object allocation, a pseudorandom memory tag is
generated and encoded into the pointer. Subsequently, the
memory tag is associated with the corresponding memory
location. Following memory accesses using pointers are
only permitted when the memory tag of the pointer and the
tag of the memory location match, i.e., the key matches the
lock. Tagged memory architectures, integrating this lock-
and-key approach, can be used for both memory sanitizers
and runtime protection.

Memory sanitizers [46], [54], [62] are commonly used
for software testing to detect C/C++ memory safety is-
sues preemptively. Notably, two memory sanitizers in-
tegrated into Clang/LLVM [30] based on memory tag-
ging have gained substantial popularity: HWASan [66]
and MemTagSanitizer [36]. HWASan employs software-
based memory tagging based on ARM’s top-byte ig-
nore (TBI) [34] hardware feature in combination with
shadow memory. However, HWASan suffers from rela-
tively high performance and memory overheads. In con-
trast, MemTagSanitizer detects memory safety violations
using hardware-enforced memory tagging based on ARM
MTE, which is expected to perform significantly better.

While sanitization allows the detection of errors in
pre-release software, memory tagging can also be uti-
lized for runtime protection [55], [56]. Several memory
allocators provide support for ARM MTE and SPARC
ADI to protect against memory safety violations during
program execution. For instance, the GNU C/C++ stan-
dard library offers support for ARM MTE-based heap
memory safety. Furthermore, Google Chrome’s memory
allocator, PartitionAlloc [15], implements StarScan [16],
an effective countermeasure against temporal safety vi-
olations using ARM MTE in combination with mem-
ory quarantining. Hardware-supported memory tagging is
a highly demanded security and debugging feature of
modern CPUs. However, memory tagging has not been
implemented in modern x86 processors.

Contributions. In this paper, we present IntegriTag,
a novel mechanism for memory tagging on commodity
x86 CPUs using the Intel® Total Memory Encryption-
Multi-Key (Intel® TME-MK) [20] hardware feature. This
feature was originally designed to cryptographically iso-
late virtual machines (VMs) at runtime and defend against
HW/SW attacks including physical attacks, cold-boot at-
tacks, cross-VM data injection, and replay attacks. Instead,
our approach allows leveraging it for the detection of
memory safety violations. We use memory aliasing in
combination with the MAC-based integrity protection of
the memory encryption hardware feature to assign dif-
ferent keyIDs for distinct memory objects. This way, we
can enforce security policies based on a lock-and-key
approach similar to memory tagging. However, in contrast
to conventional tagged memory architectures, such as

ARM MTE and SPARC ADI, our approach offers several
advantages:

First, our design introduces memory tagging capabil-
ities for existing commodity x86 architectures without
additional memory overhead. We provide one of the most
demanded security features (i.e., memory tagging) for
memory sanitization and runtime safety based on authen-
ticated memory encryption. We show that cryptographic
memory integrity protection, designed to protect trusted
execution environments (TEE) from physical attacks, of-
fers properties associated with memory tagging and can
be used in a similar manner to achieve memory safety.
Note that while SPARC’s ADI also uses the term “in-
tegrity”, their design offers only logical integrity, which
is much weaker than the cryptographic memory integrity
protection of Intel® TME-MK, that addresses actual data
corruption detection in DRAM.

Second, conventional tagged memory architectures re-
quire the memory controller to perform additional fetch
requests to receive the tag metadata from DRAM. These
double fetches increase the memory pressure substan-
tially. Especially for data-centric workloads and multi-core
environments (e.g., cloud computing), these additional
overheads can cause a significant performance penalty. In
contrast, the MAC used for the integrity checks of Intel®
TME-MK resides in memory that is otherwise reserved
for error correction codes (ECC) [8]. Thus, the metadata is
read and written without additional DRAM pressure, i.e.,
no DRAM double fetches. Furthermore, since the SHA-
3-based MAC can be calculated much faster [67] and in
parallel to the AES memory decryption, there should be
no additional memory latency.

Third, ARM MTE and SPARC ADI suffer from poor
detection capabilities due to their limited tag space. Their
4-bit tag yields a relatively high collision probability of
1/16 that two memory objects receive the same memory
tag. Hence, their detection probability of memory safety
issues is only 93.75 %. In contrast, our work accom-
modates up to 15-bit keys, substantially increasing the
detection probability to up to 99.997%.

We develop a holistic open-source software frame-
work using a custom heap allocator and a Linux kernel
patch to support a variety of memory tagging policies for
both temporal and spatial memory safety. These policies
are implemented and enforced through our lock-and-key
approach, leveraging Intel® TME-MK on the hardware
level. Our instrumented memory allocator, built upon Par-
titionAlloc, establishes the tagging policies enforced in
hardware while maintaining binary compatibility. More-
over, we conduct an extensive security analysis, including
an empirical security evaluation based on the NIST Juliet
C/C++ test suite [6], underlining our design’s efficacy and
strong detection capabilities. Our performance evaluation,
across all C/C++ SPEC CPU2017 benchmarks, highlights
competitive results of a 32–41% overhead for both tem-
poral and spatial memory safety.



In short, our contributions are as follows:

• We enable memory tagging on x86 CPUs. We
are the first to show that memory tagging can
be implemented on top of the integrity-enabled
memory encryption provided by commodity x86
CPUs.

• We present IntegriTag. We introduce IntegriTag,
a countermeasure leveraging Intel® TME-MK,
enforcing various security policies for temporal
and spatial heap memory safety while maintaining
binary compatibility.

• We systematically analyze IntegriTag’s security.
We systematically analyze the security properties
of IntegriTag and empirically evaluate the efficacy
using the NIST Juliet C/C++ test suite.

• We comprehensively evaluate IntegriTag. We
evaluate the performance impact using the C/C++
SPEC CPU2017 benchmark suite and the memory
overhead of our design in various configurations.

• We open-source our software framework. To fa-
cilitate future research, we open-source our proof-
of-concept prototype implementation 1.

Outline. The paper is structured as follows. Section 2
provides the required background for this work. Section 3
defines our threat model. Section 4 and Section 5 describe
the design and implementation of our countermeasure.
Section 6 analyzes the security of our design, and Section
7 evaluates the performance impact. Section 8 discusses
related work, and Section 9 concludes this work.

2. Background

In this section, we give background on virtual memory,
memory safety, memory tagging, and Intel® TME-MK.

2.1. Virtual Memory

Operating systems use virtual memory to isolate mul-
tiple processes within their own virtual address spaces.
Thereby, each application has its own virtual represen-
tation of the physical memory. Modern CPUs typically
support 39-, 48-, or 57-bit virtual address spaces used for
process isolation.

For virtual-to-physical address translation, virtual
memory is mapped to pages that are typically 4 KiB
in size. These pages are managed through page table
entries (PTEs), which are stored in a hierarchical struc-
ture called page tables. A PTE contains a physical page
number (PPN) with its associated access permissions. The
CPU translates virtual addresses into physical addresses
through the memory management unit (MMU), utilizing
page tables. When the system performs a page table
walk to determine the corresponding physical address,
the translations are cached in the translation look-aside
buffer (TLB) to improve performance.

Through the virtualization of physical memory, it is
possible that multiple virtual memory addresses refer to
the same physical address. This is called aliasing and is
often used for shared data and code pages across different
applications.

1. github.com/IntelLabs/TME-MK-Fine-Grained-Encryption-Integrity

2.2. Memory Safety

C/C++ memory safety vulnerabilities are commonly
categorized into temporal and spatial vulnerabilities [65].
For spatial safety, we can further distinguish between
adjacent and non-adjacent memory safety violations. Such
vulnerabilities can be misused to gain unauthorized access
(read and write) to resources stored in memory. Adjacent
memory safety violations, e.g., linear buffer overflows, are
typically easier to detect using tripwires or red zones.
Non-adjacent memory safety violations, e.g., arbitrary
read and write primitives, are more complex to miti-
gate and require advanced protection mechanisms such
as bounds-checking. Furthermore, intra-object violations
occur by violating the boundaries between the fields of
the same object.

When discussing temporal safety, we distinguish be-
tween use-after-free (UAF), double-free, and uninitialized
memory errors. Typically, UAF errors arise from so-called
dangling or stale pointers, i.e., pointers that refer to a
previously freed memory object. These dangling pointers
allow an adversary to potentially manipulate data of ob-
jects located on the same chunk of reallocated memory.
Similarly, an adversary can craft dangling pointers using
double-free violations by tampering with the allocator’s
free list. Additionally, uninitialized memory access viola-
tions enable an adversary to leak potentially sensitive data
from previously freed memory locations.

2.3. Memory Tagging

Memory tagging is a promising building block for
mitigating temporal and spatial memory safety issues [1],
[55], [56], [69]. From a high-level point of view, memory
tagging means associating memory in DRAM with addi-
tional metadata (i.e., memory tags). Depending on the tag
size and tag granularity, different security policies can be
implemented [23], [53], [61], [71], [73], [74], [78].

For instance, the ARM memory tagging exten-
sion (MTE) [55] and SPARC application data in-
tegrity (ADI) [1], [56] are ISA extensions that implement
memory tagging in hardware. They use 4-bit tags on 16 B
and 64 B granularity, respectively. Both extensions allow
the enforcement of fine-grain memory safety policies by
using a lock-and-key approach, where the pointer itself
embeds a key, and the tag metadata co-located with the
memory location acts as the lock. Thereby, ARM MTE
encodes the 4-bit tag in the uppermost bits of a pointer
(enabled by ARM’s top-byte ignore (TBI) [34] feature),
which would otherwise be unused. During memory al-
location, the corresponding memory location is tagged
(i.e., locked) with the corresponding tag (i.e., key). Sub-
sequent memory accesses need to provide the correct
tag (i.e., key) to unlock access to the memory location.
ARM MTE is effectively used for memory sanitization
(e.g., Clang/LLVM’s MemTagSanitizer [36]) and runtime
safety [55] on recent ARM platforms.

Traditionally, the associated tag metadata causes mem-
ory and performance overheads due to storage require-
ments and the tag propagation by the tagged memory
architecture (i.e., additional DRAM fetches). However,
existing work shows how these overheads can be mitigated
in the case of ECC memory [21], [29], [64].

https://github.com/IntelLabs/TME-MK-Fine-Grained-Encryption-Integrity


2.4. Intel® TME-MK

Memory encryption is a widespread technology in
modern CPU architectures, such as Intel® and AMD,
which can help provide confidentiality (and integrity)
of data stored in DRAM. Specifically, Intel® uses To-
tal Memory Encryption (TME) [20] for transparent en-
cryption of DRAM data utilizing a single key. With
the 3rd generation Intel® Xeon Scalable processors, the
Total Memory Encryption-Multi-Key (Intel® TME-MK)
extension was introduced, which enhances TME by sup-
porting multiple keys. Currently, this feature is used to
help protect against physical adversaries (i.e., cold boot
attacks [18]) or for the cryptographic isolation of virtual
machines.

Figure 1 illustrates the memory encryption and de-
cryption procedure. Intel® TME-MK maps so-called key
identifiers (keyIDs) to corresponding encryption keys and
encryption modes. It allows for up to 215 distinct keys,
depending on the underlying platform. When accessing
data in DRAM, the keyID is used to decide which crypto-
graphic key to use for the memory access. The identifier is
embedded into the upper physical address bits in the PTE,
which were previously unused by the system. For every
memory operation, the transferred data is encrypted or
decrypted transparently, enabling page-granular memory
encryption.

The encryption engine uses AES in XTS mode with
either 128-bit or 256-bit keys as its underlying crypto-
graphic primitive. Thus, memory is encrypted in 128-bit
blocks. The physical address serves as an additional input
for the encryption procedure, ensuring that identical data
in distinct locations is encrypted differently.

The introduction of Intel® trust domain exten-
sions (TDX) [9] in 2023 incorporates additional sup-
port for authenticated encryption. Specifically, Intel®
TME-MK is enhanced with a message authentication
code (MAC) based on SHA-3 that is stored in ECC
memory, providing data integrity [21], [22]. These MACs
exist per cache line (64 B). This helps keep sensitive data
secure not just from most software-based attacks but also
from many hardware-based, attacks such as active attacks
on the DRAM interface (modifying, relocating, splicing).
However, it works without an integrity tree and, thus,
offers no replay protection through physical attacks. When
installing keys, one can specify the mode (i.e., key size
and whether integrity is required) and optionally the key
itself, which is then bound to the corresponding keyID.

3. Threat Model

The threat model of this work is consistent with exist-
ing memory safety mechanisms [25], [31]. We assume
a powerful adversary that can perform spatial memory
safety violations, i.e., has access to arbitrary read and
write primitives. Moreover, we assume the attacker can
exploit temporal safety violations, such as UAF errors,
to tamper with data stored in memory. Similar to related
work, we consider intra-object memory safety violations
out-of-scope [31].

This work focuses on heap memory safety since most
memory safety vulnerabilities affect the heap [38] and
to maintain binary compatibility. Thus, we assume the

Plaintext

AES

Ciphertext MAC ECC

H

AES H

Plaintext Valid

= ECC
Check

ECC
Encrypt

Stored in DRAM

Decrypt

Key ID Key Mode

0 0x1A4.. AES-XTS-128

1 0xC87.. AES-XTS-128
... ... ...

Physical Address
incl. key ID
0x 1 ...4000

0x4000:

Figure 1. Simplified overview of Intel® TME-MK’s memory encryption
with integrity. There, key identifiers (keyIDs) are associated with encryp-
tion keys and modes. The keyID is integrated into the previously unused
upper bits of the physical address stored in the page table entry (PTE).
The data in the caches is available in plaintext, however, when interacting
with the DRAM, the keyID determines the cryptographic key used to
encrypt or decrypt the data, and to calculate the MAC. For writes, the
MAC is stored within the ECC-bits in DRAM, and during reads, it is
recalculated and compared with the stored value.

attacker performs unauthorized memory accesses (i.e.,
temporal and spatial violations) targeting the heap. In
addition, we assume that the adversary cannot bypass our
heap allocator due to logical programming errors.

Furthermore, we assume that the operating system is
benign and free of exploitable bugs and that common
security features such as Write-XOR-Execute and ASLR
are enabled by default. We consider side-channel [48],
[77], microarchitectural [27], [35], and fault attacks [26],
[39] out-of-scope for this work.

4. Design

In this section, we introduce IntegriTag, a novel tech-
nique that detects temporal and spatial memory safety
vulnerabilities using cryptographic integrity checks. Ex-
isting work [52] that relied on memory encryption could
only provide limited data confidentiality and a decreased
likelihood of successful attacks through garbling data.
We show that data encryption alone is not sufficient
to detect memory safety vulnerabilities and elaborate on
how IntegriTag overcomes this limitation, allowing us
to reliably detect tag mismatches in memory accesses.
Our solution supports memory tagging-like capabilities
by leveraging the cryptographic integrity checks of Intel®
TME-MK.

By designing IntegriTag as a purely software-based so-
lution, we facilitate the adoption on commodity hardware.
In the following, we elaborate on the design principles of
IntegriTag. Furthermore, we introduce six memory tagging
policies that are tailored towards the underlying memory
encryption hardware.

At its core, our design uses memory aliasing to achieve
sub-page granular memory encryption. Aliasing allows
for fine-grain protection of individual memory alloca-
tions. Combining the integrity checks of existing memory
encryption hardware with aliasing allows IntegriTag to
implement memory tagging on commodity x86 CPUs.

4.1. Fine-grain Memory Encryption

Intel® TME-MK, while designed for page-granular
encryption, can operate on a smaller granularity when
using aliasing (Figure 2). When memory is retrieved, the
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Figure 2. Memory aliasing for fine-grain memory encryption. Each
allocation uses a different virtual-to-physical mapping and key. During
memory safety violations, e.g., out-of-bounds accesses, the data would
be read with a different key compared to the one with which the data
was initially written. This results in either garbled data or an exception
depending on the system configuration.

page table entry (PTE) maps the virtual address to a physi-
cal address. This physical address also contains the keyID,
which specifies how the physical page should be encrypted
or decrypted. By introducing multiple virtual-to-physical
mappings with distinct keyIDs, multiple keys can be em-
ployed for a single physical page. Consequently, multiple
virtual addresses can refer to the same physical memory
yet use different keyIDs when accessing the memory. This
approach behaves similarly to the pointer tagging methods
employed by ARM MTE [55] and SPARC ADI [1], [56],
where different memory tags are associated with distinct
virtual addresses.

Figure 2 visually represents how aliasing allows for
fine-grain memory encryption. There, each of the three
allocations uses a different virtual-to-physical mapping.
Thus, each mapping uses a distinct key. Using a pointer
that does not belong to the allocation leads to a load
or store with a wrong keyID. Only the correct alias
will yield the correct data when accessing an allocation,
as decryption with a wrong key will always produce a
garbled output. Viewing the keyIDs as memory tags allows
us to consider each alias to be a pointer with a distinct
associated tag. Thus, we can use the keyIDs to encode
different tags in virtual addresses and use the underlying
hardware feature to garble the data for out-of-bounds
memory accesses.

However, encryption alone only protects the confiden-
tiality of data stored in memory. Memory safety violations
cannot be detected. Thus, silent data corruption is still
possible leading to program execution with garbled data
(i.e., undefined behavior). Critically, security checks that
compare for non-zero values (e.g., is_admin != 0)
could be bypassed trivially by garbling the underlying
data. Furthermore, when computing with garbled data, an
attacker can learn when data was changed (i.e., informa-
tion leakage) and roll back the data to a previous state.
Hence, an encryption-only approach [52] provides signif-
icantly weaker security properties compared to traditional
tagged memory architectures. In the following, we show
how to overcome these limitations to match and exceed
the security provided by existing tagged architectures.

4.2. Detecting Memory Safety Violations

When using Intel® TME-MK with integrity, each
cache line (64 B) is accompanied by a (28-bit) message

0x1000

0x1040

0x1080

0x10C0

char * a = malloc(64); // 0x1..1000

char oob = a[65];

char * b = malloc(64); // 0x2..1040

char * c = malloc(64); // 0x3..1080

Figure 3. Memory tagging using Intel® TME-MK with integrity calcu-
lates a message authentication code (MAC) for every cache line. This
MAC depends on the used key and is computed over the encrypted data,
enabling cryptographic integrity for data. In our case, the key is encoded
in the pointer itself. When accessing a cache line with the wrong key
(e.g., during an out-of-bounds access), it leads to a MAC mismatch,
which is detected.

authentication code (MAC). Figure 3 illustrates the mem-
ory tagging enabled by our design using Intel® TME-
MK. A MAC is computed over the encrypted data and
acts as a fingerprint used to detect data alterations. On
each write access, the encryption engine computes and
updates the MAC value associated with the encrypted
data of the cache line. On subsequent reads, the MAC is
recomputed with the key used during access and compared
to the stored MAC. If the stored data was corrupted or a
wrong key was used for the access, the MAC values do
not match, and an exception is raised. Thus, tampering
attempts are detected. We use this hardware primitive to
implement memory tagging by treating the keyID as the
memory tag associated with an allocation. The keyIDs are
stored in the upper bits of the physical address in the PTE.
Thus, only one tag per PTE is possible. We overcome this
limitation through aliasing. Creating multiple virtual-to-
physical mappings that point to the same physical memory
allows for more than a single tag per page. Through
aliasing, IntegriTag supports allocations that are smaller
than a complete page. This is an essential improvement,
as padding each allocation to page size would cause high
performance and memory overheads.

Our design leverages the MAC computation and com-
parison to detect tag mismatches. As the tag is equal to
the keyID, using a different tag will lead to a different
MAC. If the computed MAC does not match the stored
MAC, this is equivalent to a tag mismatch in regular
tagged memory architectures. By design, the MAC is
only checked when reading from memory. Thus, we can
only detect MAC mismatches during read operations. This
limitation has implications when IntegriTag is used for
debugging. Since write operations that use a wrong tag
do not trigger a mismatch, the exact origin of a memory
safety violation may not be pinpointed. However, reading
from the affected memory will detect the violation. From
a security perspective, this is not an issue. If the corrupted
memory is never read again, the corrupted data is never
consumed and has, thus, no effect on the program.

Tagged memory architectures, such as ARM MTE and
SPARC ADI, face limited detection capabilities due to
their 4-bit tag size, resulting in a detection probability of
just 93.75 %. In contrast, our work using Intel® TME-
MK supports up to 15-bit keys, significantly enhancing
the detection probability to up to 99.997%. Due to the
underlying primitive, possible MAC collisions affect the
provided security compared to memory tagging. We dis-



cuss this subtle difference in detail in Section 6.
Comparison of KeyIDs and Memory Tags. Tra-

ditionally, memory tags are additional metadata encoded
within pointers and associated with the corresponding
memory location. For every memory operation, the pro-
vided and the stored tags are compared. In our case,
there are several layers of indirection. We create multiple
virtual aliases with different keyIDs for a given physical
page. These keyIDs are mapped to actual AES keys with
which the memory is encrypted and decrypted. Besides
encryption and decryption, the key influences the result
of the MAC computation.

We detect memory safety violations by comparing the
MACs instead of the tags. The aliases themselves are a
form of pointer tags, while the MACs can be seen as tags
stored in memory. Using a wrong alias (i.e., tag) for an
access leads to using a wrong keyID. This wrong keyID,
in turn, leads to a wrong encryption key, and the computed
MAC will differ from the one that was previously stored in
memory. Thus, reading from memory through the wrong
alias will be detected through the MAC mismatch.

Note that in theory, the OS could also reuse keyIDs
with different underlying encryption keys. However, in
our case, we globally allocate all available keyIDs and
generate the associated encryption keys only once so that
each application can use all keyIDs. Thus, in our case, the
term “memory tag” is equivalent to “keyID” and “key”.
We use the term “memory tags” throughout this paper to
refer to keyIDs, keys, and MACs when possible.

4.3. Memory Tagging Policies for Spatial and
Temporal Memory Safety

Implementing memory tagging on top of Intel® TME-
MK presents unique challenges. Depending on the number
of keys used per page, multiple memory aliases and
corresponding page table entries are required, which lead
to additional TLB entries and, thus, TLB pressure. Using
different key IDs within the same page may reduce the
effectiveness of prefetching within that page. Further-
more, Intel® TME-MK with integrity limits us to the
granularity over which the MAC is computed, which is
64 B. In contrast, heap allocators typically use a minimum
granularity of just 16 B. In the following, we detail how
IntegriTag overcomes these problems with tagging poli-
cies specifically designed with these underlying hardware
characteristics in mind.

Related work on memory tagging, such as
HWASan [66] and MemTagSanitizer [36], assign
pseudorandom memory tags for each object. However,
random tags cannot provide deterministic protection
against both temporal and spatial memory safety
vulnerabilities. Furthermore, given the above observations,
we can improve the performance by systematically
choosing the memory tags. In the following, we detail
different tagging policies with different trade-offs by
optimizing for deterministic security and performance.
Each policy is visually represented in Figure 4. Since
we use a bucket allocator, each allocation slot within
a bucket (or page) has the same size. In Figure 4, we
always show two pages with three or four memory slots
each for illustration purposes.

Random Policy. The most straightforward policy is
to tag each memory slot with a pseudorandom tag similar
to related work [36], [52], [66]. Assume that the tag that is
assigned to an allocation is chosen without any constraints
by randomly selecting one of the available tags. This
means that, due to the randomness, temporally or spatially
adjacent memory allocations may have the same tag with
a probability of 2−keybits. Thus, memory safety violations
cannot be detected deterministically. However, it can still
provide probabilistic protection against most linear and
non-linear overflows and temporal memory safety vulner-
abilities.

Temporal Policy. Full temporal memory safety is
achieved by only changing the tag of a given slot when it
has been freed or reallocated. The slot is quarantined once
all possible tag values (i.e., keyIDs) have been used, e.g.,
by incrementing the tag value at every free. Quarantined
slots are no longer used for allocations. When all slots
on a page are quarantined, the page can be unmapped
and returned to the OS. While the physical page can be
reused freely, the virtual page is no longer used, thus
upholding the temporal memory safety protection. As an
optimization, we do not provide spatial memory safety
here to reduce the number of keys used per page. This
improves the performance in the case that there are not
many reallocations. First, a lower number of keys means
a lower number of TLB entries. Second, the prefetcher
has a higher chance of fetching correctly decrypted data
if adjacent cache lines use the same keys.

While aliasing and quarantining reduce the available
virtual address space, we deem it unlikely to ever run
out of it on modern systems with at least 57-bit ad-
dressing. However, orthogonal techniques like memory
scanning [16] can be applied here if necessary.

Spatial Policy. As an alternative, we can, e.g., also
provide only (reduced) spatial memory protection. For
this, we select two tag values that we use for a given page
and assign them alternatingly for each adjacent slot on this
page. We chose two different tag values for new pages
since that does not increase the performance overhead
in any way. We still only require two aliases and two
TLB entries, irrespective of the tag values themselves. By
selecting a different pair of tag values for new pages, we
provide spatial protection not only on the same page but
across pages as well.

Spatial + Temporal Policy. Both “Temporal” and
“Spatial” can be combined to provide both temporal and
spatial memory safety with the optimizations of each of
the policies. Initially, we assign different tag values to
adjacent slots. E.g., all even slots get an even tag value
while all odd slots get a different odd tag value. Then,
during free/reallocation, each tag value is incremented by
two. This tagging policy always upholds the temporal and
spatial protection since (spatially or temporally) adjacent
slots always use different tags. Similarly to “Spatial”, if
reallocations and free operations are rare, this policy keeps
the number of keys per page low.

Tripwires Policy. A different way of achieving spatial
memory protection is to place tripwires between each
memory slot. The tripwires are tagged with a unique tag
that is never used by any regular allocation. Each memory
slot can use the same tag given that only linear under-
or overflows occur. By using only one tag per memory
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Figure 4. Visualization of our six tagging policies. Each policy shows two pages with three or four allocation slots each. Reallocations are shown in
the y-axis, i.e., reallocations are below the previous allocation. Quarantined slots (i.e., slots that have used all possible tag values) are crossed-out.
N denotes the number of available keyIDs, while the colors and numbers of each slot signify which keyID is used for that slot.

slot, we minimize the number of required TLB entries,
thus improving the performance. At the same time, the
chance of a successful prefetch is maximized. This is
because the prefetcher uses the address of a previous
memory access to fetch adjacent cache lines. Since, for
valid memory accesses, the encoded keyID in the virtual
address is always the same, the prefetcher will, therefore,
fetch and decrypt data with the correct key. However, the
trade-off here is that each tripwire must also be the size of
a cache line, thus imposing additional memory overhead.
While it is possible to store additional metadata for each
allocation slot in the tripwire, our proof-of-concept does
not implement this optimization. Thus, we treat tripwires
as unusable memory in our analysis.

Tripwires + Temporal Policy. On top of “Tripwires”,
we can also provide temporal memory safety through
the same approach described for the Spatial + Temporal
policy. When freeing or reallocating memory, a new tag
is assigned to the slot. Thus, it is impossible to access
memory through a dangling pointer. Adding temporal
safety increases security, but it comes with the cost of an
increased performance impact. The number of used keys
and, thus, the TLB pressure increases with each additional
free or reallocation. Furthermore, the prefetch efficiency
also degrades with an increasing number of distinct keys
per page. As we need a unique tag for the tripwires, there
is one fewer key that can be assigned.

5. Implementation

In this section, we describe the implementation de-
tails of all the components of our design. This includes
standard library modifications, the heap allocator, and the
Linux kernel patch.

5.1. Standard Library Modifications

Standard libraries such as the GNU C/C++ standard
library (glibc) often provide highly optimized functions
that fetch more memory than what actually belongs to
the current memory object. String-handling functions like
strlen, for example, potentially read out of the bounds
of an allocation. For systems with tagged memory, such
superfluous read operations can trigger exceptions that
terminate the application. Since these spurious memory
safety violations are a well-known problem, we use C3’s
patched glibc [28], which ensures that no out-of-bounds

accesses happen due to overfetching. Note that similar
library modifications were also needed for MTE.

We compile glibc as a dynamic library and link it to
the desired target application using LD_PRELOAD or the
patchelf utility.

5.2. Heap Memory Allocator

We chose to implement our design on top of Google’s
PartitionAlloc [15], which is a bucketing heap allocator
that uses no inline metadata between allocations. Parti-
tionAlloc already has a memory tagging implementation
tailored to ARM MTE. However, it does not store the
tag values of each allocation slot in allocator metadata.
Instead, it makes heavy use of the read-tag instruction to
load tags from memory when needed.

Memory Tagging Without Reading Tags. Compared
to ARM MTE, we cannot easily read tags for a given
memory location when using Intel® TME-MK. All access
checks are based on cryptographic MACs, thus making it
impossible to extract the tag from the stored MAC. By
analyzing the existing code base of the allocator, however,
we found that reading tags is not needed at all. For
allocated memory slots, the owner already has a correctly
tagged pointer, which is then passed back to the allocator
when that particular memory slot needs to be modified.
For untagged slots, there are two possible cases. First,
a slot can be an uncommitted range that has not been
initialized. Such slots do not have a tag yet, so we do
not need to remember the value of the tags. Second, a
slot can be committed/initialized but not allocated. Such
slots are stored in a singly-linked list called the freelist.
We modify this list so that it uses tagged pointers instead
of pointers that carry no tag. Thus, the tag of each list
element is contained in the pointer that points to the
element. For convenience, we added two new types to
distinguish between untagged slot pointers and tagged slot
pointers. Apart from the freelist, no other parts of the
code need to know the underlying tags of slots. Thus, it
is sufficient to extend the freelist as described above. This
modification allows us to use PartitionAlloc without an
instruction that reads tags from memory without incurring
additional memory overhead.

Metadata Protection. Apart from the freelist, all
metadata used by the allocator uses a different encryption
key that is never used for normal allocations. Thus, normal
heap pointers cannot be used to corrupt our metadata.



PartitionAlloc uses separate metadata for a collection
of multiple slots called SlotSpan. This metadata contains
the pointer to the (first entry of the) freelist. Each entry
in the freelist points to the next free memory slot, and
each memory slot again contains such a pointer. During
free, we assign the slot a new tag. Thus, dangling pointers
cannot be used to corrupt the freelist.

Memory Quarantining. Memory slots that have
been reallocated multiple times and used up all of the
available tags will be quarantined. These slots act like
they are allocated (i.e., they are not part of the freelist).
To allow memory to be reclaimed, e.g., if all slots on a
given memory page are quarantined, we count the number
of quarantined slots per so-called SlotSpan, which is a
collection of multiple slots. PartitionAlloc already has a
metadata struct for each such SlotSpan, which has enough
free bits to store this information. Thus, no additional
metadata storage is required.

Note that we also support disabling quarantining,
which allows for more efficient usage of memory at the
cost of not being 100 % temporally secure. When a slot
has used up all the available tags, it will start reusing
them in a round-robin fashion. Thus, after a specific
memory slot is reallocated more times than the number
of available tags, we can no longer guarantee complete
temporal protection in this mode.

Choosing Correct Tags. Some of our tagging poli-
cies, such as Spatial, use two alternating tags for a given
memory page. Since not all slots are initialized at once,
we need to remember the two distinct tag values for that
page. In PartitionAlloc, so-called super pages (i.e., 2 MiB
blocks) have their own metadata, which also has enough
free (padding) space in the struct to store the two tags
used for the page. For Spatial, when committing memory
(i.e., when initializing slots with their tags), we use the
two stored tag values per super page and assign them
in an alternating pattern to each even and odd slot. For
temporal policies, we also use these two values to keep
track of the initial tag value of a slot. Thus, we can
detect when we have used up all of the available tags.
The tag values are incremented on each free or realloc.
Tag values that exceed the number of possible tags wrap
around and start again at the first possible tag value.
Once the initial tag value is reached, all possible tags
have been used up for the respective slot. It is possible
to substitute the simple increment operation with e.g., a
linear-feedback shift register (LFSR). This yields more
unpredictable tag values and helps in case an attacker
targets reallocations [69].

5.3. Linux Kernel Modifications

We use the Linux kernel v5.15 and extend the Linux
key management facility. We base our work on the initial
public Intel® TME-MK patch [19] and expand it to work
with newer kernels and our required features. Our mod-
ifications allow userspace applications to use encryption
keys with integrity support. For this, either the keyctl
utility or the add_key syscall can be used. Similar to
[52], we also allow encrypted pages to be aliased such
that multiple encryption keys can be used for a single
physical page.

Note that our specific prototype implementation only
demonstrates that our concept works. However, there may
exist many complex interactions with other kernel com-
ponents and features, such as swapping or copy-on-write,
which we have not implemented, as they are not part
of our contribution. Similarly, sharing encrypted memory
with other processes works as long as both processes
map the memory using the same keyID. However, our
prototype does not enforce this since our focus is on heap
memory.

Memory Initialization. When using integrity pro-
tection, it is essential that memory pages used by the
OS and by userspace applications are cleanly initialized
(e.g., using the keyID 0) such that no unwanted exceptions
are triggered in case encrypted memory pages are reused.
Thus, we augment the clear_page and copy_page
functions to use the same instruction sequence as the TDX
module [9] when initializing new pages. Specifically, the
movdir64b instruction writes whole cache lines (64 B)
at a time, which is the same granularity as used for
the MAC computation in Intel® TME-MK. Thus, when
reading the same cache line again with the same keyID,
the MAC can be verified successfully. Our allocator uses
the same instruction when tagging memory areas.

Exception Handling. In case that the wrong keyID
is used when accessing a given cache line, the MAC
verification fails, which triggers a memory access vio-
lation similar to an uncorrectable ECC error. We treat
such exceptions similarly to ECC errors and generate a
signal such that the userspace application can handle the
violation as it sees fit. In the case that no signal handler
is registered, the application that triggered the integrity
violation is terminated.

Copying Encrypted Pages. Since the same memory
gets encrypted differently depending on the physical loca-
tion in DRAM, pages cannot be copied without knowing
the correct keyID with which the data on that page was
written. Thus, our prototype currently does not implement
support for features like swapping or forking since that
requires copying encrypted pages, which only works if
the correct keyID is used for each copied cache line in
a page. Future work could attempt to emulate a read-
tag instruction by testing all 215 keyIDs for each cache
line in a page and handling the exceptions accordingly.
However, a naive implementation could cause a significant
slowdown. A more attractive alternative is to include
additional metadata in the allocator. This metadata can
store the tags for each slot, which the kernel can then use
to copy pages. However, this engineering effort is not part
of our proof-of-concept implementation. Furthermore, im-
plementing this feature without creating new exploitable
side-channels (e.g., timing or power) is challenging.

6. Security Analysis

In this section, we analyze the security of IntegriTag
in terms of temporal and spatial heap memory safety.
Given that binary compatibility is a crucial property for
memory safety countermeasures, and the vast majority of
memory safety errors occur within heap memory [38],
we exclude vulnerabilities for stack and global memory.
Additionally, we exclude intra-object overflows since the
heap memory allocator has no type information regarding



the object’s internal structure. We assume a software-
based attacker as defined in our threat model Section 3.
We denote allocations that are placed adjacent to each
other in memory as spatially adjacent. Allocations that
use the same memory location at different points in time
are denoted as temporally adjacent.

6.1. Systematic Analysis

In the following, we detail how IntegriTag protects
against temporal and spatial memory safety errors.

Cryptographic Lock-and-Key Mechanism. The un-
derlying hardware primitive that our scheme is based on is
Intel® TME-MK with integrity. We configure the relevant
MSRs [9], [20] such that encryption with integrity is
enabled. The hardware encrypts 64 B cache lines with a
secret key that is selected by the provided keyID (encoded
within the pointer and the PTE). A 28-bit MAC is stored
in ECC memory along the cache line [8]. The MAC au-
thenticates the cache line during memory read operations
and is used to detect integrity violations [21]. We use this
hardware primitive for the cryptographic integrity checks
of IntegriTag, i.e., apply a cryptographic lock-and-key
mechanism. To be precise, a fresh MAC is calculated and
compared with the stored version when reading data. Con-
sequently, if the read access uses a wrong key (selected by
the keyID), the MACs do not match, and an exception is
triggered. This exception is then handled by the OS (or the
userspace application itself). Thus, accessing heap objects
with the wrong keyID will be detected due to the integrity
violation, and the OS will terminate the application.

Moreover, for comparability with other tagged mem-
ory architectures, we assume that an attacker knows where
our aliases are mapped. Thus, an attacker only needs
to correctly guess the keyID encoded in the virtual ad-
dress, but not where exactly this alias is mapped. Related
work [52] described that ASLR can be used to hide aliases
to provide additional protection. However, assuming an
attacker can observe the addresses of different allocations
(i.e., pointer harvesting), ASLR can relatively easily be
circumvented. Thus, no additional security is gained from
hiding aliases.

In the following, we provide an exemplary analysis of
the Random policy in terms of temporal and spatial mem-
ory safety. In general, the security of Random depends
on the number of available keyIDs, which can be seen as
memory tags to use the nomenclature of memory tagging-
based lock-and-key mechanisms (cf. ARM MTE and
SPARC ADI) (introduced in Section 4.2). The probability
that a tag mismatch stays undetected, i.e., a tag collision
occurs, is 2−keybits. For Random, this is the probability
that a spatially or temporally adjacent slot receives the
same tag. Intel® TME-MK is currently specified for up
to 15-bit keyIDs (keybits = 15). However, the available
keyIDs may differ between CPU models.

MAC Verification. Intel® TME-MK verifies the
MACs only when reading data from memory (cf. Chapter
14.2 [21]). Writing a (partial) cache line with a wrong key
(selected by the keyID) leads to a corrupted MAC. The
corruption is not detected immediately but on a subsequent
memory read. This behavior is not ideal for memory san-
itization or debugging since the exact memory operation
that causes the memory safety violation is not immediately

detected. However, memory safety violations, where data
is only written but never read, do not maliciously affect
the program’s execution. Thus, this imprecision does not
affect the security provided by IntegriTag.

MAC Collisions. All security schemes that rely on
cryptographic MACs ( [33], [37], [43], [63], [68]) have the
potential for MAC collisions. In our case, the probability
of a MAC collision (second-preimage resistance) for a
specific cache line due to a wrong key is 2−28, as the
MAC provided by Intel® TME-MK is 28 bits wide. In the
case of such a MAC collision, it is possible to access a
given cache line with a wrong keyID. However, an attacker
would never learn the correct unencrypted data as a wrong
keyID leads to decryption with a wrong key. Thus, data
confidentiality is preserved, and the attacker only gains
access to garbled data. Hence, the only consequence is that
we do not immediately detect a memory safety violation if
there is a MAC collision. However, as soon as the content
of the cache line changes, the MAC of the cache line also
changes. Thus, the violation will be detected on the next
access with nearly 100 % certainty, i.e., the probability of
two consecutive MAC collisions (1−2−56). For simplicity,
in the remainder of this section, when we state whether
a specific memory safety violation can be detected, we
assume that no MAC collisions occur.

Multithreading. The underlying authenticated mem-
ory encryption hardware verifies memory accesses during
read operations. If a pointer with a valid keyID is used, the
MAC verification succeeds, and the data is cached. Ac-
cesses to cached data also succeed if the keyID matches.
If another thread invalidates an allocation (e.g., by calling
free) while the data is cached, there are two possible
outcomes. First, the allocator may flush the affected cache
lines with the old keyID. In this case, subsequent accesses
with the old keyID will trigger a new MAC verification
and cause an exception. If the data is not flushed and
evicted from the cache, accessing the cached data with
the old keyID will still succeed. However, once the data
is written back to memory, it will corrupt the MAC. Thus,
subsequent memory fetches will trigger an exception. An
exception to this rule happens when the data is also cached
with the new keyID and is written back after the cache
line with the old keyID has been written to memory. Our
experiments showed that, in this case, the cache line stays
corrupted. Thus, the violation is still detected even after
data with the new (correct) keyID has been written. In
summary, our approach leveraging Intel® TME-MK is
thread-safe, i.e., an attacker cannot use time-of-check-
to-time-of-use (TOCTTOU) [70] attacks to exploit the
program. This is a significant advantage over software-
based schemes that are challenging to protect against
TOCTTOU attacks [75] in practice.

Temporal Memory Safety. Temporal memory safety
vulnerabilities can be categorized into the use of uninitial-
ized memory, double-free errors, and use-after-free (UAF)
errors. IntegriTag leverages our cryptographic lock-and-
key mechanism to detect integrity violations of mis-
matched keyIDs, which can be seen as memory tags. First,
we address uninitialized memory use vulnerabilities by
ensuring that memory is zeroed during the cache line ini-
tialization with the appropriate key upon object allocation.
Second, double-free errors are directly mitigated by our
design. To accomplish this, the allocator reads the data



(i.e., performing a cryptographic integrity check) before
deallocating the corresponding object, which triggers an
exception if a dangling pointer is provided. Third, UAF
errors, i.e., memory accesses using a dangling pointer with
an old keyID, are also detected by the MAC authenti-
cation. In particular, we further distinguish between the
following three cases of dangling pointers that lead to
UAF integrity violations.

The free’d memory is accessed, and no other alloca-
tion has (re)used the memory slot yet. During free, we
re-initialize the slot with a new and different tag. Hence,
accessing an old allocation with a dangling pointer triggers
an exception due to the MAC mismatch.

The free’d memory is accessed, but another allocation
has already (re)used the memory slot. As above, during
free, the data is assigned a new tag for subsequent usage.
Additionally, if memory quarantining is enabled, the tag
of the dangling pointer can never match the new tag of the
slot. A memory slot that has used up all the available tags
will be quarantined and tagged with a special tag not used
for regular allocations. Thus, the invalid access is always
detected. Suppose memory quarantining is disabled, and
the number of reallocations (of that memory slot) is at
least the number of available tags. In that case, there
is a chance that the tag of the dangling pointer collides
with the new tag. This violation is not guaranteed to be
detected. Assuming that the number of reallocations is
unknown or that reallocations use unpredictable tags, the
probability that the current tag matches the tag of the
dangling pointer is 2−keybits.

All slots on the page are quarantined. If all slots on
the page have already been quarantined, the page will be
unmapped, and we will no longer reuse that virtual page.
Accessing such a page through a dangling pointer will
result in a page fault, leading to program abortion.

Spatial Memory Safety. Spatial memory safety vul-
nerabilities can be further categorized into adjacent (e.g.,
linear overflows) and non-adjacent (e.g., arbitrary out-of-
bound (OOB) error) memory access violations. Similar
to temporal safety, IntegriTag leverages our cryptographic
lock-and-key mechanism, detecting spatial violations by
mismatching memory tags (i.e., keyIDs). Memory tagging
schemes are bound to a certain tag granularity, determin-
ing the granularity at which memory violations can be
detected. Therefore, we align and pad each allocation to
the tag granularity (i.e., Intel® TME-MK with integrity
encrypts 64 B cache lines) and assume that accesses within
a granule are not considered memory safety issues. While
such accesses (i.e., accesses larger than the requested
size but still within the tag granule) would indicate a
programming error, they do not threaten memory safety
since this padding data is never read by the program.

With Tripwires (or Tripwires + Temporal), all linear
overflows and underflows are detected since the directly
adjacent memory granules will always have the tag of
the tripwire. The tripwire uses a tag that is not used for
regular allocations. Thus, it is impossible that the tag of
the allocation matches the one of the tripwire by chance.
For Spatial (or Spatial + Temporal), all linear overflows
and underflows are detected as well. Since the allocator
ensures that no adjacent memory slots use the same tag,
it is impossible to access an adjacent slot.

For non-adjacent OOB accesses, detection depends

TABLE 1. EMPIRICAL SECURITY ANALYSIS OF IntegriTag USING THE
NIST JULIET C/C++ TEST SUITE.

CWE Description Number of Test Cases Passed
CWE-122 Heap buffer overrun 2985 Test Cases 100 %
CWE-415 Double-free 818 Test Cases 100 %
CWE-416 Use-after-free 459 Test Cases 100 %

on the tagging policy and whether the access is on the
same page. In general, allocations on different pages use
different randomly selected tags. For cross-page accesses,
the probability of guessing the correct tag is 2−keybits.
Thus, we can detect such violations with a likelihood of
up to 99.997% (i.e., 15-bit keyIDs). Whether we detect
overflows within the same page depends on the tagging
policy. For Tripwires, all allocations on the same page use
the same tag. Thus, only overflows that touch one of the
tripwires will be detected. If Tripwires + Temporal is used,
the probability of detecting an OOB access depends on
whether reallocations happened. As a reallocation causes
a new tag to be generated, we can detect violations
with a probability of 1− 2−keybits. Similarly, for Spatial
and Spatial + Temporal, detection depends on whether the
memory access points to an even or odd memory slot. If
the OOB access originates from an even slot and targets
an odd slot, the tag will not match.

6.2. Empirical Security Analysis

To evaluate the efficacy of our design, we evaluate
different types of memory safety vulnerabilities that our
allocator can protect against. We use the NIST Juliet
C/C++ 1.3 test suite for our analysis [6]. The test suite
consists of multiple different variants per common weak-
ness enumeration (CWE), which are further subdivided
into different test cases for each variant. Precisely, we
use heap buffer overruns (CWE-122), UAF errors (CWE-
416), and double-free errors (CWE-415) for our empirical
security analysis. While Juliet is designed as a test suite
for static analysis tools, it can still be used dynamically.
We use it to empirically showcase how our design pro-
vides runtime security for applications that contain mem-
ory safety vulnerabilities. Note that intra-object memory
violations are outside our threat model since a heap-based
allocator cannot protect against them without e.g., addi-
tional compiler-based instrumentation. Hence, we exclude
test cases for intra-object memory safety as well as test
cases that already fail without our protection.

We use the Address Sanitizer (ASan) [54] to select
the test cases that trigger heap-based memory safety viola-
tions. For double-free errors, which ASan does not detect,
we consider all test cases that are not explicitly labeled as
being “good”. A test case is considered to be passed if our
design detects the memory safety violation and triggers
an exception. Due to our 64 B alignment requirement,
we adapt some test cases to use allocations with the
appropriate size, such that out-of-bound accesses trigger
a violation. Intel® TME-MK only detects violations after
reading the (corrupted) data back. Hence, similar to related
work [31], we consider any test cases where IntegriTag
would have caught the violation if a read operation hap-
pened afterward as successful. For this, we analyzed each



of those individual test cases and verified this by adding
read operations at the appropriate places. Table 1 shows
that our proof-of-concept implementation passes all of the
test cases. Our results highlight the efficacy of our design
and show that it protects against both temporal (CWE-415,
CWE-416) and spatial (CWE-122) memory violations.

7. Evaluation

In this section, we evaluate the performance and mem-
ory overhead of IntegriTag for different configurations.

7.1. Performance Evaluation

Methodology. We evaluate our design for the tagging
policies introduced in Section 4.3. The SPEC CPU2017
C/C++ benchmark suite serves as the workload for our
evaluation. We evaluate all temporal tagging policies with
and without memory quarantining. Furthermore, for better
comparability with other schemes that have, e.g., only
have 4-bit tags, we evaluate each policy with a range
of keyIDs. The number of keyIDs ranges from 2-bit
keys up to the maximum supported value by our specific
CPU. While Intel® TME-MK is specified for up to 15-
bit keyIDs, our system supports 6-bit wide keyIDs. Thus,
26 = 64 different keyIDs are available. We use Linux
v5.15 with our kernel extension on an Intel® Sapphire
Rapids CPU 2 with 64 GB of RAM. We execute all
benchmarks 10 times and plot the median result for each
benchmark and the geomean across all benchmarks. We
omit plotting standard deviations for clarity and because
the runtime of the benchmarks does not follow a normal
distribution. All results are normalized to the baseline,
which uses the unmodified allocation library. Note that
PartitionAlloc currently only allows up to 16 GB of heap
memory.

Performance Overhead. Figure 5 shows the ge-
omean of the relative runtimes for our tagging poli-
cies when quarantining is disabled. The first bar, at 3 %
overhead, shows the runtime when we only enforce our
padding requirement. This value acts as a reference and
provides no spatial or temporal protection. We can see
that the performance impact increases with an increasing
number of keyIDs. There are two main reasons for this
behavior. First, more keyIDs mean that more aliases are
used per page. This results in more TLB entries and, thus,
more TLB pressure. Second, prefetching performance de-
clines because memory that is (pre)fetched from outside
the current memory object uses a different encryption key.

2. Intel technologies may require enabled hardware, software or ser-
vice activation. Performance tests are measured using specific computer
systems, components, software, operations and functions. Any change
to any of those factors may cause the results to vary. The software
development and performance tests were done on an internally available
experimental pre-release Sapphire Rapids (SPR) system, customized to
enable Intel® Total Memory Encrption – Multi Key (Intel® TME-MK)
with cryptographic-integrity for system software. Performance results
are based on testing as of dates shown in configurations and may not
reflect all publicly available updates. No product or component can be
absolutely secure. Intel disclaims all express and implied warranties,
including without limitation, the implied warranties of merchantability,
fitness for a particular purpose, and non-infringement, as well as any
warranty arising from course of performance, course of dealing, or usage
in trade. No license (express or implied, by estoppel or otherwise) to any
intellectual property rights is granted by this document.

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Re
la

tiv
e 

Ru
nt

im
e

1.
03

1.
24 1.

29 1.
31

1.
29

1.
29 1.
31 1.
32 1.

37 1.
40

1.
31 1.
32 1.
33

1.
47 1.

54 1.
56

1.
49 1.

61

1.
61

padding only
2bit Temporal
4bit Temporal
6bit Temporal

2bit Tripwires
4bit Tripwires
6bit Tripwires

2bit Tripwires + Temporal
4bit Tripwires + Temporal
6bit Tripwires + Temporal

2bit Spatial
4bit Spatial
6bit Spatial

2bit Spatial + Temporal
4bit Spatial + Temporal
6bit Spatial + Temporal

2bit Random
4bit Random
6bit Random

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Re
la

tiv
e 

Ru
nt

im
e

1.
03

1.
29

1.
29 1.
32 1.

40

1.
37 1.
41

1.
67

1.
57 1.
59

padding only
2bit Temporal + q
4bit Temporal + q
6bit Temporal + q

2bit Tripwires + Temporal + q
4bit Tripwires + Temporal + q
6bit Tripwires + Temporal + q

2bit Spatial + Temporal + q
4bit Spatial + Temporal + q
6bit Spatial + Temporal + qFigure 5. Geomean runtimes of the individual SPEC CPU2017 bench-

marks with our different tagging policies without quarantining.
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Figure 6. Geomean runtimes of the individual SPEC CPU2017 bench-
marks with our different tagging policies with quarantining. Policies that
do not allow quarantining are omitted.

Our Temporal policy provides temporal safety and
shows overheads of 24–31 %, depending on the number
of keyIDs. Next, the Tripwires policy that only offers
limited spatial memory safety causes a 29–31 % slow-
down. Contrary to the first policy, we notice that more
keyID bits do not significantly affect the performance
penalty. The main source of additional overhead here is
our prototype implementation that unnecessarily creates
alias mappings for all keyIDs, even if only one or two
keys are used for a given memory mapping. Some of the
overhead is, however, caused by the additional tripwires
necessary for each allocation, which take up 64 B each.
The Tripwires + Temporal policy is a combination of the
previous two policies, as indicated by the hatching pattern.
For this policy, we measure an overhead of 32–40 %. This
policy offers both temporal and spatial memory safety.
While its intra-page spatial protection is limited to linear
overflows, it still provides a good trade-off between se-
curity and performance. The Spatial policy uses different
tags for adjacent allocations, thus providing spatial safety.
As expected, since the number of keys per page is kept
low, the overheads are also kept at just 32–33 %. The
Spatial policy adds temporal protection, which increases
the performance overhead to 47–56 %. Finally, for com-
parison, we evaluate the Random policy, which randomly
assigns keys for each allocation. There, the number of keys
per page is usually higher than with other policies. This
results in a high performance overhead of 49–61 % while
still only providing probabilistic security. Hence, we do
not recommend using this policy with Intel® TME-MK.

In summary, our evaluation shows that, compared
to other tagged architectures like ARM MTE, how we
select the tag values for different memory objects has a
strong impact on performance. Across all policies, Trip-
wires + Temporal offers the best trade-off between perfor-
mance overheads and the provided level of security.

Figure 6 illustrates how the performance impacts of
the different policies change when quarantining is enabled.
Again, the Tripwires + Temporal policy is the recom-
mended policy and shows only slightly higher overheads
than the variant without quarantining at 40–41 %. When
using quarantining, more keyIDs do not necessarily entail
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Figure 7. Relative runtime of the individual SPEC CPU2017 benchmarks without quarantining.
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Figure 8. Relative runtime of the individual SPEC CPU2017 benchmarks with quarantining.

a stronger performance impact. This is due to the fact that
a higher number of available keyIDs means that a memory
slot can be reused more often before it is quarantined. This
offsets some of the overheads that are inherent to using
more aliases.

For completeness, Figure 7 and Figure 8 show the
results of each individual benchmark which are summa-
rized in Figure 5 and Figure 6. Since the benchmarks
exhibit vastly different memory access patterns, differ-
ent (re)allocation behavior, and use different allocation
sizes [52], the overheads, depending on the policy, also
differ.

A 4 KiB page can only have up to 4096/64 = 64
different allocations. Hence, at any point in time, a page
is only ever used by a maximum of 64 different keyIDs.
Thus, we assume that if we had access to more than 6-bit
(=64) keyIDs, the performance impact would be minimal.

7.2. Memory Usage

Since Intel® TME-MK works on a cache line granu-
larity, we pad and align all allocations to that granularity.
This added padding means that we use more memory than

TABLE 2. MAXIMUM MEMORY USAGE OF THE SPEC BENCHMARKS
WITH 6-BIT KEYIDS COMPARED TO THE UNMODIFIED BASELINE.

Tripwires: without tripwires with tripwires
Quarantining: ✗ ✓ ✗ ✓

600.perlbench 1.00x 1.04x 1.08x 1.20x
602.gcc 1.01x 1.22x 1.22x 1.37x
605.mcf 1.00x 1.00x 1.00x 1.00x
619.lbm 1.00x 1.00x 1.00x 1.00x
620.omnetpp 1.18x 1.43x 1.59x 1.93x
623.xalancbmk 1.07x 1.27x 1.25x 1.54x
625.x264 1.00x 1.00x 1.01x 1.01x
631.deepsjeng 1.00x 1.00x 1.00x 1.00x
638.imagick 1.00x 1.00x 1.00x 1.00x
641.leela 1.00x 1.00x 1.01x 1.00x
644.nab 1.00x 1.00x 1.00x 1.00x
657.xz 1.00x 1.00x 1.00x 1.00x
Geomean 1.02x 1.07x 1.09x 1.14x

baseline using an unmodified allocator. Furthermore, quar-
antining increases the memory usage since quarantined
slots cannot be reused. They can only be reclaimed when
all memory slots on a given page have been quarantined.

We measure the physical memory usage of the indi-
vidual benchmarks by creating a new Linux control group
for the benchmark process. Table 2 shows the maximum
memory usage measured compared to the baseline. We
have an additional need for memory due to our 64 B align-
ment requirement for both the allocations and tripwires, as
well as due to quarantining. We use Tripwires + Temporal
and Temporal with and without quarantining for this
evaluation and find that the geomean memory overhead
is between 2 % and 14 %. Compared to other memory
safety schemes that provide temporal memory safety, these
numbers are low. We reach such low memory overhead as
the memory encryption engine does not need to store the
tags separately in DRAM. Instead, a MAC is calculated
and stored in the reserved ECC portion of the DRAM.
Thus, storing the tags introduces zero additional memory
overhead on systems that already use ECC memory.

Note that there is also a slight increase in used ker-
nel memory due to the additional required page tables
for the aliases. However, we were not able to measure
this overhead directly. Instead, we estimate the overhead
as follows. Each 4 KiB memory page requires an 8 B
PTE for each translation layer. Thus, each mapping/alias
requires roughly 0.2 % of additional memory for PTEs.
We estimate that other metadata, which usually exists per
mapped memory range instead of per page, is negligible.
Thus, when using 4 KiB pages and 6-bit keyIDs, the
overhead is about 0.125x of protected heap memory pages.
We consider this an upper bound since a 4 KiB page
can not hold more than 26 = 64 different allocations
that are 64 B or more. Depending on the actual tagging
policy, fewer aliases may be used. The Tripwires policy,
for example, only requires a single additional alias per
page, which results in a 0.002x overhead. Furthermore,
both numbers can be further reduced by a factor of 512
if 2 MiB mappings are used instead. However, Partition-



TABLE 3. COMPARISON OF IntegriTag WITH EXISTING WORK ON
MEMORY SAFETY AVAILABLE ON COMMODITY HARDWARE.

Sp
at

ia
l

Te
m

p.

Performance Memory
Overhead Overhead

A
A

rc
h6

4 ASan [54]‡ 81 % 374 %
HWASan [66]‡ 108 % 67 %
MemTagSanitizer [36] – –
PACMem [32] 68 % 106 %

x8
6-

64

ASan [54]‡ 86 % 221 %
Memcheck [46]‡ 1649 % 241 %
Softbound+CETS [41], [42]‡ 367 % 83 %
CUP [7] 158 % –
LowFat [12], [13]‡ 237 % 230 %
BOGO [47], [79] 60 % 17 %
MEMES [52] † † 27 % 17 %
MarkUs [2] 10 % 16 %
xTag [4] 24 % –
DangZero [17] 22 % 25–75 %
FFmalloc [72] 2 % 60 %
CRCount [58] 22 % 18 %

IntegriTag∗ 24–40 % 2 %
IntegriTag w/ quarantining∗ 29–41 % 14 %

‡ Performance numbers are taken from [32] for better comparability.
† No detection capabilities, computing with garbled data.

∗ Using 2–6 bits with the policies Temporal and Tripwires + Temporal.

Alloc would require significant rework to allow commit-
ting/decommitting huge pages.

8. Related Work

In this section, we compare IntegriTag with prior
work on memory safety and memory sanitization. Table 3
compares IntegriTag with existing work on memory safety
available on off-the-shelf commercially available com-
modity hardware. The reported performance and mem-
ory overheads offer a rough overview of state-of-the-art
mechanisms. Note that the evaluations may vary regarding
used benchmarks and execution platforms, reducing direct
comparability.

Traditionally, spatial memory safety violations are
mitigated using bounds-checking mechanisms. Existing
research like SoftBound [41], CUP [7], and LowFat [12],
[13] highlights the flexibility of software-based solutions
achieved through program recompilation to address spa-
tial issues. However, software-based countermeasures tend
to introduce high runtime overheads. For instance, Soft-
Bound+CETS [41], [42] introduces a 367 % runtime over-
head, potentially impractical for various software systems.

As a result, hardware-supported countermeasures are
introduced to potentially achieve better performance re-
sults. The CHERI ISA [74] provides spatial memory
safety using fat-pointers incorporating the required bounds
information of the corresponding memory object. Never-
theless, CHERI requires intrusive hardware changes, and
the fat-pointer approach leads to ABI and binary incom-
patibility. In contrast, IntegriTag provides a binary and
ABI-compatible solution based on commodity hardware.

Temporal safety is typically achieved through meta-
data that represents the object’s liveness. For instance,
CETS [42] introduces a unique identifier with each object,
which is checked during the program’s runtime for ev-
ery memory access. Moreover, Cornucopia [14] enforces
temporal safety for CHERI heaps utilizing heap quar-

antining and memory scanning. Other countermeasures,
like MarkUs [2], also rely on memory quarantining. By
managing a quarantine list for freed objects, memory is
only reallocated if no dangling pointers referring to the
quarantined memory blocks exist. FFmalloc [72] works
similarly, but they never reuse allocation slots. In contrast,
IntegriTag (with the temporal policy) allows the reuse
of memory slots multiple times before memory scanning
is required. Furthermore, xTag [4] utilizes page aliasing
in combination with pointer tagging to achieve temporal
safety. DangZero [17] prevents UAF errors using direct
page table access. Compared to xTag and DangZero,
IntegriTag performs the access checks in hardware and
can also support spatial safety.

Memory Sanitization. Address Sanitizer (ASan) [54]
and Valgrind’s Memcheck [46] are widespread memory
sanitizers used for debugging and testing C/C++ software.
In addition, PACMem [32] provides memory sanitization
using the ARM pointer authentication in combination with
bound checks. Typically, the performance and memory
overheads of memory sanitizers are too high for runtime
safety. In contrast, IntegriTag achieves efficient mem-
ory sanitization and runtime protection by leveraging the
Intel® TME-MK hardware feature.

Memory Tagging. Memory tagging is a core building
block for various security countermeasures [1], [53], [55],
[56], [69], [71]. Several memory tagging schemes employ
the lock-and-key approach for memory safety in software
and hardware. For instance, HWASan [66] utilizes ARM’s
TBI feature to support software-based memory tagging
using shadow memory. However, HWASan suffers from
relatively high performance and memory overheads.

In contrast, ARM MTE [55] and SPARC ADI [1],
[56] provide memory tagging integrated into the system
architecture. In particular, ARM MTE and SPARC ADI
use a 4-bit memory tag with a granularity of 16 B and
64 B, respectively. The chosen tag size and tag granularity
directly influence the resulting memory overhead. Both
tagged memory architectures are used for probabilistic
memory safety using pseudorandom memory tags. For
instance, the MemTagSanitizer [36] integrated into the
Clang/LLVM [30] compiler provides memory sanitization
by leveraging ARM MTE. Importantly, IntegriTag pro-
vides significantly better detection capabilities of up to 15-
bit (99.997% detection probability), directly compared to
the 4-bit (93.75 % detection probability) security of ARM
MTE and SPARC ADI.

StarScan [16] utilizes memory quarantining in com-
bination with ARM MTE in order to enforce temporal
memory safety. Similar to our temporal tagging policy,
StarScan puts memory objects into a quarantine list after
reusing them 16 times. Notably, our approach allows us
to reuse the memory objects significantly more often, i.e.,
15-bit key space compared to the 4-bit memory tags of
ARM MTE.

Cryptographic Computing. Several memory safety
countermeasures rely on the usage of cryptographic prim-
itives for security [31], [33], [43], [52], [68].

CrypTag [43] leverages cache line granular encryption
to enforce temporal and spatial memory safety for the
RISC-V architecture. Specifically, CrypTag uses pointer
tagging (i.e., lock-and-key approach) to encode a pseudo-
random memory tag within the pointer, similar to ARM



MTE and SPARC ADI. However, instead of storing the
memory tags in a tagged memory architecture, CrypTag
uses the tag metadata as additional input for the memory
encryption engine. Thus, every memory object needs to
be padded to cache line granularity. Depending on the
selected mode of the memory encryption engine (i.e.,
encryption-only or authenticated encryption), accessing
memory using the wrong memory tag (i.e., a memory
safety violation) leads to garbled data, or an authentication
error triggers a hardware exception.

Cryptographic capability computing (C3) [31] uses a
combination of pointer and memory encryption to mitigate
the exploitation of memory safety vulnerabilities. C3 de-
rives a so-called cryptographic address (CA) by encrypting
the upper parts of the pointer. Additionally, the CA is used
for a keystream generator responsible for encrypting and
decrypting the data stored in the data cache. A memory
safety violation then either leads to the decryption of
a mangled pointer (and likely to a page fault) or the
decryption of garbled data (by using the wrong CA). In
contrast to our work, in the second case, C3 cannot detect
memory safety violations, resulting in program execution
with garbled data.

MEMES [52] uses aliasing in combination with mem-
ory encryption but only provides limited memory ex-
ploit mitigation. Without integrity, MEMES cannot detect
memory safety violations, and program execution with
garbled data is still possible. EC-CFI [44] provides cryp-
tographic control flow integrity utilizing Intel® TME-MK
with virtualization by encrypting functions with different
keys and switching keys using vmfunc when enter-
ing/exiting a function. Calling a function with a wrong
key leads to decoding garbled data as instructions, which
likely leads to illegal instruction exceptions. Thus, EC-
CFI mitigates fault attacks trying to hijack the program’s
control flow.

9. Conclusion

This paper presented IntegriTag, a novel mechanism
for memory safety by leveraging the existing memory
encryption feature of modern CPUs. By assigning dif-
ferent keyIDs to objects (enabled by aliasing), we are
able to implement memory tagging for commodity x86
CPUs. Our software-based approach introduces memory
tagging capabilities, similar to ARM MTE and SPARC
ADI, for the x86 architecture. Unlike ARM MTE and
SPARC ADI, our approach does not rely on a sepa-
rate tagged memory architecture that increases system
complexity and memory overhead. Instead, we perform
implicit memory access checks based on the Intel® TME-
MK memory encryption engine. Additionally, IntegriTag
provides significantly better detection capabilities of up to
15-bit (99.997% detection probability), directly compared
to the 4-bit (93.75 % detection probability) security of
ARM MTE and SPARC ADI.

We developed a software framework supporting var-
ious memory tagging policies using a custom heap allo-
cator and a kernel patch. The proof-of-concept prototype
provides effective heap memory safety while maintaining
binary compatibility. Moreover, we evaluate several secu-
rity policies based on our encryption-based lock-and-key
mechanism, enforcing temporal and spatial memory safety

on the architectural level. Our extensive security analy-
sis, including a security evaluation based on the NIST
Juliet C/C++ test suite, highlights the strong detection
capabilities and efficacy of our design. Our performance
evaluation, across all C/C++ SPEC CPU2017 benchmarks,
highlights competitive results of a 32–41% overhead for
both temporal and spatial memory safety.

Data Availability

We release our implementation as open-source
at github.com/IntelLabs/TME-MK-Fine-Grained-
Encryption-Integrity. The repository includes all three
parts of our implementation (i.e., patches for glibc, the
Linux kernel, and PartitionAlloc) as well as instructions
on how to compile it, run it, and verify that the necessary
CPU feature(s) are correctly set up.
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