
On the Development of Smart Adaptive User Interfaces for Mobile

e-Business Applications
Towards Enhancing User Experience – Some Lessons Learned

Andreas Holzinger, Michael Geier and Panagiotis Germanakos
Research Unit Human–Computer Interaction, Institute for Medical Informatics, Statistics and Documentation,

Medical University Graz, Graz, Austria

Keywords: Adaptive User Interfaces, Smart Adaptation, Mobile e-Business Applications, Performance.

Abstract: Mobile end users usually work in complex and hectic environments, consequently for mobile e-Business

applications the design and development of context aware, smart, adaptive user interfaces is getting more

and more important. The main goal is to make the user interface so simple that the end users can concentrate

on their tasks – not on the handling of the application, the main challenge is its adaptation to the context. A

possible solution is smart adaptation. Consequently, developers need to know the limits of both context and

systems and must be aware of mobile end users different interaction. In this paper, we follow the hypothesis

that simple user interfaces enhance performance and we report about some lessons learned during the

design, development and evaluation of a smart, adaptive user interface for an e-Business application.

1 INTRODUCTION

For mobile applications, there is growing

recognition for intelligent user interfaces offering

products that are highly attuned to the user’s ever

changing context (Marca et al., 2012), (El-Bakry et

al., 2010). Consequently, User interfaces (UIs) have

become an essential part in the development of

mobile applications (apps). End users expect not

only well designed but also intuitively operable and

simple and at the same time powerful UI’s. Current

smartphones and tablets, for example, often provide

a large touchscreen for most of the user input. A

successful UI must satisfy the expectations of the

end users, when they intuitively touch the screen.

Mobile devices are meanwhile standard

equipment for mobile workers, who are increasingly

requiring access to services similar to their corporate

services as they move to new locations, without

having to configure their working environment

explicitly (Badidi and Esmahi, 2010), i.e. e-Business

applications must be context aware and able to adapt

to changing environments (Abowd et al., 1999), (van

Sinderen et al., 2006).

However, mobile workers are often in very

complex and hectic work places (Holzinger and

Errath, 2007) and for those who work outdoors,

potentially under rough conditions, it is particularly

important to be supported by easy, quick and

intuitive UI. Moreover, such workers are not

necessarily computer literate; most of them from

small and medium enterprises of high heterogeneity

(Decker et al., 2006). In such areas the main

challenge is to design the user interface in such a

simple manner, that the end user can completely

concentrate on his/her task and not the device; at the

same time not losing functionality.

What makes a UI simple? Expert end users might

feel patronized by too simple user interfaces which

hide advanced features, where at the same time

novice end users are confused, overwhelmed and

distracted by the complexity. Consequently,

“simple” does not necessarily have the same

meaning for all types of end users. Some might

consider a simple UI as one which does not hide any

features; others might consider a simple UI as one

which does hide unimportant features.

One possible solution for this challenge is on

smart adaptation (El-Bakry et al., 2010). Adaptive

user interfaces are user interfaces which are

modified dynamically in a way that the special

demands/requirements/needs of individual end users

are satisfied. Adaptive user interfaces can be used to

present the end user a UI which is tailored to the

205Holzinger A., Geier M. and Germanakos P. (2012).
On the Development of Smart Adaptive User Interfaces for Mobile e-Business Applications - Towards Enhancing User Experience – Some Lessons
Learned.
In Proceedings of the International Conference on Data Communication Networking, e-Business and Optical Communication Systems, pages 205-214
DOI: 10.5220/0004067002050214
Copyright c
 SciTePress

special needs of the end user (Germanakos P., 2009).

Smart adaption means that adaptive user interfaces

should not arbitrarily make certain parts less

accessible by hiding functions in submenus. Instead

the system should take the context into account for

deciding which parts of the UI are currently needed

and which are not.

The term context has many different meanings

(Yuan-Kai, 2004, Schmidt, 2000) and includes the

end user’s experience, special abilities of the users,

current needs and feelings as well as environmental

factors (surrounding light, noise, location, …) and

the system’s or the device’s current state; (Schmidt,

2000) called the latter “situational context”.

Often the importance of time is neglected, when

referring to the context. According to Schmidt et al.

(1999) the term context is defined as “that which

surrounds, and gives meaning to something else”.

All relevant contextual factors should be taken into

account when designing adaptive user interfaces.

For getting information about the situational

context a large amount of sensors is available in

current smartphones and tablet computers. However,

one of the big challenges in this area is to determine

the variables used as basis for developing different

adaptions (Germanakos P., 2009). Consequently, the

designer needs to know the limits of context and

systems and that mobile end-users interact

differently (Holzinger and Errath, 2007).

Today location is mostly used for determining

the environmental context. But location-awareness is

only one part of context-awareness (Schmidt et al.,

1999). Combined data from different sensors can

give a more holistic understanding of the current

context (Gellersen et al., 2002).

The goal of applying smart context-based

adaption is to enhance the end-users performance.

Performance usually relates to the speed and the

accuracy a certain task can be accomplished by the

end-user. In other words enhancing the performance

of end users means that end users are able to

perform a task in a less amount of time and/or with

fewer errors. But the key question is: can simpler

user interfaces which were created using smart

adaption enhance the performance of end users?

The assumption is that smart adaption for

simplifying user interfaces which meet the special

requirements of the current context does enhance the

performance and try to support this statement by

conducting an experiment. Hiding unused fields in

forms or adapting the form to the current context

(e.g. pre-selection and adaption of the expected

format of zip-code fields based on the device’s

location) might speed up data entry, for example.

Within this paper we compare the performance

and the acceptance of an adaptive user interface

(AUI) to a non-adaptive user interface (non-AUI).

As contextual information the application’s state is

taken into account. Based on previous inputs the

application’s state is changed.

The goal of this paper is to point out the

advantages and disadvantages of smart adaption and

the special importance of smart adaption in mobile

applications. The paper also gives an overview of

the current situation in terms of context-sensitive

UIs in the area of smartphone and tablet applications

from the lessons learned during cooperation with an

e-Business company.

2 BACKGROUND AND RELATED

WORK

There are many potential sources for collecting

contextual information. Regarding the state of the

application or the user’s input can be one piece of

the puzzle. Another piece includes the

environmental context. Current smartphones and

tablet computers have a large amount of different

sensors to “sense” their environment, starting from

location sensors and accelerometers up to

temperature sensors and light sensors.

However, one challenge is to give the bare sensor

data a meaning (Schmidt et al., 1999). What does it

mean if a brightness sensor reports 20 per cent

lightness and an acoustic noise sensor reports a

sound pressure level of 20 dB? These values must be

translated to a higher-level contextual meaning such

as “indoors/outdoors”, “engaged in conversation”,

“in a meeting” so that the application can react

accordingly. Korpipaa et al. (2003) present a

framework for the Symbian platform which

implements such a mapping from low-level sensor

date to a high-level representation of context.

Instead of just using snapshots of the current

sensor data analysing time series of sensor data can

be useful for forming higher-level contexts

(Himberg et al., 2001).

2.1 Sensor Usage

Looking at the permissions Android applications

request, we can see that on a phone with 237

different, randomly selected apps for different

purposes (including games) 69 (29,1 %) require

permissions for accessing fine or coarse location

data such as GPS data or location data from the

ICE-B 2012 - International Conference on e-Business

206

cellular network, 29 (12,2 %) access the camera for

recording images (including barcode scans) or

videos, 13 (5,5 %) access the Bluetooth module, 12

(5,1 %) record audio, four (1.7 %) require access to

NFC technologies (RFID reader) and 203 (85,7 %)

require full access to the internet. However, we have

to keep in mind that some apps need the internet

access permission just for downloading

advertisement. This means that the number of

applications actually needing internet access for

their main functionality is slightly lower.

The fact that more than 29 % of the tested apps

access location data supports the statement by

(Schmidt, 2000) that location is a concept that is

well understood. Apps for displaying the public

transport schedule, for example, make use of the

location data for create an ordered list of nearest bus

stops. Within the study NFC was mostly used for

scanning RFID tags which inform the app about the

situational context. Using fixed tags in different

rooms, for example, informs the app in which room

the device currently is. This can be used, for

example, to mute the phone when entering the

conference room. Krishnamurthy et al. (2006) show

the possibilities of the NFC technology in

combination with mobile phones.

The camera and audio recording devices are

often used for replacing manual text input. Avoiding

manual text input is recommended wherever

possible as applications that require text input annoy

users (Longoria, 2001).

An Internet connection in combination with

sensors can be used to download more information

about the current context, such as information about

the current location, and therefore may improve the

adaption of the user interface.

A similar analysis of the usage of sensors was

made by investigating Austria’s 27 top-ranked

Android applications (excluding games). The

popularity ranking is determined by Google using a

secret ranking algorithm. Certainly, the ranking is

influenced by the user's current location. Therefore

Austria-related apps could be found in the ranking,

such as the OEAMTC app (Austrian automobile

club) or the Krone.at or Kleine Zeitung app (the app

of popular Austrian newspapers). Other investigated

apps include YouTube, Google Maps, Facebook,

Skype, WhatsApp Messenger, Barcode Scanner,

Shazam, wetter.com, TuneIn Radio and the IMDb

app. One third of the investigated apps requires or

allows using a user account in order to receive

personalized information. More than 75 per cent of

the investigated apps use an internet connection for

their main functionality. This means that apps which

try to access the internet just for downloading

advertisement did not count. More than 60 per cent

of the apps using the internet are not working at all

without network access. The remaining apps using

the internet are usable without internet connection,

but often only with limited functionality or cached

data.

22 per cent of the investigated apps use the geo-

location hardware capabilities either for their main

functionality (map applications) or for prefilling

input controls so that the end user does not have to

type or select his/her current location by

himself/herself. 18.5 per cent of the apps use the

built-in camera to scan barcodes or QR tags in order

to speed up user input.

Buttons, Lists, Text input controls are the most

frequently used controls in current popular

smartphone applications. Tabs are often used to

structure screen contents. Context menus and

gestures are less frequently used. One reason might

be that they are often overlooked by the end-users as

there is no visual clue that they are available.

2.2 Adaptive versus Adaptable Uis

We have to differentiate between adaptive and

adaptable user interfaces. Adaptable UIs are adapted

by the software developers at design or

implementation time manually while adaptive

software adapts itself at runtime automatically based

on the dynamic user profile and contextual data

gained from the end-user or the environment.

Easily adaptable UIs make it possible for

enterprises to customize the UI of an application

without extra effort such as time and cost. Through

the process of customization, enterprise software is

built on a framework which allows creating

adaptable UIs tailored to the needs of the customer

by combining existing components of the whole

system. In addition, mash-ups (i.e. web application

hybrids) allow end-users to customize a UI by

re-combining existing UI components (widgets) to a

more personalized UI. Such a customized UI allows

end users to focus on their special needs. Taptu

(http://www.taptu.com) is a popular social network

aggregation application which makes use of UI

mash-ups.

On the other hand, adaptive UIs enable the

provision of dynamic and simpler UIs appropriate

for the current context of use. As stated before, the

hypothesis is that simple UIs enhance performance.

But what does performance exactly mean and how

can performance be measured on mobile devices?

Better performance not only means less time in

On the Development of Smart Adaptive User Interfaces for Mobile e-Business Applications - Towards Enhancing User
Experience - Some Lessons Learned

207

execution of a certain task, but also that a lower

error rate will occur accordingly. On mobile as well

as on desktop devices the performance can be

measured by the time needed for a certain task to be

performed as well as to what extent the task was

accomplished. One of the main challenges when

measuring performance on mobile devices is the

screen and input capturing because of the lack of

tools, computational power and storage capacity.

Also, touchscreen features are harder to track than

other input methods such as the ones from the

keyboard. Usually adaptive UIs are designed in a

modular way where single independent components

can be combined forming a totally new end-product.

2.3 Context-aware Software

The idea of context-awareness is not new. Schilit et

al. (1994) introduced context-awareness for

ubiquitous computing. However, the capabilities of

mobile devices have changed drastically since 1994.

Nowadays smartphones with powerful

processors and large, bright touch screens can be

found in the pockets of many professionals, students,

and even children. Software providing different

modes for different user groups is available, such as

ArcheoApp (Holzinger et al., 2011), which provides

modes for students, tourists and children as tourists

have other needs than people who use the app for

learning. The topic context awareness and adaptation

in mobile learning is also discussed in Yuan-Kai

(2004). Schmidt (2000) describe an application for

PalmPilot called Context NotePad. They also define

the term implicit human-computer interaction which

describes the concept of interaction based on

situational context rather than on explicit GUI

manipulation.

Comprehensive user profiles where also visual,

cognitive, and emotional-processing parameters are

included may improve the performance of adapted

Web-based content. Evaluation results demonstrate

the effectiveness of incorporating human factors in

Web-based personalized environments (Germanakos

et al., 2009).

Text input is widely used for interacting with

software although it should be avoided (Longoria,

2001). Therefore, it should be made less annoying as

possible. Adaptive soft (on-screen) keyboards, such

as the default keyboards used by Android and iOS,

support text entry by changing their buttons based

on the expected text input type. For enabling this

feature, software developers must define an expected

input type for text boxes (e.g. “text”, “email”,

“number”). Based on this contextual metadata the

keyboard layout is adapted in a way that symbols

which are not likely to be used are replaced by other,

more likely needed symbols or characters. This

works not only for native mobile applications but

also for web pages using HTML5.

According to the “engadget” Weblog (Melanson,

2010) Microsoft developed a hardware keyboard

which has an adaptive keyboard layout, similar to

the mentioned soft keyboards on current

smartphones and tablets.

3 EXPERIMENT

An experiment was designed and conducted to

measure the performance and the acceptance of an

adaptive user interface in contrast to a non-adaptive

user interface on mobile devices in order to test the

hypothesis that that simpler user interfaces created

by smart adaption enhance the performance of end

users (Figure 1). Adaptive systems employ adap-

tivity with various techniques, i.e. manipulating the

link structure or by altering the presentation of

information, based on a basis of a dynamic

understanding of the individual user, represented in

an explicit user model. However, adaptation effects

vary from one system to another (i.e. educational

hypermedia, on-line info systems, retrieval systems,

institutional hypermedia and systems for managing

personalized view in information spaces). In the

current study we have utilized adaptivity techniques

under the following considerations: The adaptation

is made by regarding the current state of the

application, i.e. the previous input. The input button

array is adapted by reducing the selection space, i.e.

only offering appropriate options in current context

(Schmidt, 2000).

For the experiment a smartphone application

named AdaptiveCalc for the Android operating

system was developed. The application is a

mathematical calculator for basic mathematical

expressions. The user interface (Figure 1) mainly

consists of (a) a TextView (an area to display text)

for displaying the entered mathematical expression

at the top of the screen, (b) another TextView for

displaying the result and (c) an array of buttons

which - when pressed – append the pictured number,

function, operator, or symbol to the mathematical

expression and display the new expression in (a). If

the currently displayed expression is valid (e.g.

balanced parenthesis, all binary operators having

two operands, and other criteria) the result is

calculated and displayed immediately in (b).

Otherwise “Invalid Expression” is displayed.

ICE-B 2012 - International Conference on e-Business

208

Figure 1: Non-adaptive (left screenshot) and adaptive

(right screenshot) user interface of AdaptiveCalc.

Two different versions of the button array area

(c) were implemented: a non-adaptive version and

an adaptive version. On first start of the application

a random UI is selected. In a message box the user

can decide by unchecking a checkbox not to

participate in the experiment. In the preferences

screen the user can choose to switch the user

interface from adaptive to non-adaptive or vice-

versa.

There was a choice to be made when designing

the experiment whether to let the user make the

decision of choosing the user interface or to disallow

the change of the UI. The reasons for the decision to

allow the user to change the UI were the following.

First, by letting the user choose the user’s UI

preferences can be found out. If users use a certain

UI more often it is likely that the more often used UI

is the one which is better accepted by the users.

Secondly, as the app should be distributed via the

Android Market, the goal was to make the app

attractive for as many potential end users as

possible. Restricting the functionality to one UI,

however, does not support the attractiveness of an

application.

Using this model of letting the end-user choose

the desired UI might, however, bias the performance

measurements. The knowledge of using the adaptive

or the non-adaptive user interface might influence

the behaviour of the end users and lead to unnatural

typing behaviour.

The goal of the experiment is to find out the

favoured UI by the end users and to take and to

compare performance measures, keeping in mind the

biasing issues mentioned above.

The adaptation is the modification of the

keyboard layout in AUI mode, depending on the

current mathematical expression. More precisely,

only the last character (digit, operator, symbol) of

the current mathematical expression is used for

determining what keyboard layout to show. Only

certain characters (digits, operators, symbols) can

follow certain characters.

3.1 Test Users

The application was published on the Android

market. Anyone interested could and still can

download and use the application. Measurements are

taken automatically during normal operation of the

calculator. These measurements are sent to a web

service via Internet which stores the collected results

for subsequent analysis.

End users are informed about the background

measurement activities via the app description and

can disable the measurements without affecting the

features of the calculator.

3.2 Collecting Results

The following measurements are taken: Pressed

buttons, time between button presses, selected mode

(adaptive or non-adaptive), and result of the

calculation.

A string of the form

<uimode>(;<ms>:<button>)+;<ms>;<result>

is recorded for each session. A session starts when

bringing the calculator activity into view or when

starting a new calculation (expression) and ends

when the activity is left by the user or when the

entered expression is cleared. <uimode> is the

placeholder for a string representing the current

mode (auiport (AUI portrait), auiland (AUI

landscape), or nonaui (non-AUI)), <button> is a

string representing the pressed button and <ms> is

the timestamp of the key press. The last <ms>

represents the time of clearing the expression.

<result> is either the string ok or nan (not a

number).

After a session has ended, the recorded session

measurement string is sent to the web service if a

network connection is available. Otherwise, the

string is stored in a local database on the device for

later transmission. The next time the app tries to

send a session measurement string to the web

service it also checks the local database for

previously unsent data.

Within a time period of approximately one

month 408 single calculations (sessions) were

recorded. For analysis of the results all 408 single

session strings (records) were separated into four

groups. The first group only contains records from

the adaptive user interface (portrait) version; the

On the Development of Smart Adaptive User Interfaces for Mobile e-Business Applications - Towards Enhancing User
Experience - Some Lessons Learned

209

second group only contains records from the

adaptive user interface (landscape) version; the third

group only contains records from the non-adaptive

user interface version; the fourth group contains

invalid records.

Then, certain values were calculated from the

collected records in order to evaluate the end-user’s

performance and acceptance of the user interface

types.

As performance measures the average time

between button presses was calculated for the single

user interface types as well as the error rate.

For evaluating the user acceptance interviews

were conducted and the number of calculations

made with each user interface was counted.

4 RESULTS

Both the user acceptance and the performance of

each user interface were evaluated during the

experiment. The acceptance was evaluated by

interviews and by recording the number of

calculations made with each of the user interfaces.

The performance was measured by calculating the

average time between button presses (TBBP) on the

one hand and by calculating the error rate by

counting the number of clear button presses on the

other hand.

Figure 2 and Figure 3 show the cumulated values

Average of the medians of the TBBPs and Error rate

for the AUI (portrait) and the non-AUI. The figures

illustrate that after about 240 calculations both

values stabilized around the presented values (i.e.

the cumulated values after 408 calculations).

Figure 2: Time between button presses.

Figure 3: Error rate (clear presses / total number of button

presses).

4.1 User Acceptance

4.1.1 Interviews

Interviews with six test users were conducted for

gaining information about the strengths and the

weaknesses of the single user interfaces. Before the

interviewing the six test users three of the test users

were asked to do several calculations with the non-

adaptive UI, the other three test users were asked to

do the same calculations with the adaptive UI

(Figure 4). When finished, the UI was switched and

the users were asked to do several more calculations

with the other user interface. The predefined

calculations included simple summations as well as

calculations using functions.

Figure 4: Test user calculating with AdaptiveCalc.

During the interviews the users were asked to

describe which user interface they liked more and

why. Four users reported to prefer the AUI, one user

reported to prefer the non-AUI, and one did not

decide for one certain UI. Table 1 summarizes the

thoughts of the users.

500

600

700

800

900

1000

1100

1200

1300

40 80 120 160 200 240 280 320 360 400

Average of the medians of the TBBPs

AUI (port)

non-AUI

0

0,02

0,04

0,06

0,08

0,1

0,12

4
0

6
0

8
0

1
0

0
1

2
0

1
4

0
1

6
0

1
8

0
2

0
0

2
2

0
2

4
0

2
6

0
2

8
0

3
0

0
3

2
0

3
4

0
3

6
0

3
8

0
4

0
0

4
0

8

Error rate

AUI (port)

non-AUI

ICE-B 2012 - International Conference on e-Business

210

Table 1: Summary of the user’s answers during the

interview.

AUI (+) The buttons are larger 6

AUI (+) I like that you only see what is

currently relevant.

4

AUI (-) It is confusing that the buttons

(dis)appear.

2

Non-AUI (+) All buttons are always visible

– it is clear what functions are

available.

2

Non-AUI (-) Buttons are quite small. 2

4.1.2 Number of Calculations

During the test period 408 calculations were

reported to the server. 198 of the counted

calculations were made with the AUI in portrait

mode (8 in landscape mode) while 133 calculations

were made with the non-AUI (only portrait mode

possible). 69 calculations were filtered out because

of very short and/or invalid calculations (for

example when users only entered an opening

parenthesis or only one number). These numbers are

illustrated in Figure 5.

Including the invalid calculations 249 sessions

were started in AUI (portrait) mode (61 %), 9 in

AUI (landscape) mode (2.2 %), and 150 in non-AUI

mode (36.8 %).

As on the first run of the application the user

interface was selected randomly with an equally

distributed likelihood, it can either be concluded that

users tend to switch to and stay in the AUI mode or

that the users which started with the AUI had

significantly more to calculate or simply preferred

calculating with AdaptiveCalc than with another

calculator.

Figure 5: Total number of calculations with AdaptiveCalc.

4.2 Performance

As performance measures both the error rate e and

the typing speed was used. The error rate e was

calculated in number of clear button presses |c|

divided by the total number of button presses |b|.

 (1)

The typing speed s was determined by

calculating the average of the medians of the times

between single button presses b of each single

recorded calculation Ri.

∑ ̃

 (2)

where

 (3)

and ̃ refers to the median function.
 refers to

the time when button press j was made during a

calculation R. b1 denotes the first button press within

one calculation, denotes the last button press

within one calculation. The difference

 is

the time between single button presses (TBBP) bj

and bj+1. One single calculation is also called record

and identified by a unique index i. |R| represents the

total number of calculations (records).

Using the median has the advantage that spike

values are flattened. Spike values might result from

thinking times or waiting times of the end users.

These times must not be considered in the

performance evaluation.

The time between single button presses was used

as performance measure because the single tasks and

therefore the total time needed for one calculation

differed as there were no predefined tasks to

accomplish for the end users.

The reason for using the median for the

calculation of the times between the button presses

within one record was to filter out spikes (Figure 6).

Spikes of large values are often caused by

thinking times or reading times for copying values

from paper sheets. Additionally, very large TBBPs

(> 5000 ms or 3500 ms, see later) were ignored.

Very large TBBPs are associated with long thinking

times or breaks by the user but certainly not with

looking for certain buttons.

Incomplete calculations were filtered out. The

following example shows a record of an incomplete

calculation. The user only entered an opening

parenthesis and then pressed the clear button two

times. “nan” (not a number) in the end of the line

198

133

8 69

Total number of calculations

AUI (portrait)

non-AUI

AUI (landscape)

not considered

On the Development of Smart Adaptive User Interfaces for Mobile e-Business Applications - Towards Enhancing User
Experience - Some Lessons Learned

211

Figure 6: Comparison of Average and Median of TBBPs.

indicates that there was no valid result for the

corresponding calculation.

auiport;1328699930271:(;1328699931276:[clear];13
28699931486:[clear];1328699931487;nan

4.2.1 Typing Speed

The average times of the median times between

single button presses (TBBPs) were calculated as

described above. The results were 836.1 ms for AUI

(portrait) mode, 947.5 ms for non-AUI mode (Figure

7). The values for AUI (landscape) mode are not

included as there were only eight results collected.

In average the TBBPs were 111 ms lower in AUI

mode than in non-AUI mode. Therefore an average

calculation including 10 button presses is performed

more than one second faster in AUI mode than in

non-AUI mode. A cut-off of 5000 ms means that all

TBBPs larger than 5000 ms were ignored as larger

TBBPs can be considered as thinking times or

calculation breaks.

Figure 7: Average medians of TBBPs (cutoff at 5000 ms).

When using a lower cutoff of 3500 ms the values

were 803.4 ms for AUI (port) and 917.9 ms for non-

AUI.

4.2.2 Error Rate

The error rate (number of clear button presses

divided by total number of button presses) was

slightly higher in AUI mode: 0.069 in AUI (portrait)

mode and 0.062 in non-AUI mode (Figure 8). This

means that on 100 button presses the clear button is

– in average – pressed 6.9 times in AUI mode, while

in non-AUI mode clear is only pressed 6.2 times.

Figure 8: Clear presses per total button presses.

Looking at the number of “perfect calculations”

(calculations where no “clear” button press was

involved, except for clearing the whole calculation

in the end of the calculation) the AUI (portrait) UI

has 83.33 % perfect calculations while the non-AUI

only has a number of 79.7 % perfect calculations

(Figure 9).

Figure 9: Perfect calculations.

0 ms

1000 ms

2000 ms

3000 ms

4000 ms

5000 ms

1 8 15 22 29 36

Comparison of Average and Median
of TBBPs

TBBP

Average

Median

780

800

820

840

860

880

900

920

940

960

AUI (portrait) non-AUI

Average medians of TBBPs
(cutoff at 5000 ms)

0,05

0,055

0,06

0,065

0,07

AUI (portrait) non-AUI

Clear presses per total
button presses

77,00%

78,00%

79,00%

80,00%

81,00%

82,00%

83,00%

84,00%

AUI
(portrait)

non-AUI

Perfect calculations

ICE-B 2012 - International Conference on e-Business

212

4 DISCUSSION

The results of the experiment indicate that there is a

higher acceptance for the AUI amongst the test users

than for the non-AUI. Additionally the overall

typing speed with the AUI was higher than with the

non-AUI.

One limitation of this study is the assumption,

that the relative clear button press count is higher in

the non-AUI mode – this was not validated. The

results for the relative clear button press count are

even slightly higher for the AUI. A possible

correlation between the higher typing speed and the

slightly higher error rate is subject for further

investigation.

5 CONCLUSIONS

Mobile UIs must be friendlier enabling active

involvement (information acquisition), giving the

control to the user (system controllability), providing

easy means of navigation and orientation

(navigation), tolerating users’ errors, supporting

system-based and context-oriented correction of

users’ errors, and finally enabling customization of

multi-media and multi-modal UIs to particular user

needs. Adaptivity is a particular functionality that

embraces the abovementioned considerations by

alleviating navigational difficulties by distinguishing

between interactions of different users within the

information space.

In this regards, this paper describes a smartphone

application (a mathematical calculator for basic

mathematical expressions), namely AdaptiveCalc,

developed for the Android operating system. The

application employs two UIs states, one adaptive

and one non-adaptive version, and has been

evaluated by users using a within approach. The

results of the experiment suggest that the overall

acceptance of the simple AUI is better than the

acceptance of the complex non-AUI. Also the typing

speed when using the AUI was better in average.

The overall performance of the AUI at least was not

worse than when using the non-AUI.

6 FUTURE WORK

For further investigations, we can think of more

sophisticated adaptions, such as adaptions based on

the application’s context, i.e. adaptions based on

other apps the user installs on his/her device. Users

who also use apps for measuring distances, for

example, might require more frequent access to

trigonometric functions than the average user.

In future work it is not only planned to address

the previously mentioned issues with the

experiment, but also to apply the described approach

in more complex environments. Furthermore, it is

planned to evaluate the current study by comparing

the current adaptive approach with traditional

mobile applications to show the validity of the

experiment.

More open questions include how can we create

effective and useful mobile systems from a user-

centric perspective focusing on user goals, attitudes

and behaviours? Furthermore, how can we keep UIs

simple given the increasing complexity of

information spaces and contexts? Next steps of this

research include further experimentation with the

current application in order to extract more concrete

results with regards to the adaptivity control factors

and the evaluation metrics utilized. Furthermore, the

incorporation of human factors into the whole

process of mobile adaptive UIs design, i.e. based on

the theory of individual differences, reconstructing a

content based on users’ cognitive styles (i.e.

verbalizer/imager, wholist/analyst) can help them to

absorb information faster and more efficiently

regulating at the same time their cognitive load.

Therefore, it is a promising challenge to identify

design guidelines and adaptation mechanisms that

will help us to create UIs adapted to users’ unique

cognitive typologies, minimizing the complexity (in

terms of content presentation or navigation) and

increasing usability during a task execution time. In

such a way, users will be able to maintain the

expected performance and accuracy while at the

same time enhancing their experience.

ACKNOWLEDGEMENTS

We are grateful for the support of Boom Software

AG, especially to Mr. Joachim Schnedlitz for the

industrial cooperation and funding of our research.

REFERENCES

Abowd, G., Dey, A., Brown, P., Davies, N., Smith, M. &

Steggles, P. 1999. Towards a Better Understanding of

Context and Context-Awareness. In: GELLERSEN,

H.-W. (ed.) Handheld and Ubiquitous Computing,

LNCS 1707. Heidelberg, Berlin: Springer.

On the Development of Smart Adaptive User Interfaces for Mobile e-Business Applications - Towards Enhancing User
Experience - Some Lessons Learned

213

Badidi, E. & Esmahi, L. A quality of context driven

approach for the selection of context services. ICE-B

2010, 2010 Athens. IEEE, 1-6.

Decker, M., Schiefer, G. & Bulander, R. 2006. Specific

Challenges for small and medium-sized enterprises

(SME) in m-business: A SME-suitable framework for

mobile services. International Conference on E-

Business (ICE-B 2006). Setubal: INSTICC Press.

El-Bakry, H. M., Riad, A. M., Abu-Elsoud, M., Mohamed,

S., Hassan, A. E., Mastorakis, N., Kandel, M., Zadeh,

L. & Kacprozyk, J. Adaptive User Interface for Web

Applications. WSEAS International Conference

Proceedings Recent Advances in Computer

Engineering, 2010. WSEAS, 190-211.

Gellersen, H. W., Schmidt, A. & Beigl, M. 2002. Multi-

Sensor Context-Awareness in Mobile Devices and

Smart Artifacts. Mobile Networks and Applications, 7,

341-351.

Germanakos, P., Tsianos, N., Lekkas, Z., Mourlas, C. &

Samaras, G. 2009. Realizing Comprehensive User

Profile as the Core Element of Adaptive and

Personalized Communication Environments and

Systems. Comput. J., 52, 749-770.

Germanakos P., T. N., Lekkas Z., Mourlas C., Belk M., &

Samaras G. 2009. Towards an Adaptive and

Personalized Web Interaction using Human Factors.

In: ANGELIDES, M. (ed.) Advances in Semantic

Media Adaptation and Personalization. Taylor &

Francis Group.

Himberg, J., Korpiaho, K., Mannila, H., Tikanmaki, J. &

Toivonen, H. T. T. Time series segmentation for

context recognition in mobile devices. Data Mining,

2001. ICDM 2001, Proceedings IEEE International

Conference on, 2001 2001. 203-210.

Holzinger, A. & Errath, M. 2007. Mobile computer Web-

application design in medicine: some research based

guidelines. Universal Access in the Information

Society International Journal, 6, 31-41.

Holzinger, K., Lehner, M., Fassold, M. & Holzinger, A.

Archaeological Scavenger Hunt on Mobile Devices:

From e-Education to E-Business - A triple adaptive

mobile application for supporting Experts, Tourists

and Children. ICETE 2011 8th International Joint

Conference on e-Business and Telecommunications,

2011 Sevilla, Spain. SciTec, 131-136.

Korpipaa, P., Mantyjarvi, J., Kela, J., Keranen, H. &

Malm, E. J. 2003. Managing context information in

mobile devices. Pervasive Computing, IEEE, 2, 42-51.

Krishnamurthy, S., Chakraborty, D., Jindal, S. & Mittal, S.

Context-Based Adaptation of Mobile Phones Using

Near-Field Communication. Mobile and Ubiquitous

Systems - Workshops, 2006. 3rd Annual International

Conference on, 17-21 July 2006 2006. 1-10.

Longoria, R. 2001. Designing Mobile Applications:

Challenges, Methodologies, and Lessons Learned.

Usability Evaluation and Interface Design.

Marca, D., Bulander, R., Kruslin, C., Shishkov, B. &

Sinderen, M. 2012. e-Business challenges and

directions: important themes from the first ICE-B

workshop. e-Business and Telecommunications, 3-35.

Melanson, D. 2010. Microsoft Adaptive Keyboard

prototype debuts at center of UIST Student Innovation

Contest [Online]. Melanson, Donald. Available:

http://www.engadget.com/2010/08/12/microsoft-

adaptive-keyboard-prototype-debuts-at-center-of-uist-

s/ [Accessed 12 October 2011].

Schilit, B., Adams, N. & Want, R. Context-Aware

Computing Applications. Mobile Computing Systems

and Applications, 1994. WMCSA 1994. First

Workshop on, 8-9 Dec. 1994 1994. 85-90.

Schmidt, A. 2000. Implicit human computer interaction

through context. Personal Technologies, 4, 191-199.

Schmidt, A., Beigl, M. & Gellersen, H.-W. 1999. There is

more to context than location. Computers &

Graphics, 23, 893-901.

Van Sinderen, M. J., Van Halteren, A. T., Wegdam, M.,

Meeuwissen, H. B. & Eertink, E. H. 2006. Supporting

context-aware mobile applications: an infrastructure

approach. IEEE Communications, 44, 96-104.

Yuan-Kai, W. Context awareness and adaptation in mobile

learning. Wireless and Mobile Technologies in

Education, 2004. Proceedings. The 2nd IEEE

International Workshop on, 2004 2004. 154-158.

ICE-B 2012 - International Conference on e-Business

214

