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Abstract. Creating a formal specification for a reactive system is diffi-
cult and mistakes happen frequently. Yet, aids for specification debugging
are rare. In this paper, we show how model-based diagnosis can be ap-
plied to localize errors in unrealizable specifications of reactive systems.
An implementation of the system is not required. Our approach identi-
fies properties and signals that can be responsible for unrealizability. By
reduction to unrealizability, it can also be used to debug specifications
which forbid desired behavior. We analyze specifications given as one
set of properties, as well as specifications consisting of assumptions and
guarantees. For GR(1) specifications we describe how realizability and
unrealizable cores can be computed quickly, using approximations. This
technique is not specific to GR(1), though. Finally, we present experi-
mental results where the error localization precision is almost doubled
when compared to the presentation of just unrealizable cores.

1 Introduction

A formal specification of a reactive system is ideally written before the imple-
mentation. This clarifies ambiguities early. Using property synthesis [11, 14, 19,
20, 23, 24], the process of implementing the specification can even be automated.
This yields systems which are correct-by-construction. Formal specifications are
also used for the precise communication of design intents and interface assump-
tions. They are even sold as intellectual properties for verification [10]. In all
these scenarios, a corresponding implementation is not available when creating
the specification.

Just like any other engineering process, writing a formal specification is an
error-prone activity [5, 6, 15, 22]. At the same time, debugging an incorrect spec-
ification is complicated, especially if no implementation is available. This issue
has received little attention in research, and there is almost no tool support avail-
able. Ideally, the specification is sound and complete. A specification is complete
if no incorrect system (with respect to the informal design intent) conforms to
it. A specification is sound, if all correct systems are valid implementations of
the specification. For some applications the specification has to be complete, but
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Fig. 1. Debugging an unrealizable specification with model-based diagnosis (MBD).

in any case, it must be sound. This paper addresses the debugging of unsound
specifications without a corresponding implementation.

A special case of unsoundness is unrealizability. A specification is unrealiz-
able if no system (no Mealy machine) can implement it. Note that for reactive
systems, realizability is not equal to satisfiability [24]. Satisfiability means that
there is one input/output trace fulfilling the specification. Realizability requires
the existence of a valid output trace for every input trace. Additionally, outputs
may depend on past and present inputs only. Our experience with the creation
of complete specifications [2, 3, 1] shows that mistakes often lead to unrealizable
but satisfiable specifications. Manual analysis to find the bug is time consuming
or even intractable. Unlike software, there is no way to execute an unrealizable
specification in order to locate the error. Debugging specifications that disallow
desired behavior (i.e., unsound specifications), as well as specifications which
allow undesired behavior (i.e., incomplete specifications) can be reduced to de-
bugging unrealizability of specifications. The reader is referred to [17] for details.
Hence, the approach presented in this paper can be used to debug unsoundness
as well.

In this paper, we present a technique for error localization in unrealizable
specifications of reactive systems, using model-based diagnosis [25] (MBD). In
MBD, a system description and some incorrect behavior that contradicts this
description are given. The goal is to identify components that may be responsible
for the behavior. Our setting is different. We are only given an unrealizable spec-
ification. Our first contribution is to define a formalism to make MBD applicable
nevertheless: Instead of diagnosing a conflict between the system description and
the behavior, we diagnose the unrealizable specification, which is seen as an in-
herently conflicting system description. We identify properties and signals that
can be weakened in order to resolve the unrealizability. Not only single-fault but
also multiple-fault diagnoses can be computed. The technique is very generic
and applies to most temporal logics, including LTL. It can even be used in other
application domains such as the debugging of unsatisfiable formulas in a SAT
solver by substituting the concept of realizability with that of satisfiability.

In our solution, diagnoses are computed using minimal unrealizable cores
(parts of the specification which are unrealizable on their own) and realizability
checks. This can be time consuming. As our second contribution, we therefore
show how to boost performance of realizability checking and unrealizable core
computation using approximations. We use Generalized Reactivity(1) specifica-
tions, but the optimization technique is again rather generic. We finally present
experimental results for this class of specifications.
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As illustrated in Fig. 1, MBD yields two outcomes: diagnoses and (minimal)
conflicts. Diagnoses indicate possible error locations. In order to fix the error
in the best way, the user also has to understand the underlying problem. This
information is contained in the conflicts, which are unrealizable cores. Conflicts,
and thereby the root causes for unrealizability, can be explained with counter-
strategies [17]. However, understanding one conflict is not enough since a fix has
to resolve all of them. The same problem exists in [5], where one unrealizable
core is presented as diagnostic aid. In contrast, our approach identifies exactly
those components that can be modified in a way to resolve all inconsistencies in
the specification simultaneously. This information prevents the user from modi-
fying parts of the specification which contribute to some but not to all conflicts.
This work therefore improves and complements [5, 17].

Other related work includes detection of incompleteness in specifications both
regarding a given implementation [4, 13, 15] and with the specification analyzed
stand-alone [6, 8, 12]. In contrast, our work is focused on specifications that are
not sound. MBD has been successfully applied to various software- and hardware
debugging problems [7, 21, 27, 26]. The setting considered in this work deviates
from the classical setting in that we are not given a system description and a
conflicting observation, but only an inherently conflicting system description.

The remainder of this paper is organized as follows. Section 2 explains exist-
ing concepts and establishes some notation. Section 3 introduces our debugging
method in a generic way. An efficient implementation for Generalized Reactiv-
ity(1) specifications is described in Section 4. Experimental results are presented
in Section 5. Section 6 concludes the work.

2 Preliminaries

2.1 Model-Based Diagnosis

Model-based diagnosis [9, 25] (MBD) is a technique for error localization in a sys-
tem. The explanation in this section follows [25]. Let SD be a description of the
correct system behavior and let OBS be an observation of an erroneous behavior.
Both SD and OBS are sets of logical sentences. The system consists of compo-
nents COMP. A component c ∈ COMP can behave abnormally (denoted AB(c))
or normally (denoted ¬AB(c)). SD consists of component descriptions of the
form ¬AB(c)⇒ Nc, where Nc defines the normal behavior of component c, and
a description of their interplay. The observation contradicts the system descrip-
tion, i.e., it would not be possible if all components behaved normally. Formally,
the set SD∪OBS∪{¬AB(c) | c ∈ COMP} of logical sentences is inconsistent, i.e.,
contains a contradiction. The goal of MBD is to identify sets of components that
may have caused the erroneous behavior OBS. Such sets are called diagnoses.
Formally, ∆ ⊆ COMP is a diagnosis iff it is a minimal set such that

SD∪OBS∪{¬AB(c) | c ∈ COMP \∆} (1)

is consistent. Minimal means that no subset ∆′ ⊂ ∆ is a diagnosis. A diagnosis ∆
with |∆| = 1 is called a single-fault diagnosis. Diagnoses can be computed with
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conflicts. A conflict is a set C ⊆ COMP so that

SD∪OBS∪{¬AB(c) | c ∈ C} (2)

is inconsistent. That is, a conflict is a set of components that cannot all behave
normally. A conflict C is minimal if no C ′ ⊂ C is a conflict. A diagnosis must
explain all conflicts, so it must have at least one element in common with every
conflict. This relation can be formalized with hitting sets. A hitting set for a
collection K of sets is a set H for which ∀K ∈ K . H ∩K 6= ∅ holds. A hitting
set H is minimal if no subset H ′ ⊂ H is a hitting set. A set ∆ ⊆ COMP is a
diagnosis iff ∆ is a minimal hitting set for the set of all conflicts. Equivalently,
∆ ⊆ COMP is a diagnosis iff it is a minimal hitting set for the set of all minimal
conflicts. Hence, computing diagnoses reduces to computing minimal hitting sets
for the collection of minimal conflict sets. An algorithm is presented in [25]. It
triggers conflict computations on-the-fly. Diagnoses are generated in order of
increasing cardinality. That is, simpler explanations are produced first.

2.2 Games and the µ-Calculus

Games and the µ-calculus will be used to define realizability and approximations
thereof. A (finite state, two player) game is a tuple G = (Q,Σ, T, q0,Win), where
Q is a finite set of states, Σ is some finite alphabet, T : Q × Σ → Q is a
deterministic and complete transition function, q0 ∈ Q is the initial state, and
Win : Qω → {false, true} is the winning condition. We assume that Σ = X × Y,
where X = 2X , Y = 2Y , and X and Y are two disjoint sets of Boolean variables.
The game is played by two players, the environment and the system. A play π
of G is defined as an infinite sequence of states π = q0q1q2 . . . ∈ Qω such that
qi+1 = T (qi, σi). In each step, the letters σi = (xi, yi) are chosen by the two
players in such a way that the environment first chooses an xi ∈ X , after which
the system chooses some yi ∈ Y.

A play π = q0q1q2 . . . is won by the system if Win(π) holds. A state q ∈ Q is
called winning, if starting from this state, the system can, for all possible inputs
which it might be presented, choose outputs in each step, such that the play
is won. The set of winning states W ⊆ Q is called the winning region of the
system.

The (propositional) µ-calculus [18] is an extension of propositional logic with
a least fixpoint operator µ and a greatest fixpoint operator ν. We use this cal-
culus, extended with two preimage operators MXs and MXe, to describe fixpoint
computations over sets Q′ ⊆ Q of states in a game G. Let Var be a set of vari-
ables ranging over subsets of Q. Every variable Z ∈ Var and every set Q′ ⊆ Q
of states is a valid µ-calculus formula. Also, if R and S are µ-calculus formulas,
then so are ¬R, R ∪ S, and R ∩ S, with the expected semantics. Finally, for
Z ∈ Var, the µ-calculus formulas µZ .R(Z), νZ .R(Z), MXs(R), and MXe(R)
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are µ-calculus formulas. The latter are defined as

µZ.R(Z) =
⋃
i

Zi, where Z0 = ∅ and Zi+1 = R(Zi),

νZ.R(Z) =
⋂
i

Zi, where Z0 = Q and Zi+1 = R(Zi),

MXs(R) = {q ∈ Q | ∀x ∈ X .∃y ∈ Y . T (q, (x, y)) ∈ R} , and
MXe(R) = {q ∈ Q | ∃x ∈ X .∀y ∈ Y . T (q, (x, y)) ∈ R} .

The operation MXs(R) gives all states from which the system is able to force
the play into a state of R in one step. Analogously, MXe(R) gives all states from
which the environment can enforce a visit to R in one step.

2.3 Specifications for Reactive Systems

A reactive system is a Mealy machine that continuously interacts with its envi-
ronment via a set X of inputs and a set Y of outputs. Without loss of generality
we assume that all signals are Boolean. We consider two kinds of specifications.
The first one, denoted with ϕP , consists of a set P of properties. Let σ |= p
denote that trace σ ∈ Σω fulfills property p ∈ P . Then σ fulfills ϕP , written
σ |= ϕP , iff for all p ∈ P , σ |= p holds. We assume two special properties >
and ⊥, where σ |= > and σ 6|= ⊥ for every σ. The second kind of specifications,
denoted ϕA,G, is given as a pair (A,G), where A is a set of environment as-
sumptions and G is a set of system guarantees. If all assumptions are met, the
specification requires the system to fulfill all guarantees, i.e.,

σ |= ϕA,G iff
(
for all a ∈ A, σ |= a

)
implies

(
for all g ∈ G, σ |= g

)
. (3)

A Generalized Reactivity(1) [23] specification (GR(1), for short) is of the
form ϕA,G. It can be transformed [23] into a game GGR1 = (Q,Σ, T, q0,Win)
with m special sets Je

i ⊆ Q and n sets Js
j ⊆ Q of states. Every Je

i is a set of
accepting states for the environment. They correspond to environment assump-
tions. Analogously, the sets Js

j correspond to system guarantees. The winning
region WGR1

sys of the system is characterized [23] by the formula

WGR1
sys = νZ .

n⋂
j=1

µY .

m⋃
i=1

νX . Js
j ∩MXs Z ∪MXs Y ∪ ¬Je

i ∩MXsX. (4)

A GR(1) specification is realizable iff q0 ∈WGR1
sys in the corresponding game.

2.4 Minimization Algorithms

We will use two different minimization algorithms for unrealizable core computa-
tion. Delta Debugging [28] is an algorithm to isolate the cause of a failure. Given
a procedure test and some input C that makes test fail (denoted test(C) = 8),
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it computes a minimal input Ĉ = ddmintest(C), with Ĉ ⊆ C, which still makes
test fail. In the best case, ddmin requires only a logarithmic number of checks
whether test fails. In the worst case, a quadratic number of checks is needed.
The reader is referred to [28] for detailed information on the algorithm.

The second minimization algorithm [5] we use removes one element after
the other from the given set C. If test passes without a particular element,
this element is part of the unrealizable core and is added again. Otherwise, the
algorithm proceeds without this element. Thus, exactly |C| invocations of test
are required. This algorithm will be denoted linMintest.

3 Model-Based Diagnosis for Unrealizability

In this section, we describe how MBD can be used to perform error localization
in an unrealizable specification. The difference to standard MBD is that we do
not diagnose a conflict between a system description and an observation but an
inherently conflicting system description. Our technique can be applied to many
specification languages. The prerequisites are that properties can be removed
from specifications, output signals can be existentially quantified in properties,
and that a decision procedure for the realizability of a specification is available.

3.1 Property Specifications

In this section, we assume that the unrealizable specification is given as a set P of
properties for a system with inputs X and outputs Y . Since every property typi-
cally represents a relatively self-contained and independent aspect of the system
behavior, we define every property to be a component. That is, COMPP = P .
Furthermore, we define the system description SDP to be the tuple (P,X, Y ).
There is no observation in our setting. As an abstraction for the notion of log-
ical consistency, we define a function consistentSDP

: 2COMPP → {true, false}.
Intuitively, consistentSDP

(P ′) with P ′ ⊆ COMPP gives true iff the system de-
scription SDP is consistent under the assumption that all components c ∈ P ′

behave normally. More formally, we transform ϕP to ϕ̃P such that for every
trace σ ∈ Σω, σ |= ϕ̃P iff for all p ∈ P , ¬AB(p) implies σ |= p. Moreover,
consistentSDP

(P ′) = true iff ϕ̃P is consistent with ¬AB(p′) for all p′ ∈ P ′. That
is, abnormal properties do not have to be fulfilled in ϕ̃P , so we can think of them
as removed from the specification. Let realizable be a function which decides the
realizability of a specification. Then, we can finally use the notion of realizability
to define consistency as consistentSDP

(P ′) = realizable(P ′).

Lemma 1. The function consistentSDP
is monotonic, i.e.,

∀P ′′ ⊆ P ′ ⊆ P .¬ consistentSDP
(P ′′)⇒ ¬ consistentSDP

(P ′).

This follows from the fact that adding properties to an unrealizable specification
preserves unrealizability. In analogy to Eq. 2, a conflict is a set CP ⊆ COMPP
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such that consistentSDP
(CP ) = false, i.e., realizable(CP ) = false. A minimal con-

flict is therefore what is also called a minimal unrealizable core of the specifi-
cation [5]. Corresponding to Eq. 1, a diagnosis is finally a minimal set ∆P ⊆
COMPP such that consistentSDP

(COMPP \∆P ) = true.

Observation 1 Let CP be a conflict for an unrealizable specification ϕP = P .
In order to make ϕP realizable, at least one property p ∈ CP must be modified.

One cannot obtain a realizable specification by modifying properties p ∈ (P \CP )
only, because the set CP of properties forms an unrealizable specification already.
Any superset of properties will be unrealizable as well (cf. Lemma 1). Informally
speaking, there must be something wrong with at least one conflict element.

Observation 2 A diagnosis ∆P ⊆ P is a minimal set of properties that can be
modified in such a way that the specification becomes realizable.

Clearly, the specification becomes realizable if all p ∈ ∆P are replaced by >.
Minimality follows from the definition.

Example 1. The specification ϕP = {p1, p2, p3} with1 p1 = G(I1=0 ⇒ O1=1),
p2 = G(I1=1 ⇒ O1=0), p3 = G F(I1 ⇔ O1 ∧ I2 ⇔ O2), X = {I1, I2}, and
Y = {O1, O2} is unrealizable because p1 and p2 require that output O1 is always
the negation of input I1, while p3 requires these two signals to be equal infinitely
often. The specification contains the conflicts C1 = {p1, p2, p3}, C2 = {p1, p3},
and C3 = {p2, p3}, the latter two being minimal. Conflict C2 states that no sys-
tem can implement p1 and p3 at the same time, independent of p2. Analogously
for C3. The sets ∆1 = {p3} and ∆2 = {p1, p2} are the minimal hitting sets
for the collection of all minimal conflicts, since they share at least one element
with both C2 and C3. Hence, ∆1 and ∆2 are (the only) diagnoses. According to
Observation 2, the user can therefore weaken either property p3 or both prop-
erties p1 and p2 in order to make the specification realizable. Suppose now that
the user is only given the unrealizable core C2. In this case, she might attempt
to modify p1 alone in order to resolve the unrealizability. However, this is not
possible because no matter how p1 is changed, even if it is >, there is still a con-
flict between p2 and p3. Our debugging approach takes this circumstance into
account by combining information about all unrealizable cores. This allows for
more precise error localization than the presentation of a single unrealizable core.

3.2 Assumption/Guarantee Specifications

Let ϕA,G = (A,G) be an unrealizable specification consisting of the environment
assumptions A and the system guarantees G.

Proposition 1. If a diagnosis is defined to be a minimal set ∆A,G ⊆ (A ∪ G)
of assumptions and guarantees which can be modified in such a way that the
specification becomes realizable, then every set {a} for a ∈ A is a diagnosis.
1 We use the common LTL syntax, where G represents the temporal operator “always”

and F denotes “eventually”.

7



This follows directly from Eq. 3, since replacing any assumption with ⊥ would
give a realizable specification. In other words, it does not make sense to search
for assumptions that can be modified in order to obtain a realizable specifica-
tion, because every assumption can be modified in such a way. But not every
guarantee can be altered to obtain a realizable specification. Hence, we define
COMPG = G, implicitly assuming that all assumptions are correct. Furthermore,
we define the system description SDA,G to be be the tuple (A,G,X, Y ), and
consistent(A,G,X,Y )(G′) = realizable((A,G′)) for G′ ⊆ G. It follows that a conflict
is a set CG ⊆ G of guarantees such that realizable((A,CG)) = false. Consequently,
a diagnosis is a minimal set ∆G ⊆ G such that realizable((A,G \∆G)) = true.

Lemma 1 and the Observations 1 and 2 apply in this case as well, with the
obvious adaptations. Since specifications ϕP are special cases of specifications
ϕA,G (with A = ∅), we restrict our investigations to the latter form in the
following.

3.3 Diagnosing Variables

In the previous section we showed how to identify (sets of) guarantees that can
be weakened in order to obtain a realizable specification. In this section we define
a formalism to identify signals that may be over-constrained, i.e., signals that
can be less restricted in order to resolve the unrealizability. We also show how
the two approaches can be combined.

Let ϕA,G = (A,G) be an unrealizable specification over the inputs X and
outputs Y , and let σ = (x0, y0)(x1, y1) . . . ∈ (X × Y)ω be a trace. As already
introduced rather informally in [17], we can define an existential quantification
(A,∃Y ′ . G) of the outputs Y ′ ⊆ Y in the guarantees of ϕA,G with semantics

σ |=
(
A,∃Y ′ . G

)
iff

(
∀a ∈ A . σ |= a

)
implies

(
∀g ∈ G . σ |= ∃Y ′ . g

)
.

The existential quantification ∃Y ′ . g in one single guarantee g ∈ G is defined as

σ |= ∃Y ′ . g iff ∃y′
0y

′
1y

′
2 . . . ∈

(
2Y ′
)ω

.(x0, y
E
0 )(x1, y

E
1 )(x2, y

E
2 ) . . . |= g,

where yE
i = (yi \ Y ′) ∪ y′

i for all i ≥ 0. Informally speaking, an existential
quantification ∃Y ′ . G of the variables Y ′ ⊆ Y in all guarantees g ∈ G re-
moves all restrictions on the variables y ∈ Y ′. The specification (A,∃Y ′ . G′)
allows arbitrary values for all outputs y ∈ Y ′ in all time steps. Also note
that the quantification is performed on every single guarantee, and not on
the conjunction of all guarantees. With COMPY = Y and Y ′ ⊆ Y , we define
consistent(A,G,X,Y )(Y ′) = realizable((A,∃Y \ Y ′ . G)). Consequently, a conflict is
a set CY ⊆ Y of outputs such that realizable((A,∃Y \ CY . G)) = false. Finally,
a diagnosis is a minimal set ∆Y ⊆ Y such that realizable((A,∃∆Y . G)) = true.
Every ∆Y contains signals that may be over-constrained, because removing re-
strictions on these signals resolves the unrealizability.

An alternative definition ∃̃ of the existential quantification operates on the
conjunction of all guarantees instead of every guarantee in isolation. As an ex-
ample where this makes a difference, consider the specification ϕA,G = (A,G) =
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({>}, {G(O),G(¬O)}), where O is the only output. We have that (A,∃{O} . G)
is realizable (it allows all traces), while (A, ∃̃{O} . G) is not. Consequently, {O}
is a diagnosis when using ∃ but not when using ∃̃. Our approach works for both
definitions. However, we decided for ∃ because we think that {O} should be a
diagnosis for the example. After all, if there was no output O, there would also be
no conflict. Furthermore, the user can often comprehend what a quantification
in one guarantee means. Understanding what a quantification in the conjunc-
tion of all guarantees means is typically much more difficult, because complex
dependencies between the guarantees may exist.

The approaches of diagnosing properties and signals can also be combined
by defining COMP = G ∪ Y . With consistent(A,G,X,Y )(B) = realizable((A,∃Y \
B .(G ∩ B))) and B ⊆ COMP we have that CY,G ⊆ (Y ∪ G) is a conflict iff
realizable((A,∃Y \C .(G∩C))) = false. A diagnosis is now a minimal set ∆Y,G ⊆
(Y ∪G) such that realizable((A,∃(Y ∩∆) .(G \∆))) = true.

Theorem 1. Every diagnosis ∆Y and every diagnosis ∆G for an unrealizable
specification ϕA,G is also a diagnosis with respect to the definition of ∆Y,G.

Proof. realizable((A,∃∆Y . G))⇒ realizable((A,∃(Y ∩∆Y ) .(G \∆Y ))) and
(∀∆′

Y ⊂ ∆Y .¬ realizable((A,∃∆′
Y . G)))⇒

(∀∆′
Y ⊂ ∆Y .¬ realizable((A,∃(Y ∩∆′

Y ) .(G \∆′
Y )))) since Y ∩ ∆′′

Y = ∆′′
Y and

G \∆′′
Y = G for all ∆′′

Y ⊆ ∆Y . Analogously for ∆G.

Theorem 1 states that the definition of ∆Y,G subsumes those of ∆Y and ∆G.
Having all diagnoses ∆Y,G, we would not gain further diagnoses by computing
∆Y and ∆G. Hence, we will use the definition of ∆Y,G in the following.

Example 2. Let ϕA,G = (∅, {p1, p2, p3}), where p1, p2, and p3 are defined as for
Example 1. The minimal conflicts are C1 = {p1, p3, O1} and C2 = {p2, p3, O1}.
The sets ∆1 = {p3}, ∆2 = {p1, p2}, and ∆3 = {O1} form the minimal hitting
sets for the collection {C1, C2} of minimal conflicts, and hence also the diagnoses
for the unrealizable specification ϕA,G. Compared to Example 1, we obtain ∆3 =
{O1} as additional diagnosis. That is, when using not only guarantees but also
outputs as components for diagnosis, we also get the explanation that O1 may
be over-constrained. No diagnosis involves O2, so O2 does not contribute to the
unrealizability. Properties are formulated in terms of signals. Therefore, having
both properties and signals as diagnoses allows to track down the error from
both these dimensions. For instance, in this example, it is natural to assume
that there is something wrong with O1 in p3 but not with O2 in p3.

3.4 Implementation

An implementation of the diagnosis approach as described in the previous section
is straightforward. The only prerequisite is that a decision procedure for the
realizability of a specification has to be available. We use the algorithm of [25]
to compute diagnoses via a hitting set tree. It requires a procedure to compute
conflicts not containing a given list of components, if such a conflict exists. This

9



can be implemented with a single realizability check. However, the algorithm
performs better if the computed conflicts are minimal. Such a procedure can be
implemented as

cNotSD(B) =
{

None if consistentSD(COMP \B)
minSD(COMP \B) otherwise ,

where minSD(M), with M ⊆ COMP and ¬ consistentSD(M), returns a set M̂ ⊆M
such that ¬ consistentSD(M̂) and ∀M ′ ⊂ M̂ . consistentSD(M ′). The procedure
minSD can be implemented, e.g., as minSD(M) = ddmintestSD(M) or minSD(M) =
linMintestSD(M) with testSD(M ′) = 8 ⇔ ¬ consistentSD(M ′). Experiments [17]
show that ddmin is often much faster than linMin. When using ddmin, the mono-
tonicity of test (cf. Lemma 1) can be exploited to speed up computation [28]: all
encountered sets M ′ for which testSD(M ′) 6= 8 holds are stored. If a subset M ′′

of a stored set M ′ is tested, testSD(M ′′) 6= 8 can be returned without actually
invoking the realizability check.

4 Efficient Implementation for GR(1) Specifications

In our framework, diagnoses computation requires many unrealizable core com-
putations, which in turn require lots of realizability checks. Thus, it is of utmost
importance that these procedures are implemented efficiently. In this section, we
show how the performance of these operations can be improved, using GR(1)
specifications as an example. For GR(1) specifications, realizability can be de-
cided by constructing a game, computing the winning region for the system, and
checking if the initial state is contained in this winning region. This applies to
many other specification languages as well. We use approximations of the win-
ning region to define approximations of realizability. The only GR(1)-specific
part is how these approximations of the winning region are defined.

A procedure realizableO(ϕ) is called an over-approximation of realizable(ϕ)
iff ∀ϕ . realizable(ϕ) ⇒ realizableO(ϕ). Such an over-approximation can be used
to compute a minimal unrealizable core in two steps. In the first step, an over-
approximation C ′ of the core is computed using a minimization algorithm which
repeatedly applies realizableO. In a second step, C ′ is further reduced to the
exact core C by repeatedly applying the exact realizability check. If a procedure
realizableO can be found which is both fast and accurate, this two-step approach
can increase the performance of the unrealizable core computation significantly.
The leverage comes from the fact that the expensive exact checks are performed
on relatively small subsets of the specification only.

For GR(1) specifications, we can define realizableGR1(ϕ) ⇔ q0 ∈ WGR1
sys . See

Section 2.3. In order to obtain approximations to this procedure, we define the
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following sets of states in the GR(1) game GGR1 = (Q,Σ, T, q0,Win):

AGR1
sys = µX .A′ ∪MXs(X) with A′ =

m⋃
i=1

νY .¬Je
i ∩MXs(Y ),

BGR1
sys = µX .B′ ∪AGR1

sys ∪MXs(X) with B′ = νY .MXs(Y ) ∩
n⋂

j=1

Js
j , and

CGR1
env = µX .C ′ ∪MXe(X) with C ′ =

n⋃
j=1

νY .MXe(Y ) ∩ ¬Js
j ∩

m⋂
i=1

Je
i .

These sets were chosen such that they are close to WGR1
sys or Q \WGR1

sys , yet fast
to compute. Some more approximations were tried, but the listed ones showed
the best performance in experiments. AGR1

sys contains all states from which the
system can force the environment to violate one assumption. The set B′ consists
of all states from which the system can enforce to stay in the intersection of all Js

j

forever, thus fulfilling all system guarantees. BGR1
sys contains the set of states from

which the system can force the play into a state of B′ or AGR1
sys . Clearly, AGR1

sys ⊆
WGR1

sys and BGR1
sys ⊆ WGR1

sys . C ′ is the set of states from which the environment
can enforce to stay in the intersection of all sets Je

i of accepting states of the
environment but outside one particular set Js

j of accepting states of the system.
Hence, CGR1

env ⊆ (Q \WGR1
sys ). With these sets, we define realizableGR1

O (ϕ)⇔ q0 6∈
CGR1

env as an over-approximation of realizableGR1, and

realizableGR1
E (ϕ) =


true if q0 ∈ AGR1

sys

true else if q0 ∈ BGR1
sys

false else if q0 ∈ CGR1
env

realizableGR1(ϕ) otherwise

as a more efficient implementation of realizableGR1. Finally, we have

cNotGR1
SD (B) =

{
None if realizableGR1

E ((A,∃(Y ∩B) . G \B))
minGR1

SD ((G ∪ Y ) \B) otherwise,

with minGR1
SD (M) = linMintest2SD(ddmintest1SD(M)). The algorithm ddmin operates

on test1SD defined as test1SD(M ′) = 8⇔ ¬ realizableGR1
O ((A,∃(Y \M ′) . G∩M ′)),

and thus returns an over-approximation of the minimal unrealizable core. This
over-approximation is further reduced by linMin, operating on test2SD(M ′) = 8⇔
realizableGR1

E ((A,∃(Y \M ′) . G∩M ′)), and yielding the exact core. We use linMin
instead of ddmin in the second step, because ddmin does not perform well when
given an almost minimal set. It would waste many checks until the granularity is
high enough to actually remove elements. As another performance optimization,
we use early termination in the fixpoint computations. That is, if realizability
or unrealizability is implied by an iterate of a fixpoint already, we abort the
computation. Furthermore, for realizableGR1

E , we use the set Q \ CGR1
env of states

as a starting point for the outermost greatest fixpoint computation of WGR1
sys .
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5 Experimental Results

We implemented the diagnosis approach for the class of GR(1) specifications
inside Marduk, the back-end of RATSY [1]. The implementation2 as well as
the scripts3 to reproduce our performance results are available for download. In
this section we first give an example to illustrate the usefulness of our debugging
approach. After that, we provide performance results for some more benchmarks.

5.1 Example

Our example specification (G5wst2 in Table 1) describes a generalized buffer
connecting 5 senders to 2 receivers. It consists of 24 signals and 110 properties.
We use lower case letters for inputs and upper case letters for outputs. The inputs
stob_reqi, with 0 ≤ i ≤ 4, are used to signal that sender i requests to send data.
With the outputs BTOS_ACKi the buffer can acknowledge to sender i that sending
is allowed. The buffer also communicates with a FIFO storage unit. The output
ENQ is set if data should be enqueued into the FIFO. All other signals are not
relevant for this example. A guarantee G(ENQ=0) has been added artificially to
make the specification unrealizable. This guarantee forbids the buffer to enqueue
data into the FIFO, which makes it impossible to handle any requests by the
senders. An unrealizable core contains the system guarantees

BTOS_ACK4=0 ∧ ENQ=0 ∧ DEQ=0 (5)
G((BTOS_ACK4=0 ∧ X BTOS_ACK4=1)⇒ X ENQ=1) (6)
G(ENQ=0) (7)
G F(stob_req4=1⇔ BTOS_ACK4=1) (8)
G((rtob_ack0=1 ∧ X rtob_ack0=0)⇒ X DEQ=1) (9)
G((rtob_ack1=1 ∧ X rtob_ack1=0)⇒ X DEQ=1) (10)
G(empty=1⇒ DEQ=0) (11)

and the outputs BTOS_ACK4, ENQ, and DEQ. This means that the system could not
fulfill the listed guarantees even if it could set all outputs other than BTOS_ACK4,
ENQ, and DEQ completely arbitrarily. This is the case because BTOS_ACK4=0 ini-
tially (Eq. 5). It cannot change to 1 due to Eq. 6 and 7. If stob_req4=1 forever,
then the fairness guarantee stated in Eq. 8 cannot be fulfilled. The remaining
guarantees (Eq. 9 to 11) are in the core because without them the system could
enforce a violation of one environment assumption.

When the user is given this core (as suggested by [5]), or even an explana-
tion [17] thereof, she has to face the following problem: She is presented only
one inconsistency in the specification, but many more may exist, and she has
to resolve all of them. There are often many ways to fix the presented conflict
but only a few ways to fix all conflicts in the specification simultaneously. Our
2 http://rat.fbk.eu/ratsy/index.php/Main/Download
3 http://www.iaik.tugraz.at/content/research/design verification/others/
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approach identifies guarantees and outputs which can be modified to resolve
all conflicts. In our example, the user could learn from the presented core that
Eq. 6 should be weakened. However, this does not make the original specification
realizable, since other conflicts not containing Eq. 6 exist. The same argument
can be made for Eq. 8. In fact, identical unrealizable cores exist with BTOS_ACKi
instead of BTOS_ACK4 for all 0 ≤ i ≤ 3. What all conflicts have in common is the
guarantee in Eq. 7 (the error we introduced). Our algorithm identifies exactly
this guarantee and the signal ENQ as the only single-fault diagnoses. Hence, it
provides much more accuracy in error localization than unrealizable cores or
explanations thereof.

5.2 Performance Evaluation

We evaluated our diagnosis approach using the same benchmarks as in [16, 17].
These contain mutants of two parameterized specifications. One is an arbiter for
the ARM AHB bus [2], parameterized with the number of masters it can handle.
Mutants are denoted Anei, where n is the number of masters, e is the error
that was introduced artificially, and i is a running index to distinguish different
modifications of the same kind. The term woef for e means that a fairness
assumption was removed, wsf means that a fairness guarantee was added, and
wst indicates that the specification was augmented with a safety guarantee.
The second specification defines a generalized buffer [3], connecting n senders to
two receivers. Mutants are denoted Gnei with the same syntax. All specification
mutants have between 90 and 6004 properties and 22 to 218 signals. They are
all satisfiable but unrealizable. The experiments were performed on an Intel
Centrino 2 processor with 2× 2.0 GHz, 3 GB RAM, running 32-bit Linux.

Table 1 summarizes performance results. The Columns 1 to 3 give results
for one minimal conflict (= unrealizable core) computation, using the algorithm
of [17]. Column 1 gives the size of the conflict, Column 2 the number of guaran-
tees in the conflict, and Column 3 the time needed for conflict computation. The
Columns 4 to 8 summarize results for single-fault diagnoses computation. The
number of single-fault diagnoses is given in Column 4. The next column lists
the count of diagnoses that are guarantees. The time for diagnosis computation
as described in Section 3.4 with ddmin as a minimization algorithm is shown in
Columns 6. Column 7 presents the time for exactly the same computation, but
when using the performance optimizations with approximations of realizability,
as introduced in Section 4. Column 8 presents the according speed-up factor
due to these optimizations. The Columns 9 to 12 finally give the number of
diagnoses with at most two and three elements and the according computation
times, respectively. Entries preceded by ’>’ indicate time-outs.

Our experimental results underline three statements. First, and most impor-
tantly, MBD gives a higher precision for error localization than the computation
of a single unrealizable core. Single-fault diagnoses computation produces 40 %
less fault candidates than unrealizable core computation, where every unrealiz-
able core element is taken as a fault candidate (Column 1 versus Column 4).
That is, 40 % of the unrealizable core elements cannot be modified in such a way
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Table 1. Performance Results.

Column 1 2 3 4 5 6 7 8 9 10 11 12
One Conflict Single-Fault Diagnoses Mult. Fault Diagnoses
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[-] [-] [sec] [-] [-] [sec] [sec] [-] [-] [sec] [-] [sec]

A2woef1 9 4 0.5 7 2 2.6 1.5 1.8 14 13 47 48
A4woef1 11 4 2.9 8 1 311 232 1.3 15 719 20 4.6 k
A5woef1 12 4 12 9 1 2.5 k 960 2.6 16 6.1 k 21 >40 k

A2wsf1 8 4 0.4 6 2 5.0 1.4 3.5 6 2.3 7 6.7
A4wsf1 9 4 2.5 7 2 213 62 3.4 7 70 8 124
A5wsf1 9 4 16 7 2 4.9 k 1.1 k 4.7 7 482 8 1.6 k

A2wsf2 12 6 0.8 6 2 7.4 1.7 4.3 32 9.9 36 12
A4wsf2 20 10 5.6 7 2 444 59 7.6 64 831 72 1.1 k
A5wsf2 12 5 46 12 5 8.0 k 1.7 k 4.7 12 1.5 k 12 1.7 k

A2wst1 9 4 0.5 8 3 3.6 1.3 2.8 8 1.7 12 3.8
A4wst1 11 4 1.5 9 2 93 47 2.0 9 50 10 52
A5wst1 12 4 5.0 10 2 1.6 k 336 4.8 10 348 10 365

A2wst2 10 5 0.6 8 3 3.4 1.6 2.1 8 2.6 12 5.6
A4wst2 12 5 2.0 9 2 115 50 2.3 9 55 10 62
A5wst2 13 5 7.0 10 2 449 221 2.0 10 231 10 254

G5woef1 15 8 1.4 10 6 3.3 3.0 1.1 14 7.2 27 20
G20woef1 15 8 8.2 10 4 24 23 1.0 14 43 42 664
G100woef1 15 8 125 10 4 1.2 k 1143 1.1 14 1.9 k - >40 k

G5wsf1 19 11 3.5 14 7 6.2 6.1 1.0 24 12 24 19
G20wsf1 49 26 929 44 22 787 1.0 k 0.8 54 1.2 k 54 1.2 k
G100wsf1 - - >40 k - - >40 k >40 k - - >40 k - >40 k

G5wsf2 7 4 0.5 2 1 1.1 1.1 1.0 27 10 37 64
G20wsf2 14 9 2.7 2 1 8.1 9.2 0.9 72 2.9 k - >40 k
G100wsf2 7 4 116 2 1 404 407 1.0 - >40 k - >40 k

G5wst1 7 3 0.4 1 1 1.1 0.7 1.5 10 2.5 19 7.2
G20wst1 7 3 2.1 1 1 6.3 5.3 1.2 10 18 10 42
G100wst1 7 3 112 1 1 305 302 1.0 10 1.3 k 10 3.0 k

G5wst2 9 6 0.8 2 1 1.6 1.3 1.2 8 4.2 8 14
G20wst2 9 6 3.1 2 1 8.2 6.9 1.2 8 24 8 108
G100wst2 9 6 120 2 1 402 368 1.1 8 1.2 k 8 4.2 k

total 358 177 1.5 k 226 85 22 k 8.0 k 2.7 500 19 k 542 19 k
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that the specification becomes realizable. When only guarantees and no signals
are considered, even more than half of the core elements can be excluded from
being single-fault candidates (Column 2 versus Column 5). For Gnwsf2, Gnwst1,
and Gnwst2 only the one guarantee (and in two cases one signal of this guaran-
tee) that was injected in order to make the specification unrealizable could be
identified by our diagnosis approach. Also for A4woef1 and A5woef1, only one
guarantee is reported as modifiable in order to make the specification realizable.
Moreover, in many cases, the number of diagnoses does not increase much with
increasing bound on the cardinality of the diagnoses (Columns 9 and 11 versus
Column 4). Hence, with MBD, the user often obtains very precise information
stating where the unrealizability of the specification at hand can be fixed.

Second, MBD is more expensive than the computation of a single unrealiz-
able core, unfortunately. Single-fault diagnosis computation takes about 5 times
longer than unrealizable core computation (Column 3 versus Column 7). With-
out our performance optimizations, the situation is even worse (Column 3 versus
Column 6). This is somewhat surprising, since there is only one additional real-
izability check per unrealizable core element required (for checking whether the
core element is a single-fault diagnosis). The explanation for the large difference
in the computation time is that most checks during unrealizable core computa-
tion are performed on small subsets of the original specification. In contrast, a
check whether a given component forms a diagnosis is performed on nearly the
entire specification, and is thus also much more expensive. For multiple-fault
diagnosis computation, we can observe that the computation time increases no-
ticeably with increasing bound on the cardinality of the diagnoses (Column 7
versus Columns 10 and 12). However, this is not considered as severe problem
since the user is typically interested in small diagnoses anyway.

Third, the performance optimizations discussed in Section 4 seem to be ef-
fective. Using approximations of realizability, we obtain a speed-up of factor 2.7
when compared to the straightforward implementation described in Section 3.4
(Column 6 versus Column 7, contrasted in Column 8).

6 Conclusion

In this work we showed how model-based diagnosis can be used to locate bugs in
unrealizable specifications, although the setting is quite different to the classical
model-based diagnosis setting. Our approach computes signals and properties
that can be weakened in order to make the specification realizable. It also yields
conflicts which can be explained using counterstrategies to gain deeper insight
into the problem. Hence, this work complements [17] in a nice way. Although our
diagnosis approach is certainly a valueable debugging aid on its own, we believe
that the combination with [17], as shown in Fig. 1, provides the user with an
even more powerful debugging tool.

Experimental results for GR(1) specifications are promising, especially for
single-fault diagnoses. Compared to unrealizable core computation, model-based
diagnosis produces 40 % less fault candidates. However, this improvement in the
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accuracy comes at the price of a higher computational effort. Hence, model-based
diagnosis can be considered as a stronger weapon against unrealizability. It may
be an overkill for simpler bugs, where a glimpse on an unrealizable core suffices to
fix the problem. However, the higher precision for error localization can be very
important for more trickier bugs involving many properties. In order to tackle
the performance problem, we showed on the example of GR(1) formulas how
realizability and unrealizable cores can be computed faster using approximations.
We achieve a speed-up factor of 2.7 for single-fault diagnoses computation. The
concept is not specific to GR(1) and can be used for other logics as well.

In the future, we plan to investigate techniques to rule out diagnoses with
additional user input, e.g., simulation traces. Furthermore, we plan to experiment
with more fine-grained component definitions such as parts of properties.
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