
Correlated Keystreams in Moustique

Emilia Käsper1, Vincent Rijmen1,3, Tor E. Bjørstad2, Christian Rechberger3,
Matt Robshaw4 and Gautham Sekar1

1 K.U.Leuven, ESAT-COSIC
2 The Selmer Center, University of Bergen

3 Graz University of Technology
4 France Télécom Research and Development

Abstract. Moustique is one of the sixteen finalists in the eSTREAM
stream cipher project. Unlike the other finalists it is a self-synchronising
cipher and therefore offers very different functional properties, compared
to the other candidates. We present simple related-key phenomena in
Moustique that lead to the generation of strongly correlated keystreams
and to powerful key-recovery attacks. Our best key-recovery attack re-
quires only 238 steps in the related-key scenario. Since the relevance of
related-key properties is sometimes called into question, we also show
how the described effects can help speed up exhaustive search (without
related keys), thereby reducing the effective key length of Moustique
from 96 bits to 90 bits.

Keywords: eSTREAM, Moustique, related keys

1 Introduction

eSTREAM [6] is a multi-year effort to identify promising new stream ciphers.
Sponsored by the ECRYPT Network of Excellence, the project began in 2004
with proposals for new stream ciphers being invited from industry and academia.
These proposals were intended to satisfy either a software-oriented or a hardware-
oriented profile (or both if possible). The original call for proposals generated
considerable interest with 34 proposals being submitted to the two different per-
formance profiles. Among them was Mosquito [3], a self-synchronising stream
cipher designed by Daemen and Kitsos.

As a self-synchronising stream cipher Mosquito was already a rather un-
usual submission. There was only one other self-synchronising stream cipher
submitted, SSS [8]. Indeed it has long been recognised that the design of (se-
cure) self-synchronising stream ciphers is a difficult task and attacks on SSS [5]
and Mosquito [7] were proposed. As a result of the attack on Mosquito, a
tweaked-variant of Mosquito, called Moustique [4], was proposed for the sec-
ond phase of analysis. This cipher is now one of the finalists in the eSTREAM
project.

In this paper we describe a set of simple related-key pairs for Moustique.
Our observation illustrates unfortunate aspects of the tweaks in moving from
S. Vaudenay (Ed.): AFRICACRYPT 2008, LNCS 5023, pp. 246–257, 2008.
http://www.springerlink.com/content/rt125773377h7580/
c© Springer-Verlag Berlin Heidelberg 2008

http://www.springerlink.com/content/rt125773377h7580/�


Correlated Keystreams in Moustique 247

Mosquito to Moustique. They lead directly to a very strong distinguisher
for the keystream generated from two related keys; and further to a rather dev-
astating key-recovery attack in the related-key setting [2]. In fairness it should
be observed that related-key phenomena are not to everyone’s taste [1]. Indeed,
Daemen and Kitsos state that they make no claim for the resistance of the ci-
pher to attackers that may manipulate the key. However, we take the view that
related-key weaknesses might be viewed as certificational and that the very sim-
ple partition of the keyspace according to correlated keystreams is not particu-
larly desirable. Aside from very efficient distinguishers and key-recovery attacks
in the related-key setting, the related keys also lead to an improvement over
exhaustive search in a non-related-key setting.

The paper is organised as follows. In the next section we describe Moustique
and make the observations that we need for attacks in Section 3. We then describe
attacks on Moustique in the related-key setting in Section 4 and use Section 5
to describe implications on key recovery in the standard (known keystream)
setting. We summarise our experimental confirmation in Section 6 and close
with our conclusions. Throughout we will use established notation.

2 Description of Moustique

In this section we describe the parts of the Moustique description that are
relevant to our observations. More information can be found in [4]. Moustique
uses a key of 96 bits, denoted by kj , with 0 ≤ j ≤ 95. At each step Moustique
takes as input one bit of ciphertext and produces one bit of keystream.

Moustique consists of two parts: a 128-bit conditional complementing shift
register (CCSR) holding the state and a nonlinear output filter with 8 stages,
see Figure 1.

2.1 The CCSR

The CCSR is divided into 96 cells, denoted by qj with 1 ≤ j ≤ 96. Each cell
contains between 1 and 16 bits, denoted by qj

i . The updating function of the
CCSR is given by:

Qj
0 = gx(qj−1

0 , kj−1, 0, 0), j = 1, 2,

Qj
i = gx(qj−1

i , kj−1, q
v
i , qw

i ), 2 < j < 96, ∀i and j = 96, i = 0
Q96

i = g2(q95
i , q95−i

0 , q94
i , q94−i

1 ), i = 1, 2, . . . 15.

(1)

The Qj
i are the new values of the qj

i after one iteration. The subscript indices
are always taken modulo the number of bits in the particular cell. The values
of x, v and w are defined in Table 1. A value 0 for v or w indicates that the
ciphertext feedback bit is used as input. The gx functions are defined as follows:

g0(a, b, c, d) = a + b + c + d (2)
g1(a, b, c, d) = a + b + c(d + 1) + 1 (3)
g2(a, b, c, d) = a(b + 1) + c(d + 1) (4)



248 Authors Suppressed Due to Excessive Length

· · ·

CCSR

j →1 96
0

15
↓
i

?
Filter

?
+-

?

k

p
c

Fig. 1. State and filter of Moustique. The only difference to Mosquito is that
1/3 of Moustique state is now updated using a linear function g0 to improve
diffusion within the CCSR.

Table 1. The use of the functions g0 and g1 in the CCSR.

Index Function v w

(j − i) ≡ 1 mod 3 g0 2(j − i− 1)/3 j − 2
(j − i) ≡ 2 mod 3 g1 j − 4 j − 2
(j − i) ≡ 3 mod 6 g1 0 j − 2
(j − i) ≡ 0 mod 6 g1 j − 5 0

Addition and multiplication operations are over GF(2).

2.2 The filter

The first stage of the filter compresses the 128 bits of the CCSR to 53 bits. First,
the filter input a0 = (a0

1, . . . , a
0
128) is obtained by re-indexing the CCSR cells qj

i



Correlated Keystreams in Moustique 249

in the following way:

a0
i = qi

0, 1 ≤ i ≤ 96

a0
i = qi−8

1 , 97 ≤ i ≤ 104

a0
i = qi−12

2 , 105 ≤ i ≤ 108

a0
i = qi−16

3 , 109 ≤ i ≤ 112

a0
105+2i = q95

i , 4 ≤ i ≤ 7

a0
106+2i = q96

i , 4 ≤ i ≤ 7

a0
113+i = q96

i , 8 ≤ i ≤ 15.

(5)

Then, the 53 bits of output are obtained by taking 53 applications of g1:

a1
4i mod 53 = g1(a0

128−i, a
0
i+18, a

0
113−i, a

0
i+1), 0 ≤ i < 53. (6)

The next four stages of the filter iteratively transform these 53 bits in a non-
linear fashion. The sixth stage compresses the 53 bits to 12. Finally the last two
stages exclusive-or these 12 bits together to produce a single bit of keystream.
For simplicity, we omit the full description of the filter and refer the reader to
the cipher specifications [4]. However, we note that the only non-linear filter
component is the function g1.

3 Observations on Moustique

In this section we provide the basic observations that we will need in the paper.
Some have already been observed in previous work [7].

3.1 Limited impact of the IV

Observation 1 The IV of Moustique influences only the first 105 bits of the
keystream.

This is a consequence of the fact that the IV of Moustique is used only to ini-
tialize the state, and as every self-synchronising stream cipher does, it gradually
overwrites its state with ciphertext bits.

3.2 Differential trails in the filtering function

As was done in the attack on Mosquito [7], we can make some simple obser-
vations on the filter function of Moustique.

We note that the first stage of the filter is compressing and that no new
information enters the filter after this stage. This leads to the first observation:

Observation 2 Any two 128-bit CCSR states that produce the same 53-bit out-
put after the first stage of filtering also produce an equal keystream bit.



250 Authors Suppressed Due to Excessive Length

Recall that the first stage of the Moustique output filter only uses the function
g1(a, b, c, d) = a + b + c(d + 1) + 1. So a consequence of this observation is that
if we flip input c, the output of g1 is unaffected with probability p = Pr[d = 1].
Similarly, if we flip d, the output is unaffected with probability p = Pr[c = 0].
To exploit this, we can observe the following:

Observation 3 State bits q1
0 , . . . , q17

0 and q71
0 , . . . , q75

0 are used in the filter input
only in one location, and only as the third or fourth input to the function g1.

Suppose we flip one of these 22 bits. The two outputs of g1 are equal with
probability p and, consequently, the two outputs of the filter will be equal with
probability 0.5+ p/2. If the inputs to g1 are balanced, then we have p = 0.5 and
the probability the output bit is unchanged is 0.75 (i.e. with bias ε = 0.25).

3.3 Impact of key bits on the CCSR

The chosen ciphertext attack on Mosquito [7] exploited slow diffusion within
the CCSR and so the state-update function of Mosquito was tweaked. The state
update of Moustique uses a linear function g0 for updating one third of the
state bits. While this improves the worst-case diffusion, it exhibits weaknesses
that we exploit to construct related-key pairs that result in highly correlated
keystreams.

Moustique only uses key bits in the state-update function of the CCSR.
Each of the 96 key bits is added to one of the 96 bits qj

0. The state-update
function of the CCSR introduces diffusion in one direction only: a cell with
index j does not depend on cells with indices j′ > j. An immediate consequence
is that key bit k95 affects state bit q96

0 only.
There are however more useful implications, which we introduce next. By

expanding (1) and Table 1, we obtain the following equations:

Q1
0 = c + k0

Q2
0 = q1

0 + k1 + 1
Q3

0 = q2
0 + k2 + c(q1

0 + 1) + 1
Q4

0 = q3
0 + k3 + q2

0 + q2
0

Q5
0 = q4

0 + k4 + q1
0(q3

0 + 1) + 1
Q6

0 = q5
0 + k5 + q1

0(c + 1) + 1
Q7

0 = q6
0 + k6 + q4

0 + q5
0

Q8
0 = q7

0 + k7 + q4
0(q6

0 + 1) + 1
Q9

0 = q8
0 + k8 + c(q7

0 + 1) + 1
Q10

0 = q9
0 + k9 + q6

0 + q8
0

Q11
0 = q10

0 + k10 + q7
0(q9

0 + 1) + 1
...

Here c denotes the ciphertext feedback bit and we observe the following:



Correlated Keystreams in Moustique 251

Fig. 2. CCSR differential propagation using related keys k =
(k0, k1, k2, k3, . . . , k95) and k∗ = (k0, k1 + 1, k2 + 1, k3, . . . , k95).

Observation 4 In the computation of Q4
0, the bit q2

0 is cancelled. Only bit Q3
0

depends on q2
0.

This leads to a related-key pair that for any ciphertext produces CCSR states
with a one-bit difference. To see this, consider two instantiations of Moustique
running in decryption mode with the two keys denoted by k and k∗. Assume

ki = k∗i for i 6= 1, 2 and
ki = k∗i + 1 for i = 1, 2.

We use both instantiations of Moustique to decrypt the same ciphertext and
observe the propagation of differences through the CCSR cells.

In the first iteration of the CCSR, the differences in k1 and k2 will cause
differences in Q2

0 and Q3
0. After the second iteration, there will again be a dif-

ference in Q2
0, but not in Q3

0, because the incoming difference in q2
0 cancels out

the difference in k2. What is left of course is the difference in q3
0 , which propa-

gates through the CCSR and the filter stages. However, after 92 iterations, this
unwanted difference has been propagated out of the CCSR. We obtain a steady
state behavior: at every iteration, both CCSRs differ in bit q2

0 only. Figure 2
illustrates the propagation of the related-key differential within the CCSR.

Since Moustique has a cipher function delay of nine iterations, we can start
deriving information from the keystream after nine more iterations. This will be
demonstrated in the next section.

4 Related-key effects

4.1 Correlated keystreams

There are several classes of related keys for Moustique. We start with the
simplest case which, coincidentally, appears to demonstrate the greatest bias.



252 Authors Suppressed Due to Excessive Length

Table 2. Related-key pairs and correlated keystreams. All these related-key
pairs, and the magnitude of the correlation, have been experimentally verified.

Position j of the Key bits to flip to induce Probability
single bit difference the required difference z = z∗

2 1,2 0.8125
5 4,5,6 0.75
8 7,8,9,12 0.75
11 10,11,12 0.75
14 13,14,15,21 0.75
17 16,17,18 0.75
71 70,71,72 0.75
74 73,74,75 0.75

First related-key pairs. Consider two CCSR states with a difference only in
bit q2

0 . According to Observation 4, this bit affects only one bit of the 53-bit
output, namely bit a1

8, which is computed as

a1
8 = q96

14 + q19
0 + q96

3 (q2
0 + 1) + 1.

Notice that if q96
3 = 0, the difference is extinguished and the two states produce

equal output. If q96
3 = 1, the difference passes on and the two outputs will

presumably collide with probability 1
2 . In fact q96

3 is computed using a non-
balanced function g2 and we have that Pr[q96

3 = 0] = 5
8 .

So, after 105 cycles of IV setup, the two instances of Moustique decrypting
equal ciphertexts with related keys k and k∗ will produce equal keystream bits
z and z∗ for which Pr[z = z∗] = 5

8 + 3
8 × 1

2 = 13
16 .

More advanced related-key pairs. We can extend the simple related keys
already described. This allows us to obtain a range of related-key pairs that
generate a 1-bit difference in the CCSR. Using Table 1, the following observation
is easy to verify.

Observation 5 If j ≤ 77 and j ≡ 2 mod 3, then qj
0 occurs in the CCSR update

only linearly.

This implies that for each of q5
0 , q8

0 , q11
0 , q14

0 , . . . , q77
0 , we can find a set of key bits

such that by flipping these key bits simultaneously and iterating the scheme, a
one-bit difference between the two CCSRs is retained in a single bit position qj

0.
Among these 25 one-bit differences in the CCSR state, eight will also induce

correlated keystream; these are bits q2
0 , q5

0 , q8
0 , q11

0 , q14
0 , q17

0 , q71
0 and q74

0 (Obser-
vation 3). Table 2 lists the pairs of related keys that are generated along with
the correlation in the associated keystream outputs. Since the correlation is ex-
tremely high, only a very small amount of keystream is required to reliably
distinguish these related keystreams from a pair of random keystreams.



Correlated Keystreams in Moustique 253

Furthermore, by simultaneously flipping relevant key bits for two or more
indices j, we obtain a range of related keys with weaker correlation. The bias
can be estimated by the Piling-Up Lemma; in the weakest case where all 8 keybit
tuples are flipped, it is approximately ε = 2−8.6. We have verified this estimate
experimentally, and we now make the following conclusion.

Observation 6 Each key of Moustique produces correlated keystream with (at
least) 28−1 = 255 related keys, with the bias ranging from ε = 2−1.7 to ε = 2−8.6.

4.2 Key-recovery attacks

A distinguisher can often be exploited to provide a key-recovery attack, and this
is also the case here. Using (6) with i = 42, (5), and the definition of g1 we have
that

a1
9 = q86

0 + q60
0 + q71

0 (q43
0 + 1) + 1.

As described in Section 4.1, if we take two instantiations of Moustique and
flip the key bits k70, k71, and k72 in one instantiation, then only q71

0 will change.
This change can only propagate to the output if the bit q43

0 equals zero. Thus, a
difference in the output of two copies of Moustique running with these related
keys gives us one bit of information about the CCSR state (the value q43 = 0).
Furthermore, the state bit q43

0 only depends on the first 43 bits of the key, which
leads to an efficient divide-and-conquer attack as follows.

We first observe the output of two related instances of Moustique, using
some (arbitrary) ciphertext c and record the time values where the output bits
differ. We then guess 43 key bits k0, . . . , k42, compute the state bit q43

0 under
the same ciphertext c, and check whether indeed q43

0 = 0 for all the recorded
values. If there is a contradiction then we know that our guess for the 43-bit
subkey was wrong. On average, only 8 bits of keystream are required to eliminate
wrong candidates; and n bits of keystream eliminate a false key with probability
1− 2−n/4.

The final attack requires a slight adjustment, as the existence of related keys
introduces some false positives. Namely, certain related keys produce extinguish-
ing differential trails that never reach q43

0 . For example, if the guessed key only
differs from the correct key in the bits k1 and k2 then this difference affects q2

0

only, and not q43
0 . Thus, the key with bits k1 and k2 flipped passes our test. The

same holds for all combinations of the 14 values of j smaller than 43 and with
j ≡ 2 mod 3; as well as bit k39 and pair k41, k42. Altogether, we have found that
out of the 243 key candidates, 216 survive and after running our attack we still
need to determine 96− (43− 16) = 69 key bits. This can be done by exhaustive
key search, and the 269 complexity of this stage dominates the attack.

Notice that in the first stage, we know in advance which related keys give
false positives. Thus, we only need to test one key in each set of 216 related keys,
and the complexity of the first stage is 243−16 = 227. The complexity of the
second stage can be reduced if we were to allow the attacker access to multiple
related keys.



254 Authors Suppressed Due to Excessive Length

In such a case, a second stage to the attack would use (6) with i = 16:

a1
11 = q96

3 + q34
0 + q89

1 (q17
0 + 1) + 1.

The state bit q17
0 can be changed by flipping k16, k17 and k18. The state bit q89

1

depends on 89 key bits, of which we know already 43−16 = 27 bits. In addition,
we found 231 related-key differentials that extinguish without ever reaching q89

1 .
Hence, we need to test 289−27−31 = 231 keys to determine 31 more bits. In total
we have then determined 27 + 31 = 58 bits of the key and the remaining 38 bits
can be determined by exhaustive search. The complexity of the attack can be
estimated by 227 + 231 + 238 which is dominated by the third brute-force phase.

We have verified the first two stages of the attack experimentally, and are
indeed able to recover 58 bits of the key, given only 256 bits of keystream from
two related-key pairs. Recovering the first 27 bits requires only a few minutes
and 256 bits of output from a single related-key pair.

5 Accelerated exhaustive key search

Next, we show how the existence of related keys in Moustique can be used in
cryptanalysis even if we cannot observe the output of the cipher in a related-key
setting.

In Section 4, we observed that each key has eight related keys that produce
strongly correlated output. In particular, the correlation can be detected from
very short keystream. Thus, we can imagine the following attack scenario: given,
say, 128 bits of cipher output from a key-IV pair (k, IV ), compare this to the
output of the cipher, using a candidate key k′, the same IV and equal ciphertext.
If the outputs are not correlated, eliminate key k′ as well as its 8 related keys.

In order to compete with brute force, we need to be able to eliminate related
keys efficiently. We now discuss two strategies representing different trade-offs
between required keystream and computational complexity.

5.1 The strong correlation attack

In the first approach we use the (7, 4) Hamming code. As Hamming codes are
perfect, we know that for each 7-bit string s, there exists a codeword ci such
that the Hamming distance between s and ci is at most one. The codewords of
the (7, 4) Hamming code are listed in Table 3.

Now, for each codeword ci, we fix candidate key bits k1, k4, k7, k10, k13, k16, k70

to this codeword, and exhaustively search over the remaining 89 key bits. This
strategy guarantees that we test either the correct key or one of the closely
related keys given in Table 2. A related key can then be easily detected from
the strong correlation of the two keystreams. For example, assume that the cor-
rect subkey is (k1, k4, k7, k10, k13, k16, k70) and the closest codeword is (k1, k4 +
1, k7, k10, k13, k16, k70). Then, according to Table 2, k∗ = (k1, k2, k3, k4 + 1, k5 +
1, k6 + 1, k7, . . . , k95) is a related key that has been selected for testing.



Correlated Keystreams in Moustique 255

Table 3. The codewords of the (7,4) Hamming code.

c0 0000000 c4 0100110 c8 1000101 c12 1100011
c1 0001011 c5 0101101 c9 1001110 c13 1101000
c2 0010111 c6 0110001 c10 1010010 c14 1110100
c3 0011100 c7 0111010 c11 1011001 c15 1111111

Our experiments suggest that 128 keystream bits are sufficient to detect
correlation between the correct key k and a related candidate key k∗ (see Sect. 6
for experimental results). Given that IV setup takes 105 cipher clocks, the total
worst-case complexity of our attack is (105+128)·24·289 ≈ 2100.9 cipher clocks. In
comparison, naive brute force requires on average 2 keystream bits to eliminate
false candidates, so the complexity is (105 + 2) · 296 = 2102.7 cipher clocks.

5.2 The piling-up attack

Following Observation 6, we partition the keys into 288 sets of 28 related keys
and test only one key in each set. After 105 clocks of IV setup, the states cor-
responding to two related keys differ in at most 8 bits (given in Table 2). If

a0
40 = a0

43 = 1 and a0
97 = a0

100 = a0
103 = a0

106 = a0
109 = a0

112 = 0, (7)

then none of these 8 bits influences a1, the output of the first filter stage, and
hence the keystream bits generated by two related keys are equal. Consequently,
if, while testing a key k′ we observe that the bit of keystream generated by k′

differs from the bit of the observed keystream at a time when the candidate state
satisfies (7), then we are sure that the key k we are looking for is not a related
key of k′ and we can discard k′ as well as its 28 − 1 related keys.

To estimate the amount of keystream needed to eliminate wrong keys, we
note that two unrelated keystreams overlap with probability 1

2 , so we can use
half of the available keystream to test for condition (7). As Pr[a0

112 = 0] = 5
8 ,

while the remaining bits in (7) are balanced, condition (7) is true with probability
p = 5

8 · 1
27 . Thus, we need to generate on average 2

p = 409.6 bits of keystream
from one candidate key in order to rule out an entire class of 28 related keys. In
total, the complexity of our attack can be estimated at (105+409.6) ·288 = 297.0

cipher clocks. Our experiments confirm this estimate and suggest that 5000-6000
bits of known keystream are sufficient to eliminate all false candidates with high
confidence.

Both our strategies for accelerated exhaustive key search are rather simple
and just as easily parallelisable as exhaustive search, so they are likely to provide
an advantage over simple brute force in practice. The piling-up attack is an
estimated 50 times faster than exhaustive key search, indicating that the effective
key length of Moustique is reduced to 90 bits instead of the claimed 96-bit
security.



256 Authors Suppressed Due to Excessive Length

6 Experimental verification

The results in this paper were verified using the source code for Moustique
that was submitted to eSTREAM [6]. All sets of key bits identified in Table 2
were tested with one thousand random keys and their related partners. The min-
imum, maximum, and average number of agreements between the two generated
keystreams, over the first 128 bits, was recorded. Note that for un-correlated
keystreams we would expect 64 matches.

Key bits to induce Minimum # Maximum # Average #
the required difference of matches of matches of matches

1,2 91 118 104.02
4,5,6 82 111 96.10

7,8,9,12 79 109 96.03
10,11,12 74 108 95.81

13,14,15,21 79 110 96.11
16,17,18 80 114 95.72
70,71,72 77 109 96.23
73,74,75 81 112 95.94

We then constructed a distinguisher by setting the agreement threshold to
t ≥ 74. We chose randomly 10 000 related-key pairs, all of which passed the
test, indicating that the false negative rate is below 0.01%. In comparison, out
of 10 000 128-bit keystreams obtained from random key pairs, 440 passed the
test, so the false positive rate was below 5%. Thus, we can use our accelerated
key search to eliminate 95% of the keys, and then brute-force the remaining can-
didates. The total complexity of the attack is still below that of naive exhaustive
search, and the success rate is at least 99.99%.

7 Conclusions

In moving from Mosquito, it seems that the design of the self-synchronizing
stream cipher Moustique was established in a rather ad hoc way. While the
tweaked design resists the chosen-ciphertext attack on Mosquito, we showed
that it still exhibits weaknesses that lead to strong distinguishers in the related-
key setting. Further, we presented two different strategies for exploiting those
distinguishers in a key-recovery attack. The first strategy allows the attacker
to recover the 96-bit secret key in 269 steps, assuming that the attacker is able
to observe the output of two instances of the cipher using the secret key and
a related key. The complexity of this attack can be reduced to 238 steps if the
attacker is able to observe the output of three instances of the cipher using the
secret key and two related keys. Both require a negligible amount of ciphertext,
e.g. less than 256 bits.

We have also exploited the observations we made in a non-related-key attack.
Our first attack breaks the cipher in around 2101 steps, using only 128 bits of
known plaintext. If furthermore a few thousand keystream bits are known, the



Correlated Keystreams in Moustique 257

complexity is reduced to 297 steps. In comparison, exhaustive search would take
2103 equivalent steps, indicating that Moustique falls about 6 bits short of the
claimed 96-bit security. While, admittedly, a 297 attack is still far from being
practical, it illustrates the relevance of related-key weaknesses in the standard
(non-related-key) setting.

Acknowledgments. Emilia Käsper thanks the Computer Laboratory of the
University of Cambridge for hosting her while this work was done.

This work was supported in part by the European Commission through the
IST Programme under Contract IST-2002-507932 ECRYPT, the IAPP–Belgian
State–Belgian Science Policy BCRYPT and the IBBT (Interdisciplinary institute
for BroadBand Technology) of the Flemish Government. Emilia Käsper is also
partially supported by the FWO-Flanders project nr. G.0317.06 Linear Codes
and Cryptography.

References

1. D.J. Bernstein. Related-key attacks: who cares? eSTREAM discussion forum, June
22, 2005. Available at http://www.ecrypt.eu.org/stream/phorum/.

2. E. Biham. New Types of Cryptoanalytic Attacks Using related Keys (Extended
Abstract). In T. Helleseth, editor, Advances in Cryptology - EUROCRYPT 1993,
Lecture Notes in Computer Science, volume 765, pages 398–409, Springer Verlag,
1994.

3. J. Daemen and P. Kitsos. The Self-Synchronising Stream Cipher Mosquito.
eStream Report 2005/018. Available at http://www.ecrypt.eu.org/stream/

papers.html.

4. J. Daemen and P. Kitsos. The Self-Synchronising Stream Cipher Moustique.
Available at http://www.ecrypt.eu.org/stream/mosquitop3.html.

5. J. Daemen, J. Lano, and B. Preneel. Chosen Ciphertext Attack on SSS. eStream
Report 2005/044. Available at http://www.ecrypt.eu.org/stream/papers.html.

6. ECRYPT. The eSTREAM project, http://www.ecrypt.eu.org/stream/.
7. A. Joux and F. Muller. Chosen-ciphertext attacks against Mosquito. In

M.J.B. Robshaw, editor, Proceedings of FSE 2006, Lecture Notes in Computer
Science, volume 4047, pages 390–404, Springer Verlag, 2006.

8. G. Rose, P. Hawkes, M. Paddon, and M. Wiggers de Vries. Primitive Specifica-
tion for SSS. eStream Report 2005/028. Available at http://www.ecrypt.eu.org/
stream/papers.html.

http://www.ecrypt.eu.org/stream/phorum/�
http://www.ecrypt.eu.org/stream/papers.html.�
http://www.ecrypt.eu.org/stream/papers.html.�
http://www.ecrypt.eu.org/stream/mosquitop3.html.�
http://www.ecrypt.eu.org/stream/papers.html.�
http://www.ecrypt.eu.org/stream/.�
http://www.ecrypt.eu.org/stream/papers.html.�
http://www.ecrypt.eu.org/stream/papers.html.�

