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1. Introduction

The last decade has witnessed an increasing interest in the phys-
ics of Mott insulating systems as they can undergo phase tran-
sitions when driven out of equilibrium by both statically and
periodically electric fields.[1–6] Due to this property, they could
be used to model the so-called insulator-to-metal transition, which
has been investigated theoretically in the seminal works[7,8] and
then observed experimentally.[9,10] Due to their strongly interact-
ing nature, Mott insulating systems require a nonperturbative
method to be dealt with. Nowadays, the most well-established
approach is given by the dynamical mean-field theory
(DMFT),[11–16] which holds under both equilibrium and nonequi-
librium conditions. The DMFT relies on impurity solvers to
address the nonequilibrium steady state of the system, which
often are the bottleneck of the approach as they can be computa-
tionally costly. Purpose of this article is to benchmark the results
of the iterated perturbation theory (IPT) impurity solver, which is
known to work well in both the very weak and very strong inter-
acting regime,[17] against those obtained within the so-called aux-
iliary master equation approach (AMEA) impurity solver.[18–22]

The IPT solver yields results, which are in quite good agreement
with those obtained by employing AMEA for the very same setup

investigated in a previous work from the
authors.[23] The rest of the article is orga-
nized as follows: In Section 2, we intro-
duced the model at hand, while Section 5
will be devoted to a short recap of the
Green’s function formalism and the IPT
impurity solver. Results are discussed in
Section 3, while Section 4 is left for conclu-
sions and further considerations. The
details of the physical setup under investi-
gation and the derivation of all the relevant
observables of interest can be found in the
previous work from the authors.[23]

2. Model Hamiltonian

We study the single-band Hubbard model in the presence of a
constant electric field in the temporal gauge,[23] the Hamiltonian
of which is given by

ĤðtÞ ¼ ĤUðtÞ þ Ĥbath þ Ĥe�ph þ Ĥph (1)

The units employed in this article are such that the lattice
spacing a, Planck constant ℏ and the electron charge q are chosen
as a ¼ ℏ ¼ �q ¼ 1, hence the Hubbard Hamiltonian ĤUðtÞ in
Equation (1) is given by

ĤUðtÞ ¼ εc
X
iσ

n̂fiσ �
X
σ

X
ði, jÞ

tc e�iðrj�riÞ⋅AðtÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
¼ tijðtÞ

f̂ †iσ f̂ jσ þU
X
i

n̂fi"n̂
f
i#

(2)

where f̂ †iσ (f̂ iσ) is the creation (annihilation) operator of an elec-

tron of spin σ ¼ f" , #g at the i-th lattice site and n̂fiσ ≡ f̂ †iσ f̂ iσ the
corresponding density operator. Sums over nearest neighbor
sites are denoted by ði, jÞ. The electrons’ onsite energy is chosen
as εc ≡�U=2 for the system to be fulfil particle-hole symmetry,
and tc is the bare hopping amplitude. The homogeneous vector
potential AðtÞ ¼ �F t is chosen such that the static electric field is
constant and oriented along the body diagonal of a hypercubic
lattice e0 ¼ ð1, 1, : : : , 1Þ and is given by F ¼ � ∂tAðtÞ.

We take the infinite-dimension limit,[6,24] i.e., d ! ∞, with the
usual rescaling of the hopping tc ¼ t∗=ð2 ffiffiffi

d
p Þ, which allows to

perform summations over the electron crystal momentum
using the joint density of states[25,26] ρðε, εÞ ¼ 1=ðπt∗2Þ
exp½�ðε2 þ ε2Þ=t∗2� with ε ¼ �2tc

Pd
i¼1 cos ki and

ε ¼ �2tc
Pd

i¼1 sin ki.
An optical phonon branch is attached to each lattice site by

means of the Hamiltonian
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This article aims to compare the so-called iterated perturbation theory (IPT) and
auxiliary master equation approach (AMEA) impurity solvers for a Mott insulating
system driven out of equilibrium by a static electric field. Electronic heat bath and
optical phonons are employed as dissipation mechanism of the current-induced
Joule heat that the excited electrons of the lattice experience as the result of the
field’s driving. Despite its simplicity, the IPT approach yields results that qual-
itatively are in good agreement with those obtained within the AMEA impurity
solver, although fails to reproduce some correlation effects.
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Ĥe�ph ¼ g
X
iσ

n̂fiσ x̂i (3)

with x̂i ≡ ðb̂†i þ b̂iÞ=
ffiffiffi
2

p
, where b̂†i (b̂i) creates (annihilates) an

optical phonon with energy ωE at the lattice site i. The optical
phonon Hamiltonian consists of an Einstein phonon
Ĥph,E ¼ ωE

P
i n̂

b
i with n̂bi ¼ b̂†i b̂i the phonon density, coupled

to a noninteracting, ohmic bath Ĥph,ohm with spectral density
given in Equation (14).

To stabilize the DMFT loop, we include electronic heat baths,
consisting of a collection of noninteracting fermionic degrees of
freedom, coupled locally to each lattice site which are described
by the Hamiltonian Ĥbath, the details of which will be specified
in Theoretical Framework, see Equation (10).

3. Results

In this section, we benchmark the results yielded by the IPT
approach against those obtained within the AMEA impurity
solver for the system at hand.

3.1. SC and NSC Phonons

We set off by analyzing the steady-state current and kinetic
energy in both the SC and NSC schemes obtained within the
IPT impurity solver. We then compare these results with those
obtained within the AMEA only at a later time.

3.1.1. Steady-State Current and Kinetic Energy

The current J and and kinetic energy Ekin as functions of the
applied field F for both the SC and NSC schemes obtained
employing the IPT impurity solver are shown in Figure 1. We
observe that the SC treatment has no effect for field strengths
F < U=2 as the SC and NSC curves for both J and Ekin lie on
top of each other. On the other hand, the SC scheme does con-
tribute corrections, albeit tiny, once F gets past field strengths of
the order of the resonanceU=2, for both J and Ekin. In particular,
we observe a suppression of the peak values of the current J in
the SC approach at F ≈ U with respect to the NSC treatment.
This is accompanied by an overall smearing of the J–F curves
around the maximum for all the values of Γe employed in this
article, see Figure 1a–c. The kinetic energy is also affected by the
SC treatment as its maximum value is suppressed, while its min-
imum is raised with respect to the NSC scheme regardless of the
value of Γe, see Figure 1d–f.

This behavior is qualitatively in agreement with the results
obtained within the AMEA impurity solver presented in a recent
work from the authors.[23] As a matter of fact, using AMEA the
drop in the current J at the resonance F ≈ U observed in the SC
scheme is way more pronounced than in the IPT case as one can
see by comparing Figure 1 and 2 for corresponding values of the
dephasing rate Γe. On the other hand, the differences between
the impurity solvers are less pronounced when it comes to the
kinetic energy Ekin, as it can be observed by comparing the cor-
responding curves in Figure 1 and 2 for the same Γe’s.

We want to mention that the orders of magnitude of both J and
Ekin in the IPT scheme quantitatively agrees with those obtained

(a) (b) (c)

(d) (e) (f)

Figure 1. Current J as function of the applied field F for a) Γe ¼ 0.20t∗, b) Γe ¼ 0.16t∗, and c) Γe ¼ 0.12t∗ for both SC and NSC schemes. d–f ) show the
kinetic energy Ekin as function of F for the same coupling strengths, respectively. Default parameters are specified in Table 1. Results have been obtained
using the IPT impurity solver. (Here U ¼ 8t∗.).
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within the AMEA impurity solver. However, using the IPT
approach, the two main resonances at F ≈ U=2 and F ≈ U are
shifted toward smaller field strengths and the differences
between the SC and NSC schemes are not as pronounced as
in the AMEA scheme (see again Figure 2).

In addition, the two impurity solvers differ in that the IPT
cannot capture correlation effects like the tiny resonance in
the current J at F � U=3 ≈ 2.6, (For further details about the
resonances in the J–F curves we refer to the previous
work.[6,26]), which instead can be distinguished using the
AMEA solver as soon as Γe is small enough, see Figure 2a,d
and in particular 2g.

3.1.2. The Effect of the Hubbard U

This section is devoted to the analysis of the role of the Hubbard
U on the insulating phase: once again we focus on the current J
and kinetic energy Ekin in the SC and NSC approaches to then
compare them to the corresponding quantities obtained within
the AMEA impurity solver.

In Figure 3 is displayed the behavior of J and Ekin as function
of the applied field for selected values of U, see panels (a) and (b)
for the NSC scheme and (c) and (d) for SC treatment. We observe
that in the SC case both the J–F and Ekin-F curves are broadened,
see panels (b) and (d).

In particular, we observe an increase in the current J at
F ≈ U=2 as U is decreased for both NSC and SC schemes.
Also, while the values of the two peaks at U=2 and U stay approx-
imately the same in height in the NSC and SC schemes, we find
that the latter treatment enhances J for field strengths that lie in
between the two main resonances, compare Figure 3a,c.

When it comes to the kinetic energy, on the other hand, let
alone an overall smearing of the curves the SC treatment

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. a) Current, b) double occupation, and c) kinetic energy as function of the applied field F at Γe ¼ 0.20t∗ for both SC and NSC schemes. d–f ) show
the same quantities for Γe ¼ 0.16t∗, while g–i) refer to Γe ¼ 0.12t∗. Default parameters are specified in Table 1. These results have been obtained using
the AMEA impurity solver and originally published by the authors in https://link.aps.org/doi/10.1103/PhysRevB.107.155103. (Here U ¼ 8t∗.).

Table 1. Default values of the main parameters used in this article. All
values are in units of the hopping t∗.

U εc μ 1=β ωc vc g ωE

8 �4 0 0.05 0.6 0.055 0.4 0.6
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does not affect Ekin significantly, compare Figure 3b,d. As already
discussed in Ref. [1], both the J–F and Ekin-F curves collapse on
one another when they are plotted as function of the difference
F �U (not shown), signaling that the breakdown of the insulat-
ing phase depends on the value of the Hubbard U alone.

Once again we stress the qualitative agreement between the
results of Figure 3 and those presented in the previous work[23]

obtained within AMEA that we reproduce in Figure 4. However,
the two solvers do differ in that, as it can be shown with the help
of Figure 1c,g, the IPT approach fails to capture the resonance in
J at F � U=3. (We stress that this resonance can be distinguished
only when the electron dephasing rate Γe is small. For further
details about the role of Γe in dissipative Mott insulating systems
we refer to our recent work.[26,27]).

We see that such resonance is missing within the IPT solver in
both the SC and NSC schemes regardless of the value of U, see
Figure 3a,c. On the other hand, when using the AMEA one can
appreciate it, even though it tends to be smeared out by the SC
treatment, especially for small values of U, see Figure 4a,d.

Furthermore, the enhancement of the current J in between the
two main resonances F ¼ U=2 and U occurring in the SC treat-
ment within the IPT approach (see again Figure 3a,c) is even
more pronounced when the AMEA impurity solver is used, espe-
cially for small values of U, as one can see by comparing the
curves for the current J in Figure 4a,d.

Themain difference in the kinetic energy between the ITP and
AMEA impurity solvers lies in the overall sharper Ekin-F curves in
the latter approach, as one can see by comparing the results
shown in Figure 3 and 4. It is worth mentioning that the SC treat-
ment smears out the Ekin-F curves more when the AMEA solver
is employed especially for field strengths F � U=2.

3.1.3. Equilibrium Spectral Features

In this section, we briefly compare the electronic spectral fea-
tures at equilibrium, i.e., F ¼ 0.

Figure 5 shows the electron SF at F ¼ 0 within the (a) NSC
and (b) SC schemes for both the IPT and AMEA impurity solvers.
The IPT-resolved SF shows a much more pronounced quasi-
particle peak (QPP) at around ω ¼ 0[26] as U is reduced, together
with an underestimation of the width of the Hubbard bands
within both the NSC and SC schemes, as compared to the results
obtained with the AMEA impurity solver. On the other hand, at
U ¼ 8t∗ the height of the QPP in the IPT and AMEA approaches
is in quite good agreement, even though the Hubbard bands are
still narrower in the IPT scheme in both the NSC and SC
approaches.

The larger amount of in-gap states due to the QPP at ω ≈ 0 in
the IPT with respect to AMEA is common to all electric field

(a) (b)

(c) (d)

Figure 3. Current J within the a) NSC and c) SC scheme for selected values of the HubbardU as function of the applied field F. b,d) The kinetic energy Ekin
as function of F in the NSC and SC scheme, respectively, for the same values of the Hubbard U. Default parameters are specified in Table 1. Results have
been obtained using the IPT impurity solver. (Here Γe ¼ 0.12t∗.).
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strengths used in this article (not shown) and reveals the
systematic underestimation of the bandgap committed by the
IPT solver. This underestimation, in turn, explains the shifting
of the main resonances (at F ¼ U=2 and U ) in the current J
toward smaller values of the electric field discussed in
Section 3.1.1.

3.2. The Threshold Field

In models of Mott insulating systems, one expects the J–F curve
to display the threshold behavior[28,29]

J ∝ F expð�Fth=FÞ (4)

due to the opening of a gap that prevents the free motion of elec-
trons from the lower to the upper band. Equation (4) shows that
only when the applied field F gets past the threshold Fth can
electrons cross the bandgap and thus give rise to a steady-state
current. By determining the threshold Fth one can then infer the
magnitude of the effective bandgap of the model. (Here effective
is opposed to nominal gap, i.e., the value of the Hubbard
interaction U ) However, as it has been shown in previous
works investigating Mott insulators with a large bandgap[6,26]

(a) (b) (c)

(d) (e) (f)

Figure 4. Current J within a) NSC and d) SC scheme for selected values of the HubbardU as function of the applied field F. Black arrows in a) highlight the
progressive merge of the resonances at F ≈ U=3 and F ¼ U=2 as U is lowered, which is enhanced by the SC treatment. b,e) The double occupation d as
function of F for the NSC and SC scheme, respectively, while the kinetic energy Ekin is shown in (c) and (f ) for the same values of U. Default parameters
are specified in Table 1. These results have been obtained using the AMEA impurity solver and originally published by the authors in https://link.aps.org/
doi/10.1103/PhysRevB.107.155103. (Here Γe ¼ 0.12t∗.).

(a) (b)

Figure 5. Electron SF AðωÞ at equilibrium (F ¼ 0) for the a) NSC and b) SC scheme as function of selected values of the Hubbard U obtained within the
IPT and AMEA impurity solvers. Default parameters are specified in Table 1. (Here Γe ¼ 0.12t∗.).
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(The gap must exceed the characteristic energy scale provided by
the hopping t∗ by several times at least.), correlation effects are
responsible for resonances in the current J at F ≈ U=n, see also
Section 3.1 (Figure 1 and 2), so we may expect the existence of at
least two threshold fields.

It is worth recalling that these resonances are determined by
emergence of the Wannier–Stark[6,26] states in the local electron
SF which effectively allow electron tunnelling to the upper band
by bridging the bandgap and are sometimes referred to as
Landau–Zener excitations in other models.[1]

However, in this article, Fth identifies the field strength nec-
essary for the current J to reach nonnegligible values for the first
time, so Equation (4) should hold for F < U=2 at least for the IPT
solver as it cannot capture the whole of electronic correlation
(This is due to the fact that the electron SE is constructed from
a noninteracting GF, the Weiss field in Equation (17)), i.e., there
is no other resonance before field strengths of the order of half of
the bandgap.

This section is then devoted to the analysis of these aspects
limited to the comparison of the IPT and AMEA solvers. In fact,
given the simple model at hand, the study of the dependence of
the effective bandgap on the threshold Fth goes beyond the pur-
pose of this article: for a detailed study can be found in the pre-
vious work.[29,30]

We benchmark the results for the J–F curve obtained within
the IPT and AMEA impurity solvers for selected values of U
against a linear regression fit according to Equation (4).
Figure 6a shows the ratio J=F as function of 1=F in both SC
and NSC schemes obtained using the IPT : the values of the
inverse field used for the fit can be deduced by the extent of
the black line. As one can see by direct inspection, the curves
for all values of U exhibit a linear behavior for a wide range
of values of inverse field strengths up to F�1 ≈ 0.25t∗�1, which
correspond to the resonance at F ¼ U=2.

The results obtained with the AMEA impurity solver, instead,
are shown in Figure 6b, see corresponding inset for a close-up of
the region around F�1 ≈ 0.4t∗�1, corresponding to F ≈ U=3. The
most evident feature is the small kink occurring at F�1 ≈ 0.4t∗�1,
clearly visible especially for U > 5t∗, which is absent in the IPT
approach as it can be seen by comparing Figure 6a,b. Due to this

additional resonance, the linear regression fit within the AMEA
impurity solver can be performed over a far smaller range of val-
ues of F�1 and indeed there are two regions where linearity
holds: the first occurs for F�1 < 0.4t∗�1 and the second for
inverse field smaller than 0.25t∗�1, see again Figure 6b.

The threshold fields obtained with the linear regression fit are
shown in Figure 6c: the SC treatment basically does not affect the
results within the numerical accuracy, thus leaving the threshold
fields unaltered in both the IPT and AMEA approaches. It should
be noted that by performing the linear regression fit for
F�1 < 0.4t∗�1 as in this case, the IPT- and AMEA-resolved curves
are basically on top of one another. The AMEA scheme, however,
yields a slightly larger threshold Fth than the IPT one forU ¼ 8t∗,
see again Figure 6c. As expected, a larger Fth is required to com-
pensate for a larger bandgap (and hence a largerU ) and promote
particles across it. However, due to the extension of the Hubbard
bands, the effective gap, and thus the threshold field, is way
smaller than the Hubbard U so that a naive relation of the form
Fth ≈ U does not hold (see Figure 6c), as already argued in pre-
vious work.[29]

4. Conclusion

In this article, a Mott insulating system has been characterized in
terms of its conducting properties when subject to an external
static electric. Optical phonons and electronic heat bath provide
the relaxation pathways for the extra energy injected by the field,
so that the electron of the lattice can relax back to the valence
band and a steady-state current be established.

The IPT approach has been used as impurity solver to address
the steady state of the system. The corresponding results have
been benchmarked against those obtained within a much more
computationally costly impurity solver developed by the authors,
the so-called AMEA. It has been shown that the results obtained
employing the IPT qualitatively agree with those of the AMEA
impurity solver even though the former approach does not cap-
ture the resonances in the current characteristics that are directly
related to the correlated nature of the electrons of the lattice.
Being computationally cheaper, the IPT solver could be used

(a) (b) (c)

Figure 6. a) Ratio J=F as function of the inverse field 1=F for selected values of the HubbardU within the NSC and SC schemes obtained with IPT impurity
solver. b) The same quantity obtained within the AMEA: it is worth noticing the kink at F�1 ≈ 0.4t∗�1 (see inset) corresponding to the resonance at
F ≈ U=3 which is absent in the IPT scheme, see panel (a). Black straight lines in both (a) and (b) extend over the range of values of 1=F used for the linear
regression fit yielding the threshold field Fth as function of U shown in (c) for the two impurity solvers. The SC treatment has no effect on Fth, which is the
reason why panel (c) does not distinguish between the two cases. Default parameters are specified in Table 1. (Here Γe ¼ 0.12t∗.).
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to span the parameter space when investigating novel setups and
gather information about the interesting regions to be addressed
by a more reliable and computationally costly impurity solver.

5. Theoretical Framework

Green’s Function Formalism: This section contains a short recap of the
Green’s function (GF) approach, a versatile tool for the solution of
many-body problems in- and out-of-equilibrium,[31–35] which has been suc-
cessfully applied to several systems in condensed matter over the last
decade.[1–5,28,36,37]

Green’s Function Formalism: Electron Dyson Equation: The interacting
electron GF obeys the Dyson equation

G�1ðω, ε, εÞ ¼ G�1
0 ðω, ε, εÞ � ΣbathðωÞ � ΣðωÞ � Σe�phðωÞ (5)

with G0 denoting the GF corresponding to the noninteracting part of the
Hamiltonian in Equation (2). By Σbath, Σ, and Σe�ph, we denote the fermi-
onic heat bath, electron, and electron-phonon (e-ph) self-energy (SE),
respectively. By means of the DMFT and Migdal,[38,39] approximations
both Σ and Σe�ph in Equation (5) are local.

Every quantity X with an underline denotes the so-called Keldysh
structure, namely

X ≡ XR XK

0 XA

� �
(6)

with XR,A,K being the retarded, advanced, and Keldysh components where
XK ≡ X> þ X< and X≷ being the greater and lesser components. Each of
the Keldysh components in Equation (6) is then a matrix in the Floquet
indices.[23,25,26,40–42] However, given the time-translation invariant charac-
ter of the problem at hand,[23,25,26,41] only the diagonal components and
especially the time-averaged element X00 are nonvanishing (We recall that
due to the fundamental property of Floquet-represented matrices, i.e.,
XmnðωÞ ¼ Xm�n,0ðωþ nFÞ, F being the applied field, the diagonal entries
Xmn can be obtained by the X00 alone). For this reason, we will omit the
Floquet indices in the rest of the article.

Details concerning the computation of the e-ph SE Σe�ph within the
Migdal approximation can be found in our previous work.[23,26]

We recall the definition of the electron spectral function (SF)

AðωÞ ≡� 1
π
Im½GR

locðωÞ� (7)

where the local electron GF is given by

GR
locðωÞ ¼

Z
dε

Z
dε ρðε, εÞf½G�1ðω, ε, εÞ�Rg�1 (8)

f½G�1ðω, ε, εÞ�Rg�1 being the inverse time-averaged retarded compo-
nent of the GF in Equation (5).

In terms of the contour times z, z0, and in the Migdal approxima-
tion,[23,26,38,39] the e-ph SE reads

Σe�phðz, z0Þ ¼ ig2Glocðz, z0ÞDphðz, z0Þ (9)

and corresponds to the lowest-order expansion in the phonon GF Dph, the
form of which will be discussed below. Glocðz, z0Þ is the contour-times local
GF, the retarded component of which obeys Equation (8). The retarded
and Keldysh components of Equation (9) can be found in previous work
from the authors.[26]

In this article, we will use the wide-band limit approximation[43] for the
heat bath described by Ĥbath according to which ΣR

bath reads

ΣR
bathðωÞ ¼ �i

Γe

2
(10)

where Γe is the so-called electronic dephasing rate.[23] The Keldysh com-
ponent ΣK

bath is obtained by the fluctuation-dissipation theorem for fer-
mions, i.e., ΣK

bathðωÞ ¼ ½ΣR
bathðωÞ � ΣA

bathðωÞ� tanh ½βðω� μÞ=2� with β is
the inverse temperature and μ is the chemical potential of the bath.
Other important observables are the current J flowing in the direction
of the applied field and the kinetic energy Ekin of the electrons of the lattice:
the derivation of both these quantities can be found in previous works
from the authors.[23,26]

Green’s Function Formalism: Phonon Dyson Equation: The optical pho-
non branch consists of Einstein phonons coupled to an ohmic bath,[23,39]

the Dyson equation of which reads

DphðωÞ ¼ ½D�1
ph,EðωÞ � ΠbathðωÞ � Πe�phðωÞ��1 (11)

with the noninteracting retarded component of the Einstein phonon GF
given by

DR
ph,EðωÞ ¼ 2ωE=ðω2 � ω2

EÞ (12)

The Einstein phonon is coupled to an ohmic bath Ĥph,ohm, the real
retarded GF of which is obtained from the Kramers–Krönig relations,[39]

while the Keldysh component is given by the fluctuation-dissipation theo-
rem for bosons, i.e.

ΠK
bathðωÞ ¼ �2πiAbathðωÞ cothðβω=2Þ: (13)

We choose the following form for the ohmic bath density of states
(DOS) in Equation (13)

AbathðωÞ ¼
v2c
ωc

1

1þ ω�ωc
ωc

� �
2 �

1

1þ ωþωc
ωc

� �
2

2
4

3
5 (14)

where�πAbathðωÞ ≡ Im½ΠR
bathðωÞ�. In Equation (14), ωc denotes the ohmic

bath cutoff frequency, and vc is the hybridization strength to the ohmic
bath: we only stress that the DOS in Equation (14) is linear for
ω ∈ ½�ωc,ωc�.

According to the DMFT approximation, the polarization diagram Πe�ph

only depends on the local electron GF. Within the Migdal approximation,
the contour times polarization diagram[38,39] in Equation (11) reads

Πe�phðz, z0Þ ¼ �2ig2Glocðz, z0ÞGlocðz0, zÞ (15)

where the factor 2 accounts for spin degeneracy. We denote the scheme in
which Πe�phðz, z0Þ is set to zero as non-self-consistent (NSC), while within
the self-consistent (SC) treatment, the phonon SE in Equation (15) is non-
vanishing. The real-time components of Equation (15) have been derived
in previous work from the authors.[23]

IPT Impurity Solver and DMFT Loop: The IPT impurity solver is based on
the perturbative expansion of the electron SE in terms of the Weiss field,[17]

namely

G�1
0 ðt, t0Þ ≡ g�1

0
ðt, t0Þ � Δðt, t0Þ (16)

g
0
being the noninteracting GF of the isolated site, the retarded com-

ponent of which (in frequency domain) reads gR0 ðωÞ ¼ ðω� εcÞ�1. The
quantity Δ in Equation (16) is the hybridization function of the system,
encoding the effects of all the other lattice sites in a mean-field
fashion.[11–13] The real-time components of the electron SE can then be
written as

Σ≶ðt, t0Þ ¼ U2G≶
0 ðt, t0ÞG≷

0 ðt0, tÞG≶
0 ðt, t0Þ (17)

The retarded and Keldysh components of the electron SE can be
obtained from Equation (17) as

ΣRðt, t0Þ ¼ θðt� t0ÞðΣ>ðt, t0Þ � Σ<ðt, t0ÞÞ
ΣKðt, t0Þ ¼ Σ>ðt, t0Þ þ Σ<ðt, t0Þ (18)
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At the steady-state all quantities in Equation (18) are dependent on the
difference t� t0 alone, hence their Fourier transform in frequency domain
is straightforward. The retarded and Keldysh components of the Weiss field
then read

GR
0 ðωÞ ¼

1
ΣRðωÞ þ G�1,R

loc ðωÞ ,

GK
0ðωÞ ¼ �jGR

0 ðωÞj2 ΣKðωÞ � GK
locðωÞ

jGR
locðωÞj2

� � (19)

We stress that at half-filling the Hartree term U=2 must be explicitly
added to ΣRðωÞ before computing the quantities in Equation (19).
The main steps of DMFT employing the IPT as impurity solver are:
1) Guess ΣðωÞ, Σe�phðωÞ, and Πe�phðωÞ; 2) Compute GlocðωÞ and

DphðωÞ as in Equation (8) and (11); 3) Extract G≶
0 ðωÞ ¼ ½GK

0ðωÞ∓ðGR
0 ðωÞ �

GA
0 ðωÞÞ�=2 from Equation (19); 4) Fourier-transform G≶

0 ðωÞ to get Σ≶ðt, t0Þ
as in (17); 5) Fourier-transform GlocðωÞ and DphðωÞ, compute ΣR=K

e�phðt, t0Þ
and ΠR=K

e�phðt, t0Þ; and 6) Update ΣðωÞ, Σe�phðωÞ, and Πe�phðωÞ via back
Fourier transform.

The steps (2) to (6) are then repeated until convergence.
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