
Formal Verification of Control Software:
A Case Study

Andreas Griesmayer1, Roderick Bloem1, Martin Hautzendorfer2, and Franz Wotawa1

1 Graz University of Technology, Austria
{agriesma,rbloem,fwotawa}@ist.tu-graz.ac.at

2 Festo AG, Vienna, Austria
hautzendorfer@festo.at

Abstract. We present a case study of formal verification of control logic for
a robotic handling system. We have implemented a system in which properties
can be specified in the source code, which is then automatically converted to
Java and checked using Java Path Finder. The model checker, working under the
assumption of a nondeterministic environment, is able to efficiently verify critical
properties of the design.

1 Introduction

Software errors can cause large amounts of damage, not only in safety-critical systems,
but also in industrial applications. An error in the control program for a robot, for exam-
ple, may cause damage to products and to the robot itself. In such areas as automotive
engineering, both the robots and the products are very expensive. Moreover, the fol-
lowup costs can be a multiple of the direct costs: the production line may have to be
halted while a technician travels to the site to repair the problem.

The design of concurrent software is difficult. The environment strongly influences
the order in which parts of the program are executed, which introduces a source of
variation that makes testing difficult [LHS03].

To make sure that errors do not occur, formal techniques are required. Model check-
ing [CGP99] in particular is a technique to prove adherence of a system to a given prop-
erty, regardless of the behavior of the environment. Today, model checking is mainly
employed in hardware [KG99], whereas research into model checking for software is
still in its infancy [BR01,CDH+00,God97,VHB+03].

The benefits of model checking are

Full coverage. Unlike testing, model checking verifies all possible behavior.
Light-weight specification. Only properties of interest are stated and the specification

need not be finished before the implementation is started.
Automatic proof. The user is not exposed to the mathematical details of the proof of

correctness.
Reuse in testing. Properties written for formal verification and for testing can be shared.

In this paper, we present a case study of formal verification of control software for
a robotic handling system. The software was built to show the capabilities of DACS, a



novel language for control software developed by Festo. Though small, it is a typical
example of software written for an industrial handling system and can thus be used to
check for the absence of typical errors.

We formulated safety properties (the robot arm does not move when blocked) as
well as liveness properties (the robot does not get stuck in a given state). The model
checker was able to prove absence of such bugs in the original system and to detect bugs
in an altered system. In order to prove such properties for any environment behavior, we
modeled a nondeterministic environment. Our system works by translating DACS code
into JAVA, which is then fed to Java Path Finder [VHB+03]. Properties are specified
directly in the DACS source code. We expect that the approach shown here is applicable
to a large variety of control software.

Related research includes the work done by Bienmüller, Damm, and Wittke [BDW00],
who verify automotive and aeronautic systems specified with state charts. State charts
are a specification formalism, whereas our approach verifies the implementation di-
rectly. A specification is not always available, and verification on the implementation
has the advantage that changes made to the implementation only are also verified. To
our knowledge, direct verification of implementation code by translation to Java has not
been attempted before.

In Section 2, we will describe the DACS language and the handling system. In
Section 3, we discuss how correctness was verified, and we conclude with Section 4.

2 Handling System

The handling system is shown in Fig. 1. One robot arm takes products from the carrier
and moves them to the conveyor belt and another one takes them back, forming a closed
loop. The system consists of two belts and two robot arms with five actuators each to
control the movements (raise and lower the arm, move the arm across, open and close
the two grippers, and turn the grippers on the arm).

2.1 DACS

The control software has been implemented in DACS. The statements at hand are sim-
ilar to familiar imperative languages like Java. Methods and variables regarding com-
mon objects are combined in classes. Each method is stored in its own file, and the static
structure of the program is stored in a series of XML files containing the classes, their
attributes and methods, and the instantiation of the objects. Each class is instantiated a
finite, fixed number of times. Dynamic creation of objects and dynamic allocation of
memory is not used because of time and memory constraints on an embedded system.
This implies that the state space of the system is finite, which makes model checking
easier.

A system consists of a hierarchical set of components, each described by a state
machine. Each state machine executes one step (possibly staying in the same state)
before passing control to its ancillary state machines, resulting in a program that can be
run in one thread of control, but behaves like a set of parallel machines. A snipped of
an state machine is given in Figure 2(a).



Fig. 1. the handling system

2.2 Properties

We checked two properties, each representative of a class.

safety As an example for a safety-property we checked that the robot arms do not move
horizontally while they are in their down position (because they might crash with a
belt).

liveness To provoke a liveness-failure, one of the conveyor-belts was “blocked” caus-
ing the system to wait infinitely to be allowed to proceed. This does not provoke
a deadlock in the sense that no more events can be executed — the system loops
through a couple of states — but it does not make a real progress either.

Fig. 2(a) shows the state machine controlling a single arm. Vert and Hori control
the air-pressured cylinders that move the arm horizontally and vertically, respectively.
When the robot arm is in its Base position, both are contracted, i.e., the arm is over
the conveyor belt in the down position. The correct code first expands the Vert cylinder,
moving the arm up and away from the belt, and then expands the Hori cylinder, moving
the arm across, thus avoiding a crash with the carrier.

In the faulty version, shown in Fig. 2(b), we switched this order to provoke a crash.
For the simulation of the liveness property we changed the implementation of the step-
per motor of the carrier, which is part of the environment, to never report to reach its
destination (not shown).

3 Verification

3.1 Translating the Handling System

For the case study, we developed a compiler which translates the DACS source code
together with a set of properties to Java.



1 SEQUENCE Handling
2

3 STEP A.Base_0:
4 Hold1.Base();
5 Hold2.Base();
6 NEXT_STEP;
7

8

9 STEP A.Base_1:
10 IF Hold1.InBase() AND
11 Hold2.InBase() THEN
12 Vert.Work();
13 NEXT_STEP;
14 END_IF;
15

16

17 STEP Base_2:
18 IF Vert.InWork() THEN
19 Hori.Work();
20 Turn.Work();
21 NEXT_STEP;
22 END_IF;
23

24

(a) original DACS code

1 SEQUENCE Handling
2

3 STEP A.Base_0:
4 Hold1.Base();
5 Hold2.Base();
6 NEXT_STEP;
7

8

9 STEP A.Base_1:
10 IF Hold1.InBase() AND
11 Hold2.InBase() THEN
12 Hori.Work(); // error
13 NEXT_STEP;
14 END_IF;
15

16

17 STEP Base_2:
18 IF Hori.InWork() THEN
19 Vert.Work(); //error
20 Turn.Work();
21 NEXT_STEP;
22 END_IF;
23

24

(b) safety fault introduced

1 switch(pos){
2

3 case 1: //Base_0
4 Hold1.Base();
5 Hold2.Base();
6 pos=pos+1;
7 break;
8

9 case 2: //Base_1
10 if(Hold1.InBase()&&
11 Hold2.InBase()){
12 Vert.Work();
13 pos=pos+1;
14 }
15 break;
16

17 case 3://Base_2
18 if(Vert.InWork()){
19 Hori.Work();
20 Turn.Work();
21 pos=pos+1;
22 }
23 break;
24 }

(c) Java code

Fig. 2. In the correct code, STEP A.Base 0 gives the command to open both grippers (Hold-
cylinders). In A.Base 1, the vertical cylinder is moved to its top position when both Holds reached
their base position. Finally, in Base 2, horizontal and turn cylinders are started. In the faulty
version, we switched Vert and Hori to provoke a crash.

The Java Path Finder model checker (JPF) [VHB+03] is based on a backtracking
Java virtual machine. It searches the entire state space of the Java program, which in
our case is finite. JPF provides assertion methods, and properties can be included in the
Java sources as calls to these methods.

Most statements, such as the IF-statement, function calls and assignments, are
translated to Java in an obvious way — the corresponding Java statements provide the
same functionality. State machines (SEQUENCE) are translated to a switch-case-
statement and an extra member-variable keeping the current state. The structure of a
DACS-program stored in its XML files is translated to a set of Java classes, one per
DACS class. The instantiation of the objects is translated to a main() function and a set
of default constructors, which instantiate the main class and the ancillary classes. The
main() function also contains the code to drive the main state machine. Fig 2(c) gives
the Java code corresponding to Fig. 2(a).

As JPF requires a closed system in order to do model checking, we implemented
the environment directly in Java. The environment of the system was modeled using
JPF’s features for nondeterministic choice: hardware responds to a request in time that
is finite but not predetermined.

Models for complex applications might exceed the size we can cope with. As the
range of a variable has a strong impact on the size of the model, data abstraction tech-



Table 1. results of model checking the control software

DFS BFS
system mem time states trace mem time states trace

(MB) (s) (MB) (s)
correct 72 18 161,023 N/A 85 1405 161,023 N/A
safety error 34 24 91,470 45,430 7.8 11 11,097 3,121
liveness error 13 4 4,257 4,256 37 4 74,790 3,992

niques like those used in the Bandera framework [CDH+00] replace it by a small num-
ber of tokens. If, for example, the rotation of the grippers is stored in degrees as integer,
we could use range abstraction to replace all values smaller than zero and greater than
359 by invalid, thus reducing the range to a fraction. Because we are only interested
in two special positions, we may even increase the savings by set abstraction, which
replaces the range by the tokens {in base, in between, in work, invalid}. Further ab-
straction modes include modulo-k abstraction, which we can use to equate, for exam-
ple, numbers that have the same remainder when divided by 360, and point abstraction,
which drops all information by using a single token unknown.

3.2 Modeling Properties

JPF only offers checks for invariants. We translated liveness properties to invariants by
the addition of a monitor which counts the time of no recognizable progress. Progress
is perceived when the top-level state machine changes state. If the counter exceeds a
fixed value, an assertion is violated and the error is reported. This value is easy to set: if
the value is too small, a counterexample is shown in which progress still occurs, which
is easily recognized by the designer. If the value is too large, a deadlock will still be
caught, but the counterexample will be longer than strictly necessary.

We need to check the truth of an invariant between each two consecutive state-
ments. To achieve this behavior, we exploit a characteristic of model checking con-
current threads: execution of events (statements) is interleaved nondeterministically.
Hence, we perform the check of the safety-condition in a separate monitoring thread,
which moves to an error state when the condition is violated. If a violation ever hap-
pens, there is a thread interleaving in which the monitoring thread moves to the error
condition, and the model checker finds this interleaving.

Safety properties are specified by a new keyword, ASSERTGLOBAL, which takes a
DACS-expression as argument. A second keyword, ASSERT, acts like the assert state-
ment in the C language by ensuring that the given expression is satisfied at the respective
position.

3.3 Case Study

The DACS sources of the control software consist of 1300 lines of code. Conversion to
Java and implementation of the environment led to 12 Java classes with a total of 1340
lines.



Table 1 gives the results of our checks, for the three cases of the correct system, the
system with the safety error, and the system with the liveness error. The memory (time)
column gives the amount of memory (time) needed, the states column gives the number
of states traversed, and the trace column give the length of the error trace, if applicable.
Experiments were performed on a Linux machine with a 2.8GHz Pentium IV and 2GB
of RAM.

JPF uses Depth First Search (DFS) as its standard search order. The correct system
had about 160,000 states and was checked in 18 seconds. DFS needs less memory and
is far faster then Breadth First Search. The remaining test cases justify the use of BFS:

When an fault is found, JPF dumps an error trace consisting of executed statements
and stops searching. BFS guarantees the shortest possible trace to an error by exam-
ining all states which are reachable in a given number of steps before increasing this
number. This enhances the readability of the error trace and can significantly decrease
the number of searched states, and thus amount of memory.

4 Conclusions

We have shown how control software for a robotic handling system can be verified auto-
matically. Our example is typical of an industrial application. Though experiments with
larger systems remain necessary, we have shown that translation to Java and verification
by a general Java model checker leads to satisfactory results at a reasonable effort.

Robotic control software is hard to test off-site because of its concurrent behavior.
Faults on-site, however, may be expensive. We believe that model checking can fill an
important gap in securing the reliability of such systems.

References

[BDW00] T. Bienmüller, W. Damm, and H. Wittke. The Statemate verification environment,
making it real. In E. A. Emmerson and A. P. Sistla, editors, proceedings of the twelfth
International Conference on Computer Aided Verification (CAV00), pages 561–567.
Springer-Verlag, 2000. LNCS 1855.

[BR01] T. Ball and S. K. Rajamani. Automatically validating temporal safety properties of
interfaces. In M.B. Dwyer, editor, 8th International SPIN Workshop, pages 103–122,
Toronto, May 2001. Springer-Verlag. LNCS 2057.

[CDH+00] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby, and
H. Zheng. Bandera: Extracting finite-state models from Java source code. In 22nd
International Conference on Software Engineering (ICSE’00), pages 439–448, 2000.

[CGP99] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, Cam-
bridge, MA, 1999.

[God97] P. Godefroid. Model checking for programming languages using verisoft. In Sympo-
sium on Principles of Programming Languages, pages 174–186, 1997.

[KG99] C. Kern and M. R. Greenstreet. Formal verification in hardware design: A survey.
ACM Transactions on Design Automation of Electronic Systems, 4(2):123–193, April
1999.

[LHS03] B. Long, D. Hoffman, and P. Strooper. Tool support for testing concurrent java com-
ponents. IEEE Transactions on Software Engineering, 29:555–566, 2003.



[VHB+03] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking programs.
Automated Software Engineering Journal, 10:203–232, 2003.


