Repair with On-The-Fly Program Analysis *

Robert Konighofer and Roderick Bloem

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Austria.

Abstract. This paper presents a novel automatic repair approach for
incorrect programs. It applies formal methods and analyzes program be-
havior only on demand. We argue that this is beneficial, especially if
exhaustive program analysis is infeasible. Our approach computes repair
candidates and refines them based on counterexamples. It can be used
with various verification techniques and specification formats to check a
candidate’s correctness. This includes test suites, model checkers verify-
ing assertions, or even the user checking candidates manually, in which
case no explicit specification is needed at all. We use concolic execution
to analyze programs and SMT-solving to compute repair candidates. We
implemented our approach in the open-source debugging environment
FoRENSIC and present first experimental results.

Keywords: Program Repair, Formal Methods, Abstraction-Refinement,
Concolic Execution, SMT-Solving

1 Introduction

Debugging is a labor-intensive and costly activity in every software and hard-
ware development process. Errors must be detected, located and fixed. Clearly,
automation can reduce effort and costs dramatically. Automatic error detection
is already widely used (e.g., model checking or test case generation). Also, au-
tomatic error localization is increasingly applied. The actual correction of the
error, however, is usually done manually. Yet, fixing an error is often difficult,
even if its location is known. This is especially true in other people’s code, and
if the error has not been tracked down manually. As an illustration, consider the
algorithm to compute the greatest common divisor in Section[6.2] There is a bug
in line [35] now try to think of a fix. Other difficulties in fixing bugs manually are
the danger of eliminating only (some but not all) symptoms, or even introducing
new errors. Automatic error correction methods aim to improve this situation.
Formal methods for automatic error correction typically suffer from limited
scalability. They often model the correctness of the entire program with respect
to a given specification in a logic formula [I5/T9] or game structure [I2I13] to
compute repairs. More scalable approaches are usually less systematic. They are

* This work was supported in part by the European Commission through project
DIAMOND (FP7-2009-IST-4-248613), and by the Austrian Science Fund (FWF)
through the national research network RiSE (S11406-N23).

often based on brute-force search guided by genetic mechanisms [II§] or other
heuristics [7U16]. In this work, we attempt to close this gap a little further.

We present a new formal program repair method that addresses the scal-
ability issue by not transforming the entire program into a formula at once.
Instead, program analysis is done on-the-fly whenever information about pro-
gram behavior is missing. We compute repairs by refining a candidate as long
as it is still incorrect. If incorrect, we extract a counterexample, i.e., inputs for
which the specification is violated, and analyze only program behavior that is
possible under this counterexample. This information is then used to refine the
repair candidate such that the counterexample is resolved. Our experience shows
that, often, a few counterexamples (and corresponding refinements) suffice. This
implies that the program needs to be analyzed for a few inputs only.

The main advantage of our new approach is that program analysis focuses
on the information needed for repair. For complex programs, exhaustive analysis
is usually infeasible or at least inefficient. When setting a bound on the analysis
depth (e.g., by limiting the number of loop unrollings) one runs the risk of
abstracting away the wrong information. In contrast, the on-the-fly approach
is aware of which program behavior can safely be ignored until further notice.
Another advantage is the flexibility regarding the verification technique used to
check repair candidates and extract counterexamples. It can be a model checker,
a test suite, or even a human checking candidates manually. Consequently, there
is also flexibility in the specification format. Possibilities are assertions in the
code or test vectors together with expected outputs. Assertions can also be
used to check a program against a reference implementation. In case of the user
checking candidates manually, no explicit specification is needed at all.

We do not expect a complete specification right from the beginning, nor do
we suggest to replace humans in the debugging process. We rather strive to
assist the user and keep her in the loop. If only incorrect repairs are found due
to an incomplete specification, the user needs to refine the specification with
additional properties or test cases. This has the nice side-effect that the quality
of the specification is improved at the same time.

From a technical perspective, our new program repair method builds on the
template-based method introduced in [I5], from which we inherit many features.
The input is an incorrect program, a specification, and a set of potentially faulty
components. The output is a set of replacements of the components such that
the specification is satisfied. We assume that the faulty components are iden-
tified in a preceding automatic error localization phase. In our implementation
we use model-based diagnosis [I5], but other diagnosis methods are also possi-
ble. Not only single-faults but also multiple faulty components can be handled.
Replacements follow templates, which ensures the understandability and main-
tainability of the repaired program. This is important for keeping the user in
the loop. Program analysis is done with concolic execution, repair candidates
are computed using a Satisfiability Modulo Theories (SMT) solver. We see the
main application of our method in debugging simple software programs, e.g.,
first software models of hardware designs. Our implementation works on C pro-

grams. It is integrated in the open-source debugging environment FOREnSiC [2]
and can be downloadedﬂ We also present first experimental results.

This paper is structured as follows. Section [2] discusses related work, and
Section 3| briefly explains existing techniques underlying our approach. Our new
repair method is presented Section [4} The sections [and [6] describe our imple-
mentation and present first experimental results. Section [7] concludes the paper.

2 Related Work

The repair method presented in [I5] uses templates to synthesize new expres-
sions, symbolic or concolic execution for program analysis, and counterexample-
guided refinements for repair. We adopt these strategies and their benefits. How-
ever, in [I5], program analysis transforms the entire program (and specification)
into one large correctness constraint before the repair starts. If complete analysis
is infeasible, the number of examined program paths can be limited. Depend-
ing on what was omitted, the approach may then find incorrect repairs or no
repair at all. Nothing ensures that only irrelevant program behavior is omitted.
The novelty of our new approach is that program analysis is done on-the-fly
during the repair process, focused towards the required information. Moreover,
while [15] only allows assert statements in the code, our new approach is flexible
regarding the specification and verification technique.

The repair method in [I2I13] transforms a finite-state program into a finite-
state game and computes repairs as strategies for this game. In [T1], this idea
is extended to programs with virtually infinite state space using predicate ab-
straction. To the best of our knowledge, this is the only existing formal error
correction method which does not consider the entire program, but uses ab-
straction instead. Its main shortcoming is that it only considers the predicates
found during the preceding verification phase; there is no mechanism to refine
the abstraction if it is too coarse for finding a repair. Our method of performing
program analysis on-the-fly for one counterexample after the other can also be
seen as an abstraction mechanism. The abstraction captures the program behav-
ior for certain inputs only. Our method can also refine an abstraction, simply
by analyzing more inputs. Besides the different way of abstracting, we also use
a different repair computation method (SMT-based instead of game-based).

Program repair is also related to program sketching [I9/18], where a program
with missing parts has to be completed in such a way that a given specification
is satisfied. In [I9], this problem is solved using counterexample-guided refine-
ments, just like in our approach. But also here, program correctness is encoded
into one large formula before synthesis starts. The counterexamples are applied
to this formula and not to the program to refine candidates. The repair method
of [] also uses counterexample-guided refinements, but for combinational cir-
cuits. Less formal repair approaches include methods of repeatedly mutating the
incorrect program and checking if it becomes correct [7I6]. Genetic program-
ming methods typically combine mutation with crossing and selection according

! http://www.informatik.uni-bremen.de/agra/eng/forensic.php

to some notion of fitness [II8II0]. The work in [6] infers preconditions of meth-
ods from passing test cases, and fixes errors by deleting or inserting method calls
such that precondition violations are resolved. An extension [21] uses contracts,
Boolean query abstraction, and various heuristics.

3 Preliminaries

3.1 Symbolic and Concolic Execution

Symbolic execution [514] is a program analysis technique which executes a pro-
gram using symbols instead of concrete values as inputs. Symbols are placehold-
ers for any concrete value from a given domain. Symbolic execution tracks the
symbolic values of all program variables. If a branching point is encountered, a
constraint solver is used to check if both branches are feasible. If so, the execu-
tion forks. For each execution path, a path condition is computed. It evaluates to
true iff the respective path is activated. For a path that results in a specification
violation, the corresponding path condition states when the problem occurs.

Concolic execution [9I7] is a variant of symbolic execution where the pro-
gram is simultaneously executed on concrete and symbolic input values. The
execution path is determined by the concrete values. In parallel, the symbolic
values of all program variables are tracked and a symbolic path condition is com-
puted. After one execution run, one conjunct of the path condition is negated
and all succeeding conjuncts are discarded. Solving this constraint with a con-
straint solver gives inputs that trigger a different execution path. A systematic
method to negate the different conjuncts of the path condition makes sure that
all execution paths are analyzed, or at least a high coverage is obtained [3].

1: int calc(int op, int a, int b) { op=0P, a=A, b=B
************************** PC: true
2 int r = a + b; ¥
777777777777777777777777 i 0p=OP, a=A, b=B, r=A+B ‘
3 if(op !'= 0) PC: true
,,,,,,,,,,,,,,,,,, 0p=0P, a=A, b=B, r=A+B |Yes
4 r=b-a PC: OP # 0 No

[]
777777777 op=0P, a=A, b=B, r=B-A |- - | op=0OP, a=A, b=B, r=A+B
5: return r; PC: OP # 0 PC:OP =0
6: }

Fig. 1. Illustration of the concept of symbolic execution.

Ezample 1. Fig.[I]illustrates symbolic execution on a simple program. This pro-
gram will be used as a running example. It is a simple calculator which can only
add and subtract. Boxes contain the state of the symbolic execution, upper-case
letters are input symbols, and “PC” indicates the path condition. Concolic ex-
ecution of this program could start with the concrete values op = 0, a = 0,
and b = 0. It would execute the path that skips line 4 and compute the path

condition OP = 0. Negating the only conjunct in this path condition and solving
the constraints could give the next concrete input values op = 1, a = 0, and
b = 0. This triggers the other path with the path condition OP # 0.

3.2 Template-Based Repair

We briefly summarize the repair approach of [I5], since our current work builds
on it. The approach targets simple software, the implementation works on (ﬂ
assert-statements serve as specification. The error is assumed to be an incorrect
expression. That is, bugs like missing code or incorrect control flow (like having
an if instead of a while) cannot be handled. The main reason is efficiency.

In a first step, the program is executed symbolically. If an assertion violation
is encountered, model-based diagnosis is used to compute sets of potentially
faulty expressions. For every set of expressions, error correction then attempts
to synthesize replacements. This is reduced to the search for integer constants
using repair templates. A repair template is an expression involving program
variables and template parameters, which are the unknown constants.

Ezample 2. Assume that the program in Fig. [I] is supposed to compute a+b if
op=0, and a-b otherwise. This specification can be formalized with the assertion
assert(op==0 ? r==a+b : r==a-b). Assume further that model-based diagno-
sis identifies the expression b-a in line 4 as potentially faulty. This expression
is now replaced with a template like kO + opxkl + a*k2 + b*k3 + r*k4. Fi-
nally, the approach computes constant values for the template parameters kO to
k4 such that the program satisfies its specification.

Template parameter value computation works as follows. Let ¢ be a vector of
program inputs, and let k& be the vector of template parameters. The program
and its specification are first transformed into a formula correct(i, k) which eval-
uates to true iff the program satisfies the specification when executed on input 7
and repaired with the expression induced by k. The formula is computed us-
ing symbolic or concolic execution. To obtain a repair, one needs to find values
for k such that for all values of i, correct(i, k) holds true. This corresponds to
solving 3k . Vi . correct(i, k). To avoid solving this quantifier alternation directly,
counterexample-guided repair refinement is performed as illustrated in Fig[2]

4{ Compute Candidate %

Input L

Database)
C ter- : Repair
% Check if Correct J—p> Done

Fig. 2. Counterexample-guided repair refinement, as done in [I5].

There is a database I of concrete input vectors v;, which is initially empty. In
a loop, the following steps are performed. First, a repair candidate is computed

2 The implementation handles certain features like pointer arithmetic only approxi-
matively and does not guarantee the repair to be correct in this case.

as a satisfying assignment Ty for the variables k in /\1)7E ; correct(T;, k). This
candidate is correct for the inputs v; € I. Next, the method checks whether the
candidate is correct for all inputs by computing a satisfying assignment v; for %
in — correct (7, Ux,). If no such v; exists, a correct repair has been found. Otherwise,
the vector 7; is a counterexample for the correctness of the repair candidate Uy.
It is added to I to render the next candidate correct also for this input.

Ezxample 3. For the specification and template from Example [2| we have i =
(OP, A, B), k = (ko,k1,ko, k3, ky), and correct(i, k) = (OP = 0) V (ko + ki -
OP+ky-A+ks-B+ky - (A+ B)=A— B). The first candidate is arbitrary and
could be 7 = (0,0,0,0,0), which corresponds to replacing b-a in line 4 by 0.
This is not correct and a counterexample is 7; = (1, 3,2). The next candidate
must satisfy (ko+k1-1+ko-34+k3-24+ks-5=1). A solution, and hence a refined
repair candidate, is T = (0,0,0,—2,1). Since =-(OP =0v—-2-B4+ A+ B = A—B)
is unsatisfiable, no counterexample exists for this candidate. Hence, the method
would suggest to replace b-a in line 4 by r-2%b.

A limit to the number of iterations and a time-out for all constraint solving
steps ensures termination within reasonable time. If no repair is found using a
particular template, the approach switches to a more expressive one. The current
implementation includes the linear template of Example [2] and also templates
involving bitwise operations and bit shifts. Templates for conditions are currently
of the form ¢, OP0 where t. is a template for a non-Boolean expression and
OP € {<,<,>,>,=,#}. The template-based approach ensures that the repairs
are understandable, which is crucial for keeping the user in the loop and for
the maintainability of the corrected program. Our new approach with on-the-fly
program analysis inherits these advantages.

4 Repair with On-The-Fly Program Analysis

The repair method outlined in the previous section first analyzes the entire pro-
gram and computes one large correctness condition covering the program behav-
ior for all possible inputs and for all possible implementations of the expressions
to be synthesized. However, for non-trivial programs, complete program analysis
is typically not feasible. Even if feasible, it may take long and produce an un-
necessarily large condition. When limiting the program analysis depth (e.g., the
maximum number of loop unrollings or execution paths) information needed for
finding a correct repair may be missing. Yet, for computing a repair candidate
with iterative refinements, the correctness condition needs to be accurate for
some inputs only. Only for candidate verification, all inputs need to be covered.
However, candidate verification need not be performed on the same formula as
candidate computation. A completely different method can be used instead.
We remedy these shortcomings by doing program analysis on-the-fly, analyz-
ing the program only for the counterexamples that have been encountered. Fur-
thermore, we decouple the repair candidate computation from the verification.
This allows us to use various verification techniques and specification formats.

4.1 Overview

1 - -oo-EmmEmm T f
Specification i | 1
! Correctness Constraints o 1
: 5
Program . - - g !
. [Compute Repair Candidate J k= :
! : Y Candidate z :
Error Detection ﬂ .

e e ot : Verify Correctness } correct : » Repair
1 %Counterexample]
! . 1
Faulty 1 Program Analysis]
Components 1 1

Fig. 3. Overview of our new error correction method.

Fig. [3] outlines our approach. As input, it takes a specification and an incorrect
program. The output are repairs in form of expression replacements such that
the specification is satisfied. First, potentially faulty expressions are inferred
using existing techniques like [I5] or [I6]. In this work, we focus on repair, i.e.,
computing replacements. This is sketched in the dashed box of Fig.

We maintain a database of correctness constraints that must be satisfied by
any repair. This database is initially empty. In a loop, we first compute a repair
candidate that satisfies these constraints using an SMT-solver. Next, we verify
if this candidate satisfies the specification. If not, the verification step returns a
counterexample. We analyze the program behavior on this counterexample using
concolic execution and add constraints ensuring correctness for this input to the
database. In this way, our method keeps analyzing the program for more and
more inputs, and improving the repair candidates until a correct one is found.
Our experience shows that often a few iterations are enough (see also Section [6)).

The next subsections explain the different steps of our method in more detail.
Then, we give an example and discuss benefits and limitations of our approach.

4.2 Repair Candidate Computation

Our database contains correctness constraints ¢ (k) over the template parameter
values k in some logic (our implementation supports linear integer arithmetic
and bitvector arithmetic). We use an SMT-solver with appropriate theory to
find a satisfying assignment for these constraints. The concrete values of the
template parameters k can be mapped back to concrete expressions using the
repair templates. This gives a candidate program that can be checked.

4.3 Repair Candidate Verification

The verification of repair candidates can be performed in many ways. The pre-
requisite is that the verification method is able to produce a counterexample in

case of incorrectness. One possibility is to execute a test suite. In our setting, a
test suite is a set of input vectors together with corresponding expected output
vectors. In addition to the expected outputs, assertions in the code can be used.
A counterexample is an input vector together with the corresponding expected
output vector such that the actual output does not match the expected one, or
an assertion is violated. In case of assertions in the code, the test suite can also
consist of input vectors only. A counterexample is then an input vector (together
with an empty vector of expected outputs) that triggers an assertion violation.

Another possibility is a model checker taking assertions in the code as specifi-
cation. Model checkers typically prove incorrectness by giving a counterexample.
In our case, this is an input vector for which an assertion is violated. The can-
didate verification can even be performed by a human. Here, a counterexample
could be an input vector together with the expected output. In this case, no
explicit specification is needed at all. The repair engine simply learns a fix using
the input-output examples given by the user in response to the candidates.

The flexibility in the verification comes with flexibility in the specification.
Test cases and assertions have already been mentioned. Assertions can also be
used to compare a program with a reference implementation. One simply ex-
ecutes the program and the reference implementation on the same inputs and
compares the outcome using suitable assertions. This allows the user to flexibly
define what equivalence between the programs means.

4.4 Program Analysis

The crucial step of our approach is program analysis, which is incomplete in
our case. We only look at behavior that is possible under one particular input
assignment, namely the counterexample found in the preceding verification step.
We take the program where incorrect expressions have already been replaced
by templates for new ones, and infer correctness constraints using concolic exe-
cution. The inputs are fixed to the concrete values given by the counterexample.
Only the template parameters k are left open. Symbols represent their yet un-
known values. The idea is to execute all feasible paths in this program, and to
compute the respective path conditions, which are predicates over k. Assertions
in the code are handled just like other branching points: If an encountered as-
sertion holds for the concrete values of the concolic execution run, the symbolic
condition under which it holds is added to the path condition and concolic execu-
tion continues. If the assertion is violated, the condition under which this is the
case is added and the execution run terminates. Program outputs are handled
similarly. Whenever the program outputs a value (which can be modeled by a
call to a special function output (x)), a conjunct is added to the path condition.
If the concrete output matches the expected value, the conjunct states when this
is the case. Otherwise, the conjunct expresses when the output does not match
and the execution run terminates. If no expected output values are included in
the counterexample (see Section 7 the output of the program is ignored.
The concolic execution runs are now divided into failing and passing runs.
A failing run is one that either terminates in an assertion violation or with a

mismatch between the actual and expected output. The corresponding path con-
dition states when this happens. A passing run terminates without violating the
specification. Let F be the set of failing runs and PC" (k) be the path condition
of run r. We compute a necessary condition for program correctness as

p(k) ==\ PC"(k).

reF

This condition is added to the database of correctness constraints. It will exclude
candidates that fail on the input vector for which the program has been analyzed.

Since the inputs to the program are fixed, typically many execution paths
become infeasible. Nevertheless, the set of execution paths may still be very large
or even infinite. One reason for an infinite number of paths can be a loop where
the termination condition depends on the implementation of the components to
be synthesized, i.e., on the template parameter values. This problem arises also
in [I5], with the open inputs making the situation even worse. Just like [I5], we
address this problem by limiting the program analysis depth with a user-given
bound on the number and length of execution paths to consider. A consequence
of these limits can be that the repair refinement loop does not converge. However,
since there is also a bound on the number of refinement iterations, the program
will terminate and the user can try again with higher limits. In general, our
approach is tailored towards finding repairs efficiently for many cases instead of
having a sound and complete method that does not scale.

4.5 Example

Example 4. Assume that the program from Example[1|is specified with the test
cases (op=0,a=3,b=5 — r=8), (1,5,3 — 2), and (1,6,1 — 5). We use the tem-
plate from Example 2] Initially, the database of correctness constraints is empty,
so the first repair candidate is arbitrary. It could be 7z = (0,0,0,0,0), which
means that b-a in line 4 of the program is replaced by 0. Verifying this candidate
with the test cases, we get (1,5,3 — 2) as counterexample. We now use concolic
execution to analyze the program behavior for the input vector (1,5, 3). Only the
execution path including line 4 is feasible. After line 4, r has the symbolic value
ko+k1-1+ko-5+ks-3+k,-8, because b-a has been replaced by the template. Tak-
ing r as the output and 2 as expected value, concolic execution distinguishes two
cases, which are activated with two concolic execution runs r; and r5. The run rq
is passing and has the path condition PC™ (k) = ko+k;-1+ko-5+ks-3+ks-8 = 2.
The run r is failing and has PC”(E) =ko+k-1+ky - 5+ks-3+ky-8F#2.
Since F' = {ry}, we add ¢1(k) = ko + ki1 + k2 -5+ ks -3+ ks -8 = 2 to the
database of correctness constraints. The next iteration starts. Now, the candi-
date has to satisfy o1 (k). A solution is 7z = (2,0,0,0,0), which corresponds to
replacing b-a in line 4 by 2. This candidate fails on the test case (1,6,1 — 5).
For this counterexample, concolic execution produces the correctness constraint

wa(k) =ko+ ki +ko-6+ks-1+ky-7=05 Tt is added to the database and

another iteration starts. The next repair candidate must fulfill ¢4 (k) and @2 (k).

A solution is 7 = (0,0,1, —1,0), which means that b-a is replaced by a-b. This
candidate passes all tests and is presented to the user.

4.6 Discussion

This section discusses the main benefits and limitations of our new repair method.
More focused program analysis: The main advantage of our new repair
method is that program analysis is very focused towards the information needed
for computing repair candidates. Complete analysis is infeasible for complex pro-
grams. In [I5], this issue is addresses by setting a limit on the number and length
of the execution paths to consider. However, since there is no guidance on what
to analyze, this limit can render the probability of obtaining the information rel-
evant for finding a repair very low. In contrast, our new repair method analyzes
the program only for the counterexamples that are relevant for the repair finding
process. There is also a bound on the number and length of the execution paths.
However, since these limits apply locally for each invocation, our new approach
learns at least something about the behavior under each counterexample.

Simpler program analysis: Compared to [15], our new method renders
program analysis with concolic execution simpler because the inputs are always
fixed to one counterexample at a time. This does not only drastically reduce the
number of feasible execution paths, it also simplifies the analysis per concolic ex-
ecution run. We can start to track the symbolic values of the program variables
only after a repair template with unknown parameters has been executed for
the first time. In particular, if a reference implementation is used as a specifica-
tion, our new approach needs to execute the entire reference code with concrete
variable values only (see Section for such a scenario). The approach without
on-the-fly analysis needs to track the symbolic values right from the beginning
because the inputs are not fixed but have a symbolic value.

Flexibility in the specification: From the user’s perspective, the most
important benefit is probably the flexibility in the specification of the desired
behavior. Existing formal correction approaches often support assertions only.
However, writing assertions which accurately reflect the desired behavior and
do not only check for basic properties is difficult. Test cases (possibly together
with some assertions) are often more natural. This flexibility is also important
for keeping the user in the loop. Writing additional test cases if only incorrect
repairs are produced is often simpler than coming up with better assertions.

Better scalability: Our method addresses the scalability issue, which is
common for all formal error correction approaches, from several sides. Doing
program analysis for typically only a few concrete counterexamples has already
been mentioned. The flexibility in the technique for verifying repair candidates
is another factor. Where formal approaches like model checking or symbolic
execution fail, test case execution can still produce meaningful results.

Limitations: A drawback of the separation of concerns is that little infor-
mation (only the counterexample) is passed from the verification phase to the
program analysis phase. Furthermore, certain program paths may be feasible
under several counterexamples, and may thus be analyzed multiple times using

10

concolic execution. The limitation of the approach to incorrect expressions can
be easily weakened in principle, but at the cost of efficiency. Whenever there are
finitely many (and not too many) options to replace a certain construct in the
program, we can analyze all of them. This way, we could handle bugs like having
an if instead of a while, or bugs in the left-hand side of an assignment.

5 Implementation

We implemented our new repair method as a proof-of-concept in the open-source
debugging environment FOREnSiC [2], re-using the provided infrastructure and
parts of the implementation of [I5]. Our new repair engine is integrated with
the existing error localization engine. So far, we implemented two mechanisms
to verify the correctness of repair candidates. The fist one is test case execution,
operating on a given set of input vectors together with corresponding expected
output values. Assertions in the code can be used in addition or as alternative to
the expected outputs. The second verification mechanism uses concolic execution
to compute one large correctness condition, just like [I5], and uses this condition
to verify correctness with an SMT-solver query. This second mechanism was
implemented mainly to have a fair comparison with the existing technique. In
the future, we also plan to implement verification engines using software model
checkers such as CBMC or SATABS. We also want to implement an interface
which asks the user to verify correctness. It would be interesting to see whether
this way of doing semi-automatic program repair is useful and not too laborious.

Our implementation is able to use the SMT-solvers Yices and Z3, either via
their C-API or via the SMT-LIBv2 format. We support linear integer arithmetic
as well as bitvector arithmetic. The concolic execution engine we use for pro-
gram analysis is an extension of CREST [3]. Our repair method also implements
the heuristics of [I5] for preferring simple repairs using Maximum Satisfiability
(MAX-SAT) solving. Besides the source code, the FOREnSiC archive also contains
the scripts to reproduce our experimental results.

6 Experimental Results

In this section, we experimentally compare our new repair method with the
method of [I5] to support the following informal claim.

Claim. If program analysis is done before repair starts, the analysis needs to
be fairly detailed to deliver the information required for finding a repair with
counterexample-guided refinements. Repair with on-the-fly program analysis re-
quires only a fractional amount of this information about the program behavior.

This property is important because complex programs cannot be analyzed
exhaustively. Section shows an example were the method of [15] even fails
because upfront program analysis does not produce the required information
within reasonable time.

11

One could expect that our new repair method is also significantly faster
because the constraints that are used for computing repair candidates are typ-
ically much smaller, and should hence be easier to solve. Unfortunately, if the
constraints do not lack information that is needed for repair, this does not hold
true. The reason is that modern constraint solvers, especially SMT-solvers, are
good in ignoring information that is not needed. The additional time they require
for parsing and simplifying the large formula is usually not so significant.

6.1 Performance Results

Table [I| summarizes performance results for repairing different faulty versions of
the tcas program from the Siemens suite [20]. The tcas program implements
a traffic collision avoidance system for aircrafts. It has about 180 lines of code,
12 integer inputs and one output. It comes in 41 faulty versions, together with a
reference implementation and 1608 test cases. Table[I] only contains those faulty
versions for which our fault model (incorrect expressions) applies. Versions with
missing code or incorrect control flow are not considered. An exception are the
versions tcas21, tcas22, and tcas23. They feature a missing function call, but
this can be compensated by modifying an expression. Table [[]only compares the
error correction step, assuming perfect information about the error location.

The columns 1 to 4 contain results for our on-the-fly repair method using
test case execution to verify repair candidates. Column 1 indicates whether a
repair could be found. Column 2 gives the number of execution paths that had
to be analyzed using concolic execution to find a correct repair candidate. The
number of iterations of the repair refinement loop is listed in Column 3. Col-
umn 4 shows the overall repair time (including program analysis and candidate
verification). The columns 5 to 8 contain exactly the same information for the
on-the-fly method that verifies candidates using a correctness formula express-
ing equivalence with the reference implementation (see Section . Finally, the
columns 9 to 12 show results of the method without on-the-fly analysis. The
specification is the same, namely an assertion requiring equivalence with the
reference implementation. Column 10 gives the minimum number of execution
paths that need to be analyzed for the method to find a repair. For this number
of analyzed execution paths, the last two columns list the number of iterations
of the repair refinement loop and the overall repair time, respectively.

All experiments were performed on an Intel P7350 processor with 2 x 2.0
GHz and 3 GB RAM, running 32-bit Linux. As SMT-solver we used Z3 version
3.1 with linear integer arithmetic, interfaced via its SMT-LIBv2 interface. A
time-out of 60 seconds was set for all SMT-solver calls.

Discussion

What stands out in Table [I] is that repair with on-the-fly program analysis
and test cases is able to fix all benchmarks, and is significantly faster than the
other methods. Of course, the 1608 test cases form a less restrictive specification
than equivalence with the reference implementation. However, manual analysis

12

Table 1. Performance results.

Col. 1 2 3 4 5 6 7 8 9 10 11 12
On-the-fly On-the-fly with
with testing equivalence checking Method of [13]
n
T 2] o]) o] < 0
<] Q + (<5}
S 23 £ £ E o3 & G -
L EE £ % T %2 E L POREE -
€ ¥ 4 £ F *E o4 B EF E % §
[F fsee [FF] [sec] I F [[sec]
tcas01 yes 16 9 23 no - - - yes 337 8 65
tcas02 yes 40 11 30 yes 8 3 12 yes 753 b 26
tcas06 yes 32 5 12 yes 60 8 79 yes 1393 7 55
tcas07 yes 4 3 10 yes 2 2 6 yes 305 3 11
tcas08 yes 12 7 18 yes 32 17 38 yes 305 5 17
tcas09 yes 6 4 13 yes 8 5 28 yes 9893 6 41
tcas1l0 yes 104 10 32 no - - - no - - -
tcasl3 yes 14 8 33 no - - - no - - -
tcasl4 yes 24 13 11 no - - - no - - -
tcasl6 yes 2 2 9 yes 2 2 6 yes 305 2 9
tcasl7 yes 4 3 10 yes 2 2 6 yes 305 3 12
tcasl18 yes 2 2 8 yes 34 18 40 yes 305 4 14
tcasl9 yes 12 7 18 yes 32 17 37 yes 305 5 18
tcas20 yes 10 6 15 yes 8 5 26 yes 593 9 85
tcas21 yes 32 17 206 no - - - no - - -
tcas22 yes 32 17 206 no - - - no - - -
tcas23 yes 22 12 113 no - - - no - - -
tcas24 yes 22 12 112 no - - - no - - -
tcas25 yes 10 6 17 yes 14 8 100 yes 337 7 82
tcas28 yes 8 3 10 yes 20 6 35 yes 1329 4 34
tcas35 yes 8 3 9 yes 20 6 46 yes 1329 5 41
tcas36 yes 2 2 7 yes 2 2 6 yes 305 2 8
tcas39 yes 10 6 17 yes 14 8 101 yes 337 7 82

avg. 100% 18.6 7.3 43 65% 17.2 4.7 38 0% 397 5.1 38

of the computed repairs showed that they are reasonable — they do not just
exhibit “holes” in the test suite. This illustrates that repair with test cases as
specification can be useful and has the potential to scale better.

The columns 3, 7, and 11 show that a few iterations of the repair refinement
loop are often enough to find a repair. Our new repair method with on-the-fly
program analysis exploits this circumstance by doing program analysis only for
the few counterexamples that show up. On average, it analyzes only 18 execution
paths (see Column 2 and 6). Without on-the-fly analysis, at least 397 execution
paths need to be analyzed on average (Column 10). These observations confirm
the Claim about analysis depth postulated earlier. With the same mechanism

13

to verify the correctness of repair candidates, the running times are almost the
same (Column 8 vs. 12). The scalability benefits of our new method become more
evident when exhaustive program analysis is not feasible anymore, as illustrated
in the next section.

6.2 Greatest Common Divisor Example

The tcas example in the previous section fits the repair method with upfront
program analysis well because it has only a finite (and small) number of execu-
tion paths. Let us now increase the level of difficulty. Consider the following C
code implementing a sophisticated algorithm to compute the Greatest Common
Divisor of two integers in the function gcd. The code also contains the Euclidean
algorithm as reference implementation (gcdR), and an equivalence assertion in
line The gcd implementation contains a bug which is not easy to see and
even more difficult to fix: line B8 should read u - v instead of u >> 1.

21 |UI gcd(UI u, UI v) {
1 |#include <assert.h> 29 UL s = 0:
2 |#include <forensic.h> 23 if (v = (’) || v = 0)
3 |#define Ul unsigned int 94 return u | v;
4 25 | for (;((u|v)&l)==0;++s){
5 | //<ASSUME_.CORRECT> % wsS>= 1; v >>= 1
6 |UI gcd(UI u, UI v); 27 |}
7 |UI gcdR(UI a, UI b) { 28 | while((u & 1) = 0)
8 if(a = 0) return b; 29 a S>= 1:
9 | while(b = 0){ 30 | do { ’
10 if(a > b) a=a~— b; 31 while ((v & 1) = 0)
11 else b=5b— a; 39 v S>= 1:
12 |} 33 iflu<=v) { v = u;
13 return a; 34 } else {
14|} .] 35 UI tmp = u >> 1;
15 | void main() { 36 u=v; v=tnp;
16 | UL a, b; 37 }
17 | FORENSIC_input_UI(a); a8 | v o= 1
18 FORENSIC_input_UI(b); 3 | } while("f = 0);
19 assert (gcdR(a,b) = 40 return u << s;

ged(a,b)); a1 |}

20 |} //</ASSUME.CORRECT>

We first apply our new repair method with on-the-fly program analysis and test-
based repair candidate verification. As test inputs, we simply take all pairs a,b
with 0 < a,b < 100. The number 100 was chosen arbitrarily, the correct repair is
also found with lower numbers like 15. For program analysis, we do not limit the
number of execution paths to analyze, but rather their length. With two or three
invocations of our method, we found out that a length of 55 is enoughEI Using
these parameters and Z3 with bitvector arithmetic, our new method found the

3 This number roughly corresponds to the number of executed statements.

14

sequence of repair candidates “873”, “85”, “u - 2”,and “u - v” in 101 seconds.
The last one, “u - v”, was found to be correct. Only 1570 program paths had
to be analyzed. With a more careful choice of the parameters, a correct repair
can also be found with less than 1000 paths analyzed.

We failed in applying the method with upfront program analysis to find a
repair. Again, we experimented with an increasing maximum execution path
length during program analysis. With a maximum length of 75, the faulty state-
ment was not even executed in such a way that a wrong result was produced.
With a maximum length of 80, we were already analyzing 10 402 execution paths,
which took more than half an hour. Still, the program analysis was so inaccu-
rate that only incorrect repairs (usually replacing the faulty expression with
some constant) were foundﬁ

Discussion

This example nicely demonstrates the scalability benefits of our new approach.
Complete program analysis is simply infeasible for the gecd program. The many
loops and branching points lead to huge numbers of possible execution paths,
even if one considers only paths of relatively short length. Hence, one can only
analyze small parts of the program behavior. When doing random program anal-
ysis before repair starts, it is very unlikely that the information needed for repair
is obtained. With on-the-fly program analysis one cannot completely analyze the
program either, not even for the counterexamples of interest. However, focusing
on these counterexamples helps to extract enough information to find repairs.

7 Conclusion

In this work, we presented a novel method for automatic error correction in sim-
ple software programs using on-the-fly program analysis. In contrast to existing
repair methods which perform program analysis before the repair process starts,
our approach analyzes only those parts of the behavior of the program that are
relevant for finding a repair. This is important if exhaustive program analysis
is infeasible. Not looking at the entire program right from the beginning can be
seen as an abstraction method. Unlike existing methods that use abstraction for
repair [I1], our method can also refine the abstraction. Compared to existing
formal methods, our new approach is also more flexible regarding the form of
specification and the correctness verification method. Assertions and test cases
can be used as well as on-line feedback from the user. All this contributes towards
making automatic error correction more practicable.

4 The reader may wonder why no repair is found although the path length is already
higher than with on-the-fly analysis. The reason is that we only consider symbolic
operations for the path length, so the absolute values cannot be compared. In the
on-the-fly approach, the symbolic computation begins only when the repair template
(i.e., line is executed for the first time. See also Section

15

In the future, we plan to address limitations of the approach and its im-
plementation by experimenting with fault models that go beyond incorrect ex-
pressions, interfacing additional verification engines, and implementing memory
models to accurately reason about array operations and pointer arithmetic.

References

1. A. Arcuri. On the automation of fixing software bugs. In ICSE, pages 1003-1006.
ACM, 2008.

2. R. Bloem, R. Drechsler, G. Fey, A. Finder, G. Hofferek, R. Konighofer, J. Raik,
U. Repinski, and A. Siilflow. FoREnSiC - An automatic debugging environment
for C programs. In HVC. Springer, 2012. To appear.

3. J. Burnim and K. Sen. Heuristics for scalable dynamic test generation. In ASE,
pages 443-446. IEEE, 2008.

4. K.-H. Chang, I. L. Markov, and V. Bertacco. Fixing design errors with counterex-
amples and resynthesis. In ASP-DAC, pages 944-949. IEEE, 2007.

5. L. A. Clarke. A system to generate test data and symbolically execute programs.
IEEE Trans. Software Eng., 2(3):215-222, 1976.

6. V. Dallmeier, A., and B. Meyer. Generating fixes from object behavior anomalies.
In ASE, pages 550-554. IEEE, 2009.

7. V. Debroy and W. E. Wong. Using mutation to automatically suggest fixes for
faulty programs. In ICST, pages 65-74. IEEE, 2010.

8. S. Forrest, T. Nguyen, W. Weimer, and C. Le Goues. A genetic programming
approach to automated software repair. In GECCO, pages 947-954. ACM, 2009.

9. P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random test-
ing. In PLDI, pages 213-223. ACM, 2005.

10. C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. GenProg: A generic method
for automatic software repair. IEEE Trans. Software Eng., 38(1):54-72, 2012.

11. A. Griesmayer, R. Bloem, and B. Cook. Repair of Boolean programs with an
application to C. In CAV, pages 358-371. Springer, 2006. LNCS 4144.

12. B. Jobstmann, A. Griesmayer, and R. Bloem. Program repair as a game. In CAV,
pages 226—238. Springer, 2005. LNCS 3576.

13. B. Jobstmann, S. Staber, A. Griesmayer, and R. Bloem. Finding and fixing faults.
Journal of Computer and System Sciences, 78(2):441-460, 2012.

14. J. C. King. Symbolic execution and program testing. Communications of the ACM,
19(7):385-394, 1976.

15. R. Koenighofer and R. Bloem. Automated error localization and correction for
imperative programs. In FMCAD, pages 91-100. IEEE, 2011.

16. J. Raik, U. Repinski, H. Hantson, M. Jenihhin, G. Di Guglielmo, G. Pravadelli, and
F. Fummi. Combining dynamic slicing and mutation operators for ESL correction.
In ETS, pages 1-6. IEEE, 2012.

17. K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for C.
In ESEC/FSE, pages 263-272. ACM, 2005.

18. A. Solar-Lezama. The sketching approach to program synthesis. In APLAS, pages
4-13. Springer, 2009. LNCS 5904.

19. A. Solar-Lezama, L. Tancau, R. Bodik, V. Saraswat, and S. A. Seshia. Combina-
torial sketching for finite programs. In ASPLOS, pages 404-415. ACM, 2006.

20. Siemens suite. http://pleuma.cc.gatech.edu/aristotle/Tools/subjects.

21. Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer, and A. Zeller.
Automated fixing of programs with contracts. In ISSTA, pages 61-72. ACM, 2010.

16

http://pleuma.cc.gatech.edu/aristotle/Tools/subjects

	Repair with On-The-Fly Program Analysis

