FORENnSiC— An Automatic Debugging
Environment for C Programs*

Roderick Bloem?, Rolf Drechsler?, Gérschwin Fey?, Alexander Finder?, Georg
Hofferek!, Robert Konighofer!, Jaan Raik®, Urmas Repinski®, André Siillow?

! Graz University of Technology, Austria 2University of Bremen, Germany
3Tallinn University of Technology, Estonia

Abstract. We present FOREnSiC, an open source environment for au-
tomatic error detection, localization and correction in C programs. The
framework implements different automated debugging methods in a uni-
fied way covering the whole design flow from ESL to RTL. Currently,
a scalable simulation-based back-end, a back-end based on symbolic ex-
ecution, and a formal back-end exploiting functional equivalences be-
tween a C program and a hardware design are available. FOREnSIC is
designed as an extensible framework. Its infrastructure, including a pow-
erful front-end and interfaces to logic problem solvers, can be reused for
implementing new program analysis or debugging methods. In addition
to the infrastructure, the back-ends, and a few experimental results, we
present an illustrative application scenario that shows FOREnSiC in use.

1 Introduction

Debugging incorrect programs is labor-intensive, frustrating, and costly, yet un-
avoidable in modern software and hardware development. Errors have to be de-
tected, located and corrected. Many methods and tools exist to automate error
detection, e.g., automatic test case generation or model checking. Error localiza-
tion and correction are mostly done manually. At the same time, these are the
most challenging steps. Understanding the program and tracking down errors is
time-consuming. Bug fixes often do not consider special cases, have side-effects,
or create new bugs. The need for further automation and tool support is obvious.

Existing tools and methods automate error localization and correction in dif-
ferent settings. An extension of the Tarantula fault localizer [10] with mutation-
based repair is presented in [8]. Model-based diagnosis [I3] has been applied
in various settings already. A counterexample-based repair method is presented
in [5]. Sketch [15] uses similar techniques for program sketching. Also, several ap-
proaches have been proposed to check equivalence between system-level specifi-
cations and designs in Hardware Description Language (HDL), e.g. [6/16]. In con-
trast to our framework, these existing tools implement only one specific method
in isolation. Refer to [ITJI2] for a more elaborate discussion of related work.

* This work was supported in part by the European Commission through project
DIAMOND (FP7-2009-IST-4-248613), and by the Austrian Science Fund (FWF)
through the national research network RiSE (S11406-N23).

We present FOREnSIC, an automatic debugging environment for C programs.
FoREnNSIC is short for “Formal Repair Environment for Simple C”, but it has
already outgrown its name: it also detects and locates errors, and it applies also
semi-formal and dynamic methods. FOREnSiC makes two main contributions.

First, it implements various debugging methods in different back-ends. They
can be accessed in a unified way and provide different trade-offs between scalabil-
ity and reasoning power. Currently, there are three back-ends. The simulation-
based back-end [12] locates and repairs errors by executing the program on given
test vectors, featuring good scalability. It is similar to [§], but uses techniques like
program slicing to obtain better results. The symbolic back-end is based on sym-
bolic execution and SMT-solving [I1]. It uses model-based diagnosis [13] and
a repair method similar to [I5] and [5] (but with templates [7]) to synthesize
repairing expressions. The cut-based back-end exploits functional equivalences
between a C program and any HDL design for error localization and correction.

Second, FORENSIC also serves as a framework for implementing new program
analysis, verification, and debugging techniques. The infrastructure includes a
GCC-based front-end to transform C programs into a graph-based representation.
Moreover, FOREnSIiC provides data structures to represent logic formulas and
interfaces to logic solvers for solving them. FOREnSIC is available as open-source
tool at http://www.informatik.uni-bremen.de/agra/eng/forensic.php.

This paper is organized as follows. Section [2)illustrates FOREnSiC on an exam-
ple. Section [3explains FOREnSiC’s architecture, the internal model, the front-end,
and the back-ends. Section [4]shows experimental results and Section [f| concludes.

2 Application Scenario

We demonstrate the features of FOREnSiC on the following scenario. Assume
we want to implement an algorithm to compute the Greatest Common Divi-
sor (GCD) of two integers. We start with the following draft program in C.

16 while((v & 1) == 0)
1 unsigned gcd(unsigned u, 17 v >>= 1:
2 unsigned v) { 18 if (u <= v) {
3 unsigned sh = 0, res; 19 v 4= u;
4 if(u=0 || v=0) { 20 } else {
5 res = 0; 21 unsigned diff = u — v;
6 return res; 22 u=v;
7 } 23 v = diff;
8 while (((u [v) & 1) = 0) { 24
9 u >>= 1; 25 v >>= 1
10 v >>= 1 26 } while(v != 0);
11 ++sh; 27 res = u << sh;
12 } 28 return res;
13 while((u & 1) == 0) 20| }
14 u >>= 1;
15 do {

Now we want to verify the correctness of our program. We use FOREnSiC’s sym-
bolic back-end to compare it to the Euclidean algorithm, which serves as a
reference. The back-end detects an error and automated debugging commences.
First, error localization reports the “0” in line [5| as potentially faulty. Next,
the back-end synthesizes the following expressions to substitute “0” with: u + v

http://www.informatik.uni-bremen.de/agra/eng/forensic.php

and 4294967295 & u | 4294967295 & v. The reason is clear: our program com-
putes gcd(0,x) = gcd(x,0) = O for any z, but the result should be z instead.
Replacing “0” with “u + v” fixes this bug. Since 4294967295 is OxFFFFFFFF,
the second suggestion is actually “u | v”, which is correct as well. We can now
decide which fix we prefer. The symbolic back-end took only 6 seconds to locate
and fix this bug. When analyzing the revised program in more detail, the back-
end detects another error but is unable to locate or fix it within reasonable time.
Therefore, we now switch to the simulation-based back-end.

The simulation-based back-end performs simulation-based verification, diag-
nosis, and mutation-based repair. For our example, verification fails if enough
test cases are provided. Thus, diagnosis starts by ranking statements according
to their suspiciousness. In case of a single fault assumption (see Section , the
fault candidates are those statements which occur in all failing test cases. Next,
mutation-based repair is applied to one fault candidate after the other. Each mu-
tated design is verified by simulation to check whether the mutation constitutes
a repair. For our example, the back-end finds a fix after 149 mutations. The
mutation that fixes the fault is the replacement of the assignment operator += in
line [I9 by -=. The two back-ends complement each other: while the simulation-
based back-end had no difficulties debugging the second bug, it could not come
up with the suggestions produced by the symbolic back-end for the first bug.
The reason is that a mutation from 0 to u | v would be too far-fetched.

Assume that we now want to implement this algorithm in hardware. We use
the cut-based back-end to verify equivalence between the HDL implementation
and the C program serving as specification. The cut-based back-end implements
a new verification, localization and repair method based on functional equiv-
alences, so-called cutpoints, between two designs. For the equivalence check,
the cut-based back-end determines corresponding output values in the two de-
sign descriptions automatically. Mismatches lead to counterexamples which are
used to debug the HDL description or the C program respectively. The cut-
based back-end localizes components in the design under debug to be replaced
by corresponding ones from the reference to fix a bug. Alternatively, the coun-
terexamples may be used as inputs for the simulation-based back-end for further
debugging of the C program. The equivalence proof for the GCD example took
15 minutes, unrolling the hardware design for up to 78 time cycles.

3 Description of FOREnSiC

FoRENSIC consists of three functional parts: the front-end, the model, and the
back-ends. Fig.[l]illustrates the architecture in a simplified form. A C program is
the main input. The front-end parses it and builds an internal model in form of a
flow graph representing the program in Static Single Assignment (SSA) form [I].
Each graph node represents a statement and is linked with its abstract syntax
tree. All parts of the model have references to the original source code in terms
of line and column numbers for communicating results to the user. The front-
end is based on the GCC plug-in API, so that complete C/C++ is supported

FoRERNSiC

|
| |
[— —-»{Back-End 1}
= =y
-] Back-End N

—
Diagnoses,
Repairs

Fig. 1. The architecture of FOREnSiC.

and upward compatibility is ensured. FOREnSiC also includes classes to represent
logic formulas and interfaces to SMT-solvers. This yields an infrastructure such
that FOREnSIC can be easily extended with new back-ends and features.

FoRENSIC currently contains three back-ends operating on the model. They
implement different advanced debugging methods. The back-ends require dif-
ferent supplementary inputs such as test vectors or a reference model. Not all
back-ends fully support all language features. For instance, the symbolic back-
end cannot accurately reason about pointer arithmetic. However, our main focus
are programs modeling hardware designs, where these advanced features do not
play such an important role. Details can be found in the manual [3].

3.1 Simulation-Based Debugging

The simulation-based back-end [12] simulates the design to detect and fix faults.
The specification can be given as input vectors together with either expected
output responses or a reference program in C. In the latter case, both programs
are simulated on the same inputs while comparing the outputs.

The back-end performs three steps. First, simulation-based verification is per-
formed. Second, if an error is detected, statistical methods are used to determine
fault candidates. In case of a single fault assumption, nodes in the model of the
design are associated with the number of failing simulation runs in which they
occurred. The nodes with the maximum numbers are reported as fault candi-
dates. In case of a multiple fault assumption, candidates are selected using the
method presented in [§]. Dynamic slicing is applied to discard candidates that do
not influence the simulation result. Finally, mutation-based repair is applied to
fix the error by mutating (i.e., modifying) operators and numbers, and checking
if this renders the program correct. The types of mutations can be configured.

3.2 Symbolic Debugging

The symbolic back-end implements the debugging method of [11]. It uses assert
statements as specification. Assertions also allow flexible comparisons with refer-
ence implementations. Debugging is performed in three steps. First, symbolic or
concolic execution is used to compute a formula defining when the program satis-
fies the specification. The symbolic execution engine has been implemented from
scratch, the concolic engine is based on CREST [4]. Both provide many options
for configuring the thoroughness of the analysis. In the second step, the diagnosis

engine computes potentially faulty components using model-based diagnosis [13].
Finally, the repair engine synthesizes new implementations of the faulty compo-
nents using templates for expressions and iterative refinements which are guided
by counterexamples [T1]. Diagnosis and repair rely on SMT-solving. Currently,
the solvers Yices and Z3 can be used with linear integer arithmetic and bit-vector
arithmetic, either via their C-APTs or via SMT-LIBv2 [2].

3.3 Cut-based Debugging

This back-end formally verifies the equivalence between a C program, taken as
reference specification, and an implementation in HDL. In case of a mismatch,
a counterexample is returned, and input stimuli similar to the counterexam-
ple are generated for simulation of both designs. After simulation, a frontier
of functional equivalences within both designs is computed, i.e. parts of imple-
mentation and specification which are found to be equivalent. Starting at the
frontier, components within the implementation are replaced by components
from the specification. Each replacement is checked whether it leads to further
functional equivalences between implementation and specification. If this is the
case, the repair is verified formally. In case of inequivalence, the repair engine
suggests which parts of the implementation may be replaced by which parts of
the specification in order to achieve functionally equivalent designs. Diagnosis
and repair rely on SAT-solving using MiniSat2 [9].

4 Experimental Results

We briefly compare our back-ends on the tcas benchmarks of the Siemens
suite [I4]. tcas implements a collision avoidance system for aircrafts, has 12
integer inputs, around 180 lines of code, and comes in 41 faulty variants. The
simulation-based back-end fixes 26 versions, including 5 that cannot be solved
with the symbolic back-end and 6 that cannot be solved with the cut-based
back-end. The symbolic back-end fixes 23 versions, including 2 that cannot be
solved with the simulation-based method and 5 that cannot be solved with the
cutpoint-based back-end. The cutpoint-based back-end solves 29 versions, in-
cluding 9 that cannot be solved with the simulation-based back-end and 11 that
cannot be solved with the symbolic back-end. This demonstrates that the back-
end complement each other. Due to space constraints, we refer to [II] and [12]
for more experimental data. The FOREnSiC archive contains additional data.

5 Summary and Conclusion

FoRENSIC is a novel environment for automating error detection, location, and
correction in C programs. The back-ends can be accessed in a unified way, and
complement each other in features and characteristics. This makes FOREnSiC a
powerful tool for reducing manual debugging effort. FOREnSIC is also interesting

for developers as an open-source framework for new program analysis and de-
bugging techniques. Using the existing infrastructure, the developer can focus on
the new methods rather than parsing or interfacing solvers. By this, FOREnSiC
can alleviate and stimulate further research and development in the challenging
fields of automated hardware and software verification and debugging.

Future work includes improving the back-ends regarding performance, the

subset of C that can be handled, and their fault models. Integrating back-ends
more tightly, or combining their methods in a hybrid back-end is also planned.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of variables in
programs. In POPL, pages 1-11. ACM, 1988.

C. Barrett, A. Stump, and C. Tinelli. The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org, 2010.

R. Bloem, R. Drechsler, G. Fey, A. Finder, G. Hofferek, R. Konighofer, J. Raik,
U. Repinski, and A. Siilflow. FOREnSiC - A Formal Repair Environment for Simple
C. http://www.informatik.uni-bremen.de/agra/eng/forensic.php, 2011.

J. Burnim and K. Sen. Heuristics for scalable dynamic test generation. In ASE,
pages 443-446. IEEE, 2008.

K.-H. Chang, I. L. Markov, and V. Bertacco. Fixing design error with counterex-
amples and resynthesis. In ASP-DAC, pages 944-949. IEEE, 2007.

E. Clarke, D. Kroening, and K. Yorav. Behavioral consistency of C and Verilog
programs using bounded model checking. In DAC, pages 368-371. ACM, 2003.
M. Colén, S. Sankaranarayanan, and H. Sipma. Linear invariant generation using
non-linear constraint solving. In CAV, pages 420-432. Springer, 2003. LNCS 2725.
V. Debroy and W. E. Wong. Using mutation to automatically suggest fixes for
faulty programs. In ICST, pages 65-74. IEEE, 2010.

Niklas Eén and Niklas Sérensson. An extensible SAT-solver. In Theory and Ap-
plications of Satisfiability Testing, pages 502-518. Springer, 2003.

J. A. Jones and M. J. Harrold. Empirical evaluation of the Tarantula automatic
fault-localization technique. In ASE, pages 273-282. ACM, 2005.

R. Kénighofer and R. Bloem. Automated error localization and correction for
imperative programs. In FMCAD, pages 91-100. FMCAD Inc, 2011.

J. Raik, U. Repinski, H. Hantson, M. Jenihhin, G. Di Guglielmo, G. Pravadelli, and
F. Fummi. Combining dynamic slicing and mutation operators for ESL correction.
In ETS, pages 1-6. IEEE, 2012.

R. Reiter. A theory of diagnosis from first principles. Artif. Intell., 32(1):57-95,
1987.

Siemens Corporate Research. Siemens benchmark suite. http://pleuma.cc.
gatech.edu/aristotle/Tools/subjects.

A. Solar-Lezama, L. Tancau, R. Bodik, V. Saraswat, and S. A. Seshia. Combina-
torial sketching for finite programs. In ASPLOS, pages 404—-415. ACM, 2006.

S. Vasudevan, J.A. Abraham, V. Viswanath, and J. Tu. Automatic decomposi-
tion for sequential equivalence checking of system level and RTL descriptions. In
MEMOCODE, pages 71-80. IEEE, 2006.

www.SMT-LIB.org
http://www.informatik.uni-bremen.de/agra/eng/forensic.php
http://pleuma.cc.gatech.edu/aristotle/Tools/subjects
http://pleuma.cc.gatech.edu/aristotle/Tools/subjects

	FoREnSiC– An Automatic Debugging Environment for C Programs

