
Automatic Error Localization for Software using
Deductive Verification ?

Robert Könighofer, Ronald Toegl, and Roderick Bloem

IAIK, Graz University of Technology, Austria.

Abstract. Even competent programmers make mistakes. Automatic
verification can detect errors, but leaves the frustrating task of finding
the erroneous line of code to the user. This paper presents an automatic
approach for identifying potential error locations in software. It is based
on a deductive verification engine, which detects errors in functions anno-
tated with pre- and post-conditions. Using an automatic theorem prover,
our approach finds expressions in the code that can be modified such that
the program satisfies its specification. Scalability is achieved by analyz-
ing each function in isolation. We have implemented our approach in the
widely used Frama-C framework and present first experimental results.
This is an extended version of [8], featuring an additional appendix.

1 Introduction

Formal verification attempts to detect mismatches between a program and its
specification automatically. However, the time-consuming work of locating and
fixing detected bugs is usually performed manually. At the same time, the diag-
nostic information provided by the tools is often limited. While model checkers
commonly provide counterexamples, deductive software verification engines usu-
ally only give yes/no (or worse: only yes/maybe) answers. Analyzing a proof or
witness given by the underlying theorem prover is usually not a viable option.

In this work, we strive to lessen this usability defect in the context of deduc-
tive software verification [2]. This approach assumes that source code is anno-
tated with pre- and post-conditions. It computes a set of proof obligations, i.e.,
formulas that need to be proven to attest correctness. These formulas are then
discharged by an automatic theorem prover. Scalability is achieved by analyzing
functions in isolation. We extend this verification flow such that the tool does
not only report the existence of an error, but also pinpoints its location.

Our solution assumes that some code expression is faulty. This fault model is
fine-grained and quite general. If verification of a function fails, we iterate over
each expression in this function and analyze if it can be modified such that the
function satisfies its contract for all inputs. If so, we report this expression as
potential error location. Expressions that cannot be modified such that the error
goes away do not have to be analyzed by the developer when trying to fix the

? This work was supported by the European Commission through project STANCE
(31775) and the Austrian Science Fund (FWF) through project RiSE (S11406-N23).

error. We have implemented a proof-of-concept in Frama-C [2], and provide first
experimental results comparing our approach to FoREnSiC [1] and Bug-Assist [6].

Related work. Our fault model has been successfully applied before [7,1]:
This approach also checks repairability of expressions, but only for fixed inputs.
It uses assertions as specification, and SMT solvers as reasoning engines. [4]
is similar but uses a model checker. In [6] a MAX-SAT engine is used. Our
work resolves many drawbacks of these existing works: pre- and post-conditions
are more powerful than assertions, we check repairability for all inputs, and we
achieve scalability by analyzing functions in isolation. Model-based diagnosis [11]
has already been applied in many settings (cf. [7]). Our approach is similar (we
also check repairability), but focuses on single-fault diagnoses to avoid floods
of diagnoses. Dynamic methods [5] rely on the quality of available test cases.
In contrast, our method is purely formal. This is an extended version of [8],
featuring an additional appendix with more detailed experimental results.

2 Automatic Error Localization

2.1 Fault Models

Intuitively, a fault model defines what can go wrong in a program, thereby induc-
ing a set of candidate error locations. An error localization algorithm can then
decide which of these candi-
dates can actually be respon-
sible for the detected prob-
lem. A good fault model needs to balance conflicting objectives: it should cover
many errors, be fine-grained, allow for efficient error localization and not yield
too many spurious error locations. Existing approaches include fault patterns [10]
specifying common bugs, mutation-based fault models [3] assuming that the er-
ror is a small syntactic change, and faulty expressions [4,7] assuming that the
control structure is correct but some code expression may be wrong. In this
work we use faulty expressions because this fault model is fine-grained, more
generic than mutation-based models, more automatic than fault patterns, and
still allows for efficient error localization, as shown below.

2.2 Basic Idea for Error Localization

Our approach is inspired by [4,7]: An expression in the source code is a potential
error location if it can be replaced such that the detected error is resolved.

Example 1. The program on the right is supposed to compute the maximum of

1 /* @ensures \result >= b;@*/
2 int max(int a, int b) {
3 int r = a;
4 i f (b > a)
5 r = a; // correct: r = b
6 return r; }

a and b, but contains a bug in line 5. The post-
condition \result >= b is incomplete but suf-
ficient to detect the bug: it is violated if b > a.
Our fault model (incorrect expressions) identi-
fies 4 candidate error locations: Candidate C1

is the expression “a” in line 3, C2 is “b > a” in line 4, C3 is the “a” in line 5,

2

and C4 is the “r” in line 6. Neither C1 nor C2 are error locations. C1 cannot be
changed to satisfy the post-condition because r is overwritten with the incorrect
value “a” if b > a. If we change only C2, \result will always be “a”, which is in-
correct if b > a. C3 and C4 are possible error locations, because these expressions
can be replaced by “b” to make the program satisfy its specification.

2.3 Realization with Deductive Verification

We now discuss how to answer such repairability questions automatically. From
a high-level perspective, most formal verification tools compute a correctness
condition correct(i) in some logic, where i is the vector of input variables of the
program. Next, a solver checks if ∀i : correct(i) holds. If not, an error has been
detected. Deductive verification tools like the WP plug-in of Frama-C [2] follow
this pattern by defining correct as implication: if the pre-condition of a function
holds, then the function must satisfy its post-condition. Loops are handled with
user-provided invariants, and a theorem prover checks ∀i : correct(i). In practice,
correct may be composed of parts that can be solved independently.

If a function is incorrect, we compute if a certain expression C is a potential
error location as follows. First, we replace C by a placeholder c for a new ex-
pression. Next, we compute the correctness condition correct(i, c), which depends
now also on c. Finally, C is a potential error location if ∀i : ∃c : correct(i, c). This
formula asks if expression C can, in principle, be replaced such that the function
satisfies its contract. For every input i, there must exist a value c to which the
replacement of C evaluates such that the function behaves as specified. Note that
this approach can, in principle, also compute a repair if the underlying theorem
prover can produce a witness in form of a Skolem function for the c variable.
However, this feature is not supported by our current implementation.

Example 2. We continue Example 1. We check if expression C1 is a potential

1 /* @ensures \result >= b;@*/
2 int max(int a, int b) {
3 int r = c1;
4 i f (b > a)
5 r = a; // correct: r = b
6 return r; }

error location by replacing it with a placeholder
c1, as shown on the right. Next, we compute
correct(a, b, c1) = (b ≤ a) ∧ (c1 ≥ b) using
deductive verification. C1 is not an error loca-
tion because ∀a, b :∃c1 : correct(a, b, c1) is false.
When replacing C3 we get correct(a, b, c3) = (b ≤ a) ∨ (c3 ≥ b). We have that
∀a, b :∃c3 :(b ≤ a)∨(c3 ≥ b), so C3 is a potential error location — as expected.

2.4 Implementation in Frama-C

We implemented our error localization approach as a proof of concept in the WP
plug-in of the widely used software verification framework Frama-C [2]. We dis-
cuss implementation challenges and reasons for imperfect diagnostic resolution.
Instrumentation. Frama-C normalizes the source code while parsing it into
an Abstract Syntax Tree (AST). For instance, it decomposes complicated state-
ments using auxiliary variables. Our instrumentation, replacing candidate ex-
pressions by a placeholder c, operates on this normalized AST. This makes it

3

robust when handling complicated constructions. The disadvantage is that our
approach may report error locations that are only present in the normalization.
However, we do not consider this a severe usability issue, because the line num-
ber in the original code is available, and Frama-C presents the normalized source
code and how it links to the original source code in its GUI.
Computation of correct(i, c). Internally, the WP plug-in of Frama-C performs
simplifications that may rewrite or eliminate our newly introduced placeholder
c, and thus, we cannot use WP a black-box to compute the correctness formula
correct(i, c) after instrumentation. We solve this issue by extending Frama-C’s
memory model such that the placeholder c is not touched by simplifications.
Quantification. Once we have correct(i, c), we need to add the quantifier prefix
∀i :∃c. Unfortunately, correct may also contain auxiliary variables t that express
values of variables at specific program points. Intuitively, c should not depend on
variables that are assigned later in the program. This would violate the causality
and lead to false-positives. Hence, we need to separate the variables of correct
to construct the formula ∀i :∃c :∀t : correct(i, t, c). This is done by computing
the input variables (parameters and globals) of the function under analysis and
linking them to the corresponding variables in the formula.
Axiomatization. WP uses axiomatized functions and predicates in correct. For
instance, for a < b it writes zlt(a, b), where the predicate zlt : Z × Z → B is
axiomatized as ∀x, y : (zlt(x, y)→ x < y) ∧ (¬zlt(x, y)→ x ≥ y). In our exper-
iments we observed cases where the automatic theorem prover (AltErgo) could
not decide formulas when using the axiomatization, but had no difficulty when
the axiomatized predicates and functions are replaced by the corresponding na-
tive operators. Hence, we modified the interface to the theorem prover such that
formulas do not contain axiomatized functions and predicates, where possible.
Diagnostic Resolution. Our implementation is neither guaranteed to be sound
(it may produce spurious error locations) nor complete (it may miss potential
error locations). The reasons are:

– The theorem prover may time-out or return “Unknown” if it could neither
prove nor disprove the formula. We treat such verdicts as if the program was
incorrect (a choice justified by experience), which results in incompleteness.

– Instead of one monolithic formula correct, WP may compute multiple formu-
las that are checked independently. In error localization, we also check each
formula in isolation. This is weaker than checking the conjunction, i.e., can
result in spurious error locations, but increases efficiency.

– Incomplete specifications can result in spurious error locations.
– The bug may not match our fault model. E.g., code may be missing or the

control flow may be incorrect. This results in missed error locations.

3 First Experimental Results

Despite the potential imprecisions discussed in the last section, our implementa-
tion produces meaningful results. We evaluated our proof-of-concept implemen-

4

tation1 on the widely used TCAS benchmark [12], which implements an aricraft
traffic collision avoidance system in 180 lines of C code. It comes in 41 faulty
versions that model realistic bugs. We annotated all functions with contracts.

3.1 Performance Evaluation

We compare the execution time and effectiveness of our approach with that of
FoREnSiC [7,1] and Bug-Assist [6] on an ordinary laptop.2 For our new approach,
the error localization time (at most 129 [s], 37 [s] on average) is acceptable for
all TCAS instances. For 37% of the cases, the execution time increases by only
<40% when going from error detection to localization. FoREnSiC is slightly faster
on average (17 [s]) but the median runtime is on par (16 vs. 18 [s]). With 7 [s] on
average, Bug-Assist is even faster. Although only 66% of the benchmarks match
our fault model, errors were successfully located in 90.2%. While FoREnSiC and
Bug-Assist reported 15 error locations on average, our approach reported only
3.5. Thus, in our experiments, our tool provides much higher accuracy with only
slightly longer runtime. The user has to examine only a few expressions in the
code, which can speed-up debugging significantly.

3.2 Examples

This section investigates the reported error locations for a few TCAS versions.
Version 7. A constant is changed from 500 to 550 in an initialization function.
Our tool reports exactly this constant 550 as the only possible error location.
This takes 6 seconds, whereof 5.1 seconds are spent on error detection.
Version 9. This version contains the following function:

119 bool NonCrossBiasedDescend () {
120 bool r;
121 i f (InhibitBiasedClimb () >= DwnSep) {
122 r = OwnBlTh () && VerSep >= MSEP && DwnSep >= ALIM();
123 } else {
124 r = !(OwnAbTh ()) || (OwnAbTh () && UpSep >= ALIM());
125 }
126 return r; }

The correct pro-
gram has a “>”
instead of the
“>=” in line 121.
Our tool reports
two potential er-
ror locations: tmp 6 >= DwnSep in line 121, and tmp 1 in line 122. This output
looks cryptic because the code has been normalized by Frama-C. tmp 6 is an
auxiliary variable that stands for InhibitBiasedClimb(). This is shown in the
GUI. Hence, the first error location is just what we expect. tmp 1 holds the
value for r in line 122. This value can be changed to satisfy the specification for
all inputs as well. Hence, it is also reported. NonCrossBiasedDescend() is not
long, but contains complex logic. Analyzing this logic to locate a bug can be
cumbersome. The diagnostic information provided by our approach helps.
Version 14 changes MAXDIFF (a preprocessor macro) from 600 to 600+50. Our
tool reports two possible error locations: VerSep > 600+50 in line 167 and
OtherCap == 1 in line 168 of function altSepTest, which is shown below. The
first one pinpoints exactly the problem. Note that altSepTest() is all but trivial.

1 See www.iaik.tugraz.at/content/research/design_verification/others/.
2 Table 1 in the Appendix gives more details to our performance results.

5

www.iaik.tugraz.at/content/research/design_verification/others/

165 int altSepTest () {
166 bool en, eq, intentNotKnown , needUpRA , needDwnRA;
167 en = HConf && OwnTrAlt <= OLEV && VerSep > MAXDIFF;
168 eq = OtherCap == TCAS_TA;
169 intentNotKnown = TwoRepValid && OtherRAC == NO_INT;
170 int altSep = UNRESOLVED;
171 i f (en && ((eq && intentNotKnown) || !eq)) {
172 needUpRA = NonCrossBiasedClimb () && OwnBlTh ();
173 needDwnRA = NonCrossBiasedDescend () && OwnAbTh ();
174 i f (needUpRA && needDwnRA) altSep = UNRESOLVED;
175 else i f (needUpRA) altSep = UPWARD_RA;
176 else i f (needDwnRA) altSep = DOWNWARD_RA;
177 else altSep = UNRESOLVED;
178 }
179 return altSep; }

If verification fails,
tracking down this
bug can be a very
time-consuming and
frustrating task. By
checking only the
reported locations,
we can significantly
reduce the manual
work to fix the bug.
Thus, the reported
error locations are usually both meaningful and helpful.

4 Conclusions

Tracking down a subtle program error in large source code is — like finding a
needle in a haystack — a tedious task. We have extended a widely used deduc-
tive software verification engine so that it can report expressions that may be
responsible for incorrectness. We evaluated our proof-of-concept implementation
on a few examples and conclude that our approach is viable and gives fast and
clear guidance to developers on the location of program defects.

Acknowledgment. We thank Löıc Correnson and the Frama-C team for their
support with our proof-of-concept implementation.

References

1. R. Bloem, R. Drechsler, G. Fey, A. Finder, G. Hofferek, R. Könighofer, J. Raik,
U. Repinski, and André Sülflow. FoREnSiC - An automatic debugging environment
for C programs. In HVC’12. Springer, 2012.

2. P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski.
Frama-C - A software analysis perspective. In SEFM’12. Springer, 2012.

3. V. Debroy and W. E. Wong. Using mutation to automatically suggest fixes for
faulty programs. In ICST’10. IEEE, 2010.

4. A. Griesmayer, S. Staber, and R. Bloem. Automated fault localization for C pro-
grams. Electr. Notes Theor. Comput. Sci., 174(4):95–111, 2007.

5. J. A. Jones and M. J. Harrold. Empirical evaluation of the tarantula automatic
fault-localization technique. In ASE’05. ACM, 2005.

6. M. Jose and R. Majumdar. Cause clue clauses: error localization using maximum
satisfiability. In PLDI’11, pages 437–446. ACM, 2011.

7. R. Könighofer and R. Bloem. Automated error localization and correction for
imperative programs. In FMCAD’11. IEEE, 2011.

8. R. Könighofer, R. Toegl, and R. Bloem. Automatic error localization for software
using deductive verification. In HVC’14. Springer, 2014. To appear.

9. J. R. Larus, T. Ball, M. Das, R. DeLine, M. Fähndrich, J. D. Pincus, S. K. Raja-
mani, and R. Venkatapathy. Righting software. IEEE Softw., 21(3):92–100, 2004.

10. R. Reiter. A theory of diagnosis from first principles. Art. Int., 32(1):57–95, 1987.
11. Siemens benchmark suite. pleuma.cc.gatech.edu/aristotle/Tools/subjects.

6

pleuma.cc.gatech.edu/aristotle/Tools/subjects

Appendix

Table 1 gives more details to our performance results on the TCAS benchmarks.
Column 1 indicates if the error in this version of the benchmark matches our fault
model. Even if this is not the case, our approach can often compute meaningful
error locations. Column 2 lists the execution time for error detection. Column 3
gives the time for error localization including error detection. Column 4 gives
the number of candidate expressions identified by our fault model. The number
of potential error locations that have been reported by our implementation is
listed in Column 5. The Columns 6 and 7 show the execution time for error
localization (including error detection) and the number of reported (potential)
error locations for the approach of [7], which is implemented in the tool FoREn-
SiC [1]. This approach can be run in two modes: the conservative mode may miss
error locations, the non-conservative mode may find spurious locations. We used
the non-conservative mode because otherwise no error locations are found for
several benchmark versions. Furthermore, we let FoREnSiC compute single-fault
diagnoses only. Otherwise, the number of diagnoses grows to several hundreds
for certain benchmark versions. The last two columns show the same information
for the approach of [7], which has been implemented in the tool Bug-Assist. All
experiments were performed on a notebook with an Intel Core i5-3320M pro-
cessor running at 2.6 GHz, 8GB of RAM, and a 64 bit Linux operating system.
The memory consumption was insignificant in our experiments.

7

Table 1: Detailed performance results.

Column 1 2 3 4 5 6 7 8 9

TCAS Benchmark Our new approach FoREnSiC [7] Bug-Assist [6]

Matches Error Error Nr. of Nr. of Error Nr. of Error Nr. of
Version Fault Det. Loc. Cand- Loc. Loc. Loc. Loc. Loc.

Model Time Time idates Rep. Time Rep. Time Rep.
[-] [s] [s] [-] [-] [s] [-] [s] [-]

1 Yes 5.2 20 10 4 19 22 7.8 16
2 Yes 5.2 6.9 4 2 14 15 9.8 17
3 No 4.5 111 35 13 15 12 10 17
4 No 5.3 22 10 0 17 20 7.5 17
5 No 4.3 84 33 7 27 12 4.3 18
6 Yes 5.2 6.0 2 2 17 20 5.6 17
7 Yes 5.1 6.0 4 1 15 11 7.6 17
8 Yes 5.2 6.8 4 1 15 12 8.1 15
9 Yes 5.2 20 10 2 14 19 8.6 13
10 Yes 5.3 6.9 4 4 23 18 11 18
11 Yes 5.3 6.9 4 4 32 13 6.3 9
12 No 4.4 89 35 5 28 21 5.5 18
13 Yes 4.3 111 35 8 20 12 6.7 16
14 Yes 4.7 104 35 2 15 3 7.0 8
15 Yes 5.3 35 20 6 18 11 4.4 18
16 Yes 5.2 6.8 4 1 15 11 7.7 16
17 Yes 5.2 6.8 4 1 14 11 8.0 16
18 Yes 5.2 6.8 4 1 14 11 7.8 16
19 Yes 5.2 7.0 4 1 15 11 7.9 16
20 Yes 5.3 20 10 2 14 21 7.3 17
21 Yes 5.0 18.4 10 2 11 21 10 17
22 Yes 5.1 18.3 10 2 11 18 7.1 16
23 Yes 5.2 18.4 10 2 11 19 8.7 13
24 Yes 5.1 18.5 10 2 11 21 10 17
25 Yes 5.2 20 10 3 18 21 6.8 16
26 No 4.2 93 33 8 20 12 6.2 17
27 No 4.3 87 33 7 26 12 4.2 18
28 Yes 5.3 10 4 2 20 10 8.2 14
29 Yes 5.2 5.6 1 1 14 14 7.4 13
30 Yes 5.5 6.0 2 2 14 14 9.1 17
31 No 4.9 129 48 10 16 15 3.4 15
32 No 4.8 102 48 7 16 15 3.2 17
33 No 5.1 6.8 4 0 26 12 0.3 1
34 No 4.2 30 35 1 28 11 4.3 18
35 Yes 4.4 7.0 4 2 18 10 10 18
36 Yes 5.0 129 35 13 19 22 4.3 15
37 No 5.2 6.1 2 0 19 12 7.4 15
38 No 5.2 5.2 0 0 2 0 0.3 1
39 Yes 5.2 20 10 3 17 21 7.0 16
40 No 4.2 80 41 8 18 19 7.6 16
41 No 5.0 17 9 3 16 19 6.4 16

average 66 % 5.0 37 15 3.5 17 15 6.9 15
median 5.2 18 10 2 16 14 7.4 16

8

	Automatic Error Localization for Software using Deductive Verification

