
Debugging Formal Specifications Using Simple
Counterstrategies

Robert Könighofer, Georg Hofferek, and Roderick Bloem
Institute for Applied Information Processing and Communications (IAIK),

Graz University of Technology

Abstract—Deriving a formal specification from an informal
design intent is an error-prone process. The resulting specification
may be incomplete, unrealizable, or in conflict with the design in-
tent. We propose a debugging method for incorrect specifications
that does not need an implementation.

We show that we can explain conflicts with the design intent
by explaining unrealizability. Our approach for explaining unre-
alizability is based on counterstrategies. Since counterstrategies
may be large, we propose several ways to simplify them. First, we
simplify the specification itself by removing both requirements
and variables that do not contribute to the problem. Second, we
heuristically search for a countertrace, i.e., a single input trace
that suffices to demonstrate unrealizability. Finally, we present
the countertrace or the counterstrategy to the user in extensive
form as a graph and implicitly as an interactive game. We present
experimental results for specifications given as GR(1) formulas.

I. INTRODUCTION

Ideally, a formal specification is written before the imple-
mentation. The specification can then be implemented either
manually or automatically [20], [14], [10], [19]. In this sce-
nario, the specification must have the highest quality possible.
The same holds if the specification is written as independent
verification IP. This scenario occurs quite frequently, for
instance for protocols [7]. Creating a formal specification
is an error-prone process and it is hard to achieve a high
quality [12], [18], [6], [9], [5]. First, a specification may be
incomplete. Second, it may be unrealizable, i.e., there may
not be any implementation fulfilling it. Third, the specification
might define something different from the engineer’s original
(informal) design intent. The aim of this paper is to debug
specifications in the absence of an implementation.

Incomplete specifications have been addressed before. Katz
et al. [12] analyze the completeness of a specification with re-
spect to a given implementation. Claessen [6] gives a coverage
analysis of a list of safety properties, introducing the notion
of “forgotten cases” in which the system is underspecified.
Fisman et al. [8] propose to check if a specification can be
mutated into a simpler equivalent one in order to detect “in-
herent vacuity”. The approaches of [6] and [8] are independent
of an actual implementation.

The first contribution of this paper is a method to tackle
inconsistencies between the specification and the design intent.
Suppose there is an implementation that was either automati-
cally synthesized from the formal specification or implemented

This work was supported in part by the European Commission through
project COCONUT (FP7-2007-IST-1-217069).

manually. Suppose further that this system exhibits some be-
havior that differs from the designer’s original intent, although
the system conforms to the specification. In that case, either
the specification is incomplete, or there is an inconsistency
between the (informal) design intent and the specification. We
will show that explaining such inconsistencies can be reduced
to explaining unrealizability of specifications.

Unrealizability is a problem of its own. Our experience
with the synthesis tools Lily [10] and Anzu [11] shows
that mistakes during specification development often lead to
unrealizability. Explaining unrealizability is difficult. There is
no way to execute or simulate an unrealizable specification
to track down the error, like one would do with erroneous
implementations. Tools like RAT [18] explain why single
traces do not fulfill the specification, but this does not suffice to
explain unrealizability. Note that realizability is not the same
as satisfiability. A specification is satisfiable if there is one
input/output trace that satisfies the specification. In contrast,
realizability requires that for each input trace we can construct
a correct output trace step by step. Our case study shows
that many unrealizable specifications are still satisfiable. Thus,
known techniques from SAT solvers cannot be used to find the
cause of unrealizability.

We present an interactive approach for explaining unrealiz-
ability, based on the following idea: When a user learns that
her specification is unrealizable, she will be puzzled, since
she must have imagined an implementation. In order to show
that the imagined implementation is flawed, the debugging
tool takes on the role of the environment, while the user takes
on the role of the system. (See Fig. 1.) The tool provides
inputs and the user tries to provide outputs conforming to the
specification. The tool uses a counterstrategy to find inputs
in such a way that there is no response of the system that
fulfills the specification. Hence, the user will fail. However,
while trying, she gains insights into why there is no way for
her to comply with the specification, i.e., why the specification
is unrealizable. She can subsequently use this knowledge to
correct the specification.

Our experience shows that just presenting a counterstrategy
does not suffice to explain unrealizability of larger specifica-
tions. The counterstrategy can be so complex that the user
is unable to learn where the specification is too restrictive
to be realizable. Thus, we present several simplifications. We
adopt the idea of Cimatti et al. [5] to compute an unrealizable
core. As the second contribution of this paper, we improve

(a) Simulating the System (b) Debugging Unrealizability

Fig. 1. Swapping the roles to gain insight into the cause of unrealizability.

over [5] by removing unnecessary signals and using delta de-
bugging [26], an efficient minimization algorithm. Removing
signals is crucial: just computing an unrealizable core leads
to a specification that is harder to explain, not easier. Our
third contribution is to use countertraces where possible. A
countertrace is a fixed input trace for which there is no output
trace fulfilling the specification. Focusing on this single trace
makes it much easier for the user to localize the problem. A
countertrace does not always exist and even if one exists, its
computation is expensive. Hence, we present a heuristic.

After introducing our (generic) debugging approach, as a
final contribution we show how it can be applied to specifi-
cations given in Generalized Reactivity(1) (GR(1), for short)
[19]. GR(1) is a subset of LTL that has enough expressive
power to be used for real world problems [2], [3] while still
offering efficient symbolic algorithms [19]. We have evaluated
our concepts for this class of specifications by integrating them
into the synthesis tool Anzu [11].

Counterstrategies as debugging aids were previously used in
the context of restricted specifications for timed systems [25],
[1], in the context of Live Sequence Charts [4], and as wit-
nesses or counterexamples to branching-time logic formulas
[23], [22]. More efficient algorithms for the latter are presented
in [15], [16], [24]. These papers mention simplification only
peripherally, by discussing user interface and usability issues.
We focus on simplifying the counterstrategy itself in order to
convey meaningful information to the user, which is not done
in the papers mentioned. (But see [5], as discussed above.) We
are not aware of any previous work on finding countertraces,
which we consider the most practical tool towards understand-
ing why a specification is unrealizable. Also, to the best of
our knowledge, counterstrategies have not been used before
to explain conflicts between formal specifications and informal
design intents.

The rest of the paper is organized as follows. Section II
will revisit definitions and establish some notation. Section III
introduces our debugging approach and Section IV concretizes
it for GR(1) specifications. Section V presents our evaluation
results for GR(1) and Section VI concludes the article.

II. PRELIMINARIES

A. Automata

A (deterministic and complete) automaton is a tuple A =
(Q,Σ, T, q0,Acc), where Q is a finite set of states, Σ is a finite
alphabet, T : Q × Σ → Q is a deterministic and complete

transition function, q0 ∈ Q is the initial state, and Acc :
Qω → {false, true} is the acceptance condition. A run of the
automaton A on an (infinite) word σ = σ0σ1σ2 . . . ∈ Σω

is an infinite sequence of states r = q0q1q2 . . . ∈ Qω such
that qi+1 = T (qi, σi) for all i ≥ 0. The run is accepting iff
Acc(r) = true.

A deterministic and complete Büchi word automaton (DBW)
is an automaton in which Acc is given as a set of states F ⊆ Q
such that Acc(r) = true iff inf(r) ∩ F 6= ∅, where inf(r) is
the set of states that occur infinitely often in r.

In the following, we assume that Q = 2V for a set V of state
bits, and that Σ = 2X×2Y for a set X of Boolean input signals
and a set Y of Boolean output signals. We write X = 2X and
Y = 2Y . For x = x0x1 . . . ∈ Xω and y = y0y1 . . . ∈ Yω we
define x||y = (x0, y0)(x1, y1) . . . ∈ Σω as their combination.

B. Generalized Reactivity

Generalized Reactivity (1) specifications form a subset of
Linear Temporal Logic (LTL) [19]. They specify the inter-
action between an environment (controlling the input vari-
ables X) and a system (controlling the output variables Y)
and consist of two parts: assumptions and guarantees. The
specification states that the system must fulfill all guarantees
whenever the environment fulfills all assumptions.

A GR(1) specification consists of m+n DBWs representing
m environment assumptions and n system guarantees [19].
With Ae

i = (Qe
i ,Σ, T e

i , qe
0,i, F

e
i) we denote the DBWs rep-

resenting environment assumptions. The DBWs representing
system guarantees are denoted As

j = (Qs
j ,Σ, T s

j , qs
0,j , F

s
j). All

DBWs share the alphabet Σ. Let AGR1 = (Q,Σ, T, q0,Acc)
be the product of all DBWs Ae

i and As
j , where the state space

is Q = Qe
1×· · ·×Qe

m×Qs
1×· · ·×Qs

n, the transition function
is T ((qe

1, . . . , q
s
n) , σ) = (T e

1 (qe
1, σ) , . . . , T s

n (qs
n, σ)), and the

initial state is q0 = (qe
0,1, . . . , q

s
0,n). Let Je

i = {(qe
1, . . . , q

s
n) |

qe
i ∈ F e

i } be the set of all states of the product automaton
AGR1 that are accepting in Ae

i . Similarly, let Js
j be the set of

all states of AGR1 that are accepting in As
j . The acceptance

condition Acc is

Acc(r) ⇔ (∀i : inf(r) ∩ Je
i 6= ∅) → (∀j : inf(r) ∩ Js

j 6= ∅).

Thus, a run of AGR1 is accepting iff all sets Js
j of accepting

states of the system are visited infinitely often, or some set Je
i

of accepting states of the environment is visited only finitely
often.

C. Games and Strategies

A game is a tuple G = (Q,Σ, T, q0,Win), where Q, T , and
q0 are defined as for DBWs and Win : Qω → {false, true}.
The game is played by two players. A play of G is an
infinite sequence of states π = q0q1q2 . . . ∈ Qω, where
qi+1 = T (qi, σi) for i ≥ 0. The letters σi = (xi, yi) are
successively chosen by the players: In each step Player 1
first chooses xi, after which Player 2 chooses yi. A play π
is won by Player 1 iff Win(π) = true. Otherwise it is lost for
Player 1 and won for Player 2. Note that Player 1 cannot react

to Player 2 and thus acts like a Moore machine. In contrast,
Player 2 acts like a Mealy machine.

For GR(1) games, finite memory strategies suffice [19].
A (finite memory) strategy for Player 1 in the game G is a
tuple (Γ, γ0, ρ), where ρ ⊆ (Q × Γ × X × Γ), Γ is some
(finite) set representing the memory, and γ0 ∈ Γ is the
initial memory content. The relation ρ maps a state of the
game and the memory content to a set of possible choices
for the inputs and an updated memory content. We require
that ρ is complete, i.e., ∀q, γ ∃x, γ′ : (q, γ, x, γ′) ∈ ρ. A
play π = q0q1 . . . conforms to a strategy (Γ, γ0, ρ), iff there
is a sequence (x0, y0)(x1, y1) . . . ∈ Σω and a sequence
γ0γ1 . . . ∈ Γω such that for all i ≥ 0, (qi, γi, xi, γi+1) ∈ ρ
and qi+1 = T (qi, (xi, yi)). A strategy is winning from a state
q ∈ Q iff all plays starting from q and conforming to the
strategy are won by Player 1. The winning region W ⊆ Q of
Player 1 is the set of states for which a winning strategy for
Player 1 exists. A counterstrategy is a winning strategy for
Player 1 from q0.

A co-GR(1) game GGR1
env (where Player 1 is the environment

and Player 2 is the system) can be constructed from the
automaton AGR1. The winning condition of GGR1

env is the
complement of the GR(1) acceptance condition:

Win(r) ⇔ (∀i : inf(r)∩Je
i 6= ∅)∧(∃j : inf(r)∩Js

j = ∅) (1)

D. µ-Calculus

We will use the propositional µ-calculus [13] extended with
a mixed-preimage operator MX, defined on sets of states of
a game. Let Var be a set of variables each representing a
specific subset of Q. The syntax of µ-calculus formulas is
defined recursively: Every subset S ⊆ Q and every variable
Y ∈ Var is a µ-calculus formula. If P,Q are µ-calculus
formulas, so are ¬P , P ∪ Q, and P ∩ Q, with the expected
semantics. Furthermore, for Y ∈ Var, µY . P (Y), νY . P (Y),
and MX(Y) are µ-calculus formulas defined as

µY.P (Y) =
⋃
i

Yi, where Y0 = ∅ and Yi+1 = P (Yi), (2)

νY.P (Y) =
⋂
i

Yi, where Y0 = Q and Yi+1 = P (Yi),

MX(P) = {q ∈ Q | ∃x ∈ X : ∀y ∈ Y : T (q, (x, y)) ∈ P} .

The expression MX(P) denotes the set of states from which
the environment can force a play into a state of P in one
step. The order of existential and universal quantification
corresponds to the fact that Player 1 moves first. We also
define MXx(P) = {q ∈ Q | ∀y ∈ Y : T (q, (x, y)) ∈ P},
i.e., the set of all states from which the games moves to P if
Player 1 chooses input x.

E. Delta Debugging

Delta debugging [26] is an algorithm for minimization
problems. Let S be a set that fails some test, denoted by
test(S) = 8. We assume that some subset of S is “re-
sponsible” for the failing test and that test is monotonic:
(test(S) = 8) → (∀S′′ ⊇ S : test(S′′) = 8). The algorithm

Fig. 2. The flow of our method to handle mismatches with the design intent.

finds a minimal subset S′ ⊆ S so that test(S′) = 8. The
algorithm is defined recursively: ddmin(c) = d(c, 2), and

d(c, n) =


d(ci, 2) if ∃i : test(ci) = 8
d(ci,max(n-1, 2)) else if ∃i : test(ci) = 8
d(c,min(|c|, 2n)) else if n < |c|
c otherwise,

where (c1, . . . , cn) is a partition of c into n approximately
equally-sized parts. The set ci is defined as c \ ci.

The intuition behind this algorithm is a divide and conquer
approach. At first, the set c is split in two parts and both
are subjected to the test. If one of them fails the test, i.e.,
still contains a problem, the algorithm proceeds recursively
on this part only. If both parts pass the test, elements from
both parts contribute to the problem. Thus, the granularity of
the partition is doubled. Since not only the subsets themselves
but also their complements are tested, larger sets are tried as
well. Eventually the algorithm returns a minimal subset that
fails the test.

III. DEBUGGING APPROACH

This section introduces our generic debugging approach. We
assume that we are given a temporal specification ϕ = A → G
over X and Y , where A is a (possibly empty) set of envi-
ronment assumptions and G is a set of system guarantees.
We assume that we are given functions realizable and sat
that decide realizability and satisfiability. We also assume
that the specification can be turned into a two-player finite
game and that we have a procedure that returns a finite state
counterstrategy for an unrealizable specification. We further
require that guarantees g ∈ G can be removed from ϕ, and that
output signals y ∈ Y can be quantified existentially from the
guarantees. These assumptions are relatively weak and hold
for such logics as LTL. After presenting the general approach,
we will instantiate it for GR(1).

A. Debugging Undesired Behavior

Inconsistencies between the formal specification and the
designer’s informal design intent may surface when a system
has been built that satisfies the specification but not the design
intent. The designer then has to change the specification to
adhere to the design intent.

Fig. 2 illustrates our approach to handle mismatches with
the design intent. We distinguish two cases:

1) The specification is incomplete, i.e., there is an imple-
mentation of the specification meeting the design intent.

2) Any system exhibiting the desired behavior violates the
specification. This means that the specification is so

restrictive that there exists no implementation of the
specification that shows the desired behavior.

The two cases can be distinguished by augmenting the speci-
fication with a guarantee that enforces the required behavior.
If the modified specification is realizable, the original specifi-
cation was incomplete and needs to be refined. Otherwise, we
need to explain to the user why enforcing the desired behavior
makes the specification unrealizable.

First, however, the desired behavior must be specified. We
would like to provide the user with a method to obtain a
relatively general requirement from the incorrect trace. We
propose to allow the user to change any number of signal
values in the incorrect trace to the desired value 0, 1, or
−, where − stands for “don’t care”. The tool then checks
whether the input part of the trace conforms to the environment
assumptions. If not, a corresponding warning is given to the
user as the system is not required to fulfill its guarantees for
such inputs. Next, the tool converts the given trace into a
guarantee gnew in the following way. Each time step i of the
desired trace t represents a function ti : (X ∪Y) → {0, 1,−}.
An input trace x = x0x1 . . . ∈ Xω conforms to the desired
trace t (written x |=X t) iff

∀i : ∀s ∈ X : (ti(s) = 0 → s /∈ xi) ∧ (ti(s) = 1 → s ∈ xi).

Conformance with an output trace (written y |=Y t) is defined
analogously. The guarantee gnew must accept exactly the
words (x||y) ∈ Σω such that x |=X t → y |=Y t. This enforces
the desired outputs whenever the given input scenario applies.
The construction of gnew from the desired trace t depends on
the actual specification language.

The guarantee gnew is then added to the original specifi-
cation ϕ = A → G to obtain ϕ′ = A → G ∪ {gnew}.
Next, we check ϕ′ for realizability. If ϕ′ is realizable, it is
a valid refinement of ϕ and the undesired behavior has been
successfully eliminated. Otherwise we proceed by explaining
the reasons for unrealizability as outlined in the next section.

B. Debugging Unrealizability
The flow of our method to explain unrealizability is depicted

in Fig. 3. First, we check for satisfiability. For unsatisfiable
specifications, trace-based debugging methods can be used
[18]. If the specification is satisfiable, but not realizable, we
apply a minimization step to find an unrealizable core. Only
the part that is inconsistent or in conflict with the design intent
(cf. Section III-A) remains. Based on this simplified specifica-
tion, we then compute a counterstrategy. The counterstrategy
is a finite state strategy such that the specification cannot be
fulfilled if the environment adheres to it. We then attempt to
obtain a countertrace from the counterstrategy. Countertraces
and counterstrategies are finally presented to the user as a
summarizing graph, and in form of an interactive game. The
next sections explain the steps of this procedure in more detail.

C. Minimizing the Specification
Debugging an unrealizable specification ϕ = A → G is

especially hard if it is large. However, the cause of unrealiz-
ability often involves only small parts of ϕ. Removing the rest

Fig. 3. The flow of our method to explain unrealizability.

leads to a simpler specification ϕ̂ that is still unrealizable and
easier to debug. Our experiments will show that minimization
speeds up the computation of counterstrategies and leads to
easier-to-understand games.

Removing environment assumptions would confuse the user
during the interactive game as it adds (environment) behavior
that the user originally excluded with these assumptions. Thus,
we only remove system guarantees, looking for a minimal
unrealizable core. Removing guarantees leads to shorter spec-
ifications. Surprisingly, the corresponding game is often more
difficult to understand than the original. The reason is that
removing guarantees adds (system) behavior. This results in
more possible plays and a larger game graph. We counteract
this effect by removing unnecessary outputs as well. We can
do this by existentially quantifying them from all guarantees.
This operation will be denoted ∃Y ′ : G for some set Y ′ ⊆ Y
of outputs to remove.

Lemma 1: If ϕ = A → G is a realizable specification, so
is ϕ′ = A → (∃Y ′ : G′), for all G′ ⊆ G, Y ′ ⊆ Y .

Lemma 2: Let (Γ, γ0, ρ) be a counterstrategy for specifica-
tion ϕ′ = A → (∃Y ′ : G′), with G′ ⊆ G, Y ′ ⊆ Y . Then
(Γ, γ0, ρ) is also a counterstrategy for ϕ = A → G.

Lemma 1 states that removing guarantees or output signals
preserves realizability. Furthermore, Lemma 2 states that mini-
mizing the number of guarantees and output signals is helpful
for finding a simple explanation for unrealizability, because
the counterstrategy for the minimized system also applies to
the original specification.

Cimatti et al. [5] propose to find an unrealizable core by
removing one guarantee after the other. Thus, they require
exactly |G| checks for realizability to find the core. We
attempt to reduce the average number of checks by using
delta debugging [26]. This algorithm expects a set to be
minimized as argument and uses a function test. We define
test(G′∪Y ′) = realizable(A → (∃Y \Y ′ : G′)) and compute
a minimized specification ϕ̂ = A → (∃Y \ Ŷ : Ĝ), where
Ŷ = D ∩ Y , Ĝ = D ∩ G, and D = ddmin(G ∪ Y). We
apply Lemma 1 to further reduce the number of realizability
checks (cf. [26]): We store all sets R = G′ ∪ Y ′ such that
A → (∃Y \Y ′ : G′) is realizable. We do not have to recompute
realizability if we encounter a subset R′ of a stored set R.

Theorem 1: ∀G′ ⊆ Ĝ, Y ′ ⊆ Ŷ : ((G′, Y ′) 6= (Ĝ, Ŷ)) →
realizable(A → (∃Y \ Y ′ : G′)).

Proof: See the proof of Proposition 11 in [26].

D. Countertraces

In general, the inputs given by the counterstrategy depend
on the previous outputs of the system. Thus, a counterstrategy
can be viewed as a graph or an interactive game. To make

things easier for the user we would prefer to construct a single
countertrace, i.e., an infinite trace x ∈ Xω for which there
is no y ∈ Yω such that x||y fulfills the specification. If the
inputs that the user faces are always the same, regardless of
her choice of outputs, the time and effort for understanding
why she always loses the game is much lower. Unfortunately,
such a countertrace does not always exist. A typical example
is the LTL specification G(y ↔ Xx). This specification is not
realizable, but for any given input trace x there is an output
trace y such that x||y fulfills the specification [21], [17].

We can compute whether a countertrace exists by existen-
tially quantifying the output variables from the game automa-
ton, complementing the automaton, and checking for empti-
ness. However, the game automaton may be non-deterministic
after quantification and complementing it would cause an ex-
ponential blow-up. We consider that intractable and therefore
present a heuristic. It does not always find a countertrace, even
if one exists. However, our experiments show that it suffices
for many cases of interest.

Our heuristic starts with a counterstrategy (Γ, γ0, ρ) for a
game G = (Q,Σ, T, q0,Win), where ρ ⊆ (Q×Γ×X×Γ). We
simultaneously compute a countertrace x = x0x1 . . . ∈ Xω

and a sequence of sets Si ⊆ (Q × Γ), where Si contains all
pairs of state and memory content possible after x0 . . . xi−1

has been used as input. We start with S0 = {(q0, γ0)} and
define

Si+1 =
{
(q′, γ′)

∣∣ ∃(q, γ) ∈ Si, y ∈ Y :
q′ = T (q, (xi, y)) ∧ (q, γ, xi, γ

′) ∈ ρ
}
,

where xi is chosen arbitrarily from the set Ti = {x ∈ X |
∀(q, γ) ∈ Si ∃γ′ : (q, γ, x, γ′) ∈ ρ}. Intuitively, the set Ti

contains all inputs that conform to the counterstrategy, no
matter in which precise state (qi, γi) ∈ Si the play is. Thus, xi

is independent of the previous moves of the system. If Ti = ∅
for any i, our heuristic fails.

Let k be the smallest number such that Sk ⊆ Sj for some
j < k. We can easily show by induction that if we pick xk+i =
xj+i, then Tk+i ⊇ Tj+i and ∅ ⊂ Sk+i ⊆ Sj+i for all i ≥
0 (the former inclusion by completeness of T , the latter by
monotonicity of the definition of Si+1).

Thus, we can stop the computation when we find a set
inclusion, obtaining a lasso-shaped countertrace x composed
of the finite stem x0 . . . xj−1 and infinite many repetitions of
xj . . . xk−1. Although the upper bound for k is exponential in
the number of states, our experiments show that it is typically
rather small (< 10 in most cases).

A countertrace represents a strategy (Γx, 0, ρx) with mem-
ory Γx = {0, . . . , k − 1}. We define

ρx =
{
(q, i, xa, i⊕ 1)

∣∣ q ∈ Q ∧ i ∈ Γx

}
, where

i⊕ 1 =
{

i + 1 if a < k − 1,
j if a = k − 1.

Theorem 2: Every play π that conforms to the strategy
(Γx, 0, ρx) also conforms to the counterstrategy (Γ, γ0, ρ) and
is thus won by the environment.

Proof: The inputs xi dictated by ρx are (singleton) subsets
of the inputs that are allowed by ρ. This follows trivially from
the construction of x.

E. Graphs and Interactive Games

We suggest to use the counterstrategy (or the countertrace,
if found) in two ways in order to illustrate the reason for
unrealizability. First, the user can explore the counterstrategy
in an interactive game. In every step, the strategy suggests an
input and the user selects an output of the system. Playing and
losing the game (repeatedly) allows the user to discover the
reason for which the specification is unrealizable. Second, we
display a graph G that summarizes all possible plays in the
game. Vertices in this graph correspond to state-memory pairs
(q, γ) ∈ (Q×Γ), edges represent transitions that are allowed.
The graph can be seen as a “cheat sheet” for the interactive
game: it allows the user to see how the environment will react
to her outputs. Thus, she may discard some choices a priori and
thereby reduce the number of plays necessary to understand
the cause of unrealizability.

IV. DEBUGGING GR(1) SPECIFICATIONS

In this section we concretize our generic debugging method
for GR(1) specifications. The class of GR(1) fulfills all the
necessary premises stated in III. The environment assumption
as well as the system guarantees are each represented by a
set of DBWs. Our approach for debugging undesired behavior
requires that the desired behavior can be transformed into a
guarantee. Constructing a DBW that accepts the desired behav-
ior is trivial when it is given as a trace. Removing guarantees
reduces to removing DBWs from the according set. Removing
output signals is done by existentially quantifying them in the
symbolic representation of the DBWs. Realizability can be
decided as shown in [19]. Synthesis of a counterstrategy for an
unrealizable GR(1) specification has not been addressed before
in the literature. We will show how this can be achieved in
the next section. Furthermore, we address some GR(1) specific
aspects of its illustration.

A. Counterstrategies for GR(1) Specifications

We derive a counterstrategy for the co-GR(1) game GGR1
env =

(Q,Σ, T, q0,Win) from some intermediate results in the cal-
culation of the winning region for the environment (Player 1).
The winning region for the system (Player 2) is defined in [19].
The winning region for the environment is its complement.
Hence, we obtain

WGR1
env = µZ .

n⋃
j=1

νY .

m⋂
i=1

µX .(
¬Js

j ∪MXZ
)
∩MXY ∩ (Je

i ∪MXX) . (3)

Theorem 3: The set WGR1
env is the set of winning states for

the environment in the co-GR(1) game GGR1
env .

In order to formulate a counterstrategy, we define Za to
be the a-th iteration (according to Equation 2) of the fixpoint

computation of Z in Equation 3. We also define Ya,j as

νY .

m⋂
i=1

µX .
(
¬Js

j ∪MXZa−1

)
∩MXY ∩ (Je

i ∪MXX) .

Finally, Xa,j,i,c is the c-th iteration of the fixpoint computation

µX .
(
¬Js

j ∪MXZa−1

)
∩MXYa−1,j ∩ (Je

i ∪MXX) .

To ease notation, we also define Znew
a = Za \ Za−1 and

Xnew
a,j,i,c = Xa,j,i,c \ Xa,j,i,c−1. We will further write i ⊕ 1

for (i mod m) + 1.
Let Q̂ = Q ∩ WGR1

env be the set of states from which a
counterstrategy for the co-GR(1) game exists. To obtain such
a counterstrategy, we define four sub-strategies ρ1, ρ2, ρ3, ρ4 ⊆
(Q̂×Γ×X ×Γ), where Γ = I ×J . The set I = {1, . . . ,m}
stores the index of the next set Je

i of accepting states of the en-
vironment that the play will reach. The set J = {0, 1, . . . , n}
stores the index of the set Js

j of accepting states of the system
that the environment tries to evade. The value 0 is added to
store the fact that the environment has not (yet) committed to
any such set. The initial memory content is γ0 = (1, 0).

We will build a strategy that makes sure that the play never
moves from an iterate Znew

i to an iterate Znew
i′ with i′ > i.

Furthermore, for each i, there is a j such that if the play
remains in Znew

i then Jj is never visited. This j is stored
in the second element of the memory. It is then easy to see
that the environment always wins: If the play reaches Z1, it is
trapped, and the environment wins. In a higher iterate, either a
system fairness condition is never fulfilled, or the game moves
to a lower iterate. It is important that the environment takes
advantage of each opportunity to take the play into a lower
iterate, for otherwise the system could be able to visit Js

j states
infinitely often for all j.

Sub-strategy ρ1 is used to take the game into a smaller
iterate of Z whenever possible. This step changes the value of
j. However, the system’s choice of y can influence to which
Ya−1,j the play proceeds. Thus, the environment can only
choose the new value for j after the system’s move. In order
to remember to do so, j is set to 0:

ρ1 =
{
(q, (i, j), x, (i, 0)

∣∣ ∃ a ≥ 2 : q ∈ Znew
a ∩MXx(Za−1)

}
Sub-strategy ρ2 is applied whenever j = 0. It sets j to a

suitable value depending on the state the play is in:

ρ2 =
{
(q, (i, 0), x, (i, j′)

∣∣ ∃ a ≥ 1 :
q ∈ (Znew

a ∩MXx(Ya,j′)) \MX(Za−1)
}

Sub-strategy ρ3 is applied if the play is in a state of Je
i .

A state in Je
i⊕1 should be reached next (possibly in several

steps), thus ρ3 updates the content of i:

ρ3 =
{
(q, (i, j), x, (i⊕ 1, j)

∣∣ j 6= 0 ∧ q ∈ Je
i ∧

∃ a ≥ 1 : q ∈ (Znew
a ∩MXx(Ya,j)) \MX(Za−1)

}

Sub-strategy ρ4 is used when the set Je
i is not yet reached.

It is an attractor strategy forcing the play ever closer to Je
i :

ρ4 =
{
(q, (i, j), x, (i, j)

∣∣ j 6= 0 ∧ ∃ a ≥ 1, c ≥ 2 :
(q ∈ Znew

a ∩Xnew
a,j,i,c ∩MXx(Xa,j,i,c−1)) \MX(Za−1)

}
Theorem 4: In the co-GR(1) game GGR1

env , the strategy(
I × J , (1, 0), ρGR1

env

)
with ρGR1

env = ρ1 ∪ ρ2 ∪ ρ3 ∪ ρ4 is a
counterstrategy.

B. Graphs and Interactive Games in case of GR(1)

The current memory content of the counterstrategy is pre-
sented to the user during the interactive game as well as in
the graph G. Knowing the index j of the set Js

j which the
environment tries to evade, the user can focus on reaching
this set only. The user might indeed be able to reach a Js

j

state. However, by doing so she allows the tool to force the
play into a smaller iterate of Z (using ρ1).

V. EXPERIMENTAL RESULTS

Our implementation, the specifications, and the scripts
needed to reproduce the evaluations are available for down-
load on the Anzu website1. Our results are summarized in
Table I. All experiments were performed on an Intel Centrino
2 processor with 2 × 2.0 GHz and 3 GB RAM. We used
two different specifications, both parametrized. The first one
defines a bus arbiter [2], parameterized with the number of
masters. We denote its variants by Axy, where x is the number
of masters and y is the kind of error we introduced in order to
make the specification unrealizable. With woef we indicate
that a fairness constraint of the environment was removed,
wsf means that a fairness constraint of the system was
added, and wst means that we impose additional restrictions
on state transitions of the system. The second specification
defines a generalized buffer [3] used by n senders and two
receivers. We denote its variants by Gxy, where x defines the
number of senders and y is as before. All specification variants
are satisfiable but not realizable. Their size ranges from 90
properties over 22 signals (A2woef) to 6004 properties over
218 signals (G100wst).

Columns 1 to 4 present results without minimization.
Columns 1 and 2 list the times for computation of the winning
region WGR1

env and the counterstrategy’s relation ρGR1
env . Col-

umn 3 shows the number of vertices in the graph G. Column 4
indicates if a countertrace was found. Columns 5 to 10
summarize results when delta debugging is applied. Column 5
gives the number of realizability checks and Column 6 relates
this to the number of checks necessary with the algorithm of
[5], which we reimplemented for comparison. Column 7 gives
the time for minimization with the algorithm of [5]. The time
needed for delta debugging is shown in Column 8, and the
time savings compared to [5] are shown as speed-up factor in
Column 9. Column 10 finally contains the number of vertices
in G for the minimized specification. This number is a good

1http://www.iaik.tugraz.at/content/research/design verification/anzu/

TABLE I
PERFORMANCE RESULTS. DD = “DELTA DEBUGGING”.

column 1 2 3 4 5 6 7 8 9 10

without DD with DD
Ti

m
e:

W
G

R
1

e
n
v

Ti
m

e:
ρ
G

R
1

e
n
v

#
V

er
tic

es
in

G

τ
fo

un
d

#
C

he
ck

s
du

ri
ng

D
D

R
ed

uc
tio

n
of

C
he

ck
s

Ti
m

e:
ϕ̂

in
[5

]

Ti
m

e:
ϕ̂

w
ith

D
D

Sp
ee

d-
U

p
Fa

ct
or

#
V

er
tic

es
in

G

[sec] [sec] [-] [-] [-] [%] [sec] [sec] [-] [-]

A2woef 0.3 0.6 27 yes 47 41 5.3 0.7 7.6 5
A4woef 30 23 75 yes 56 59 284 5.1 56 13
A6woef 463 325 267 yes 58 70 7431 33 225 29

A2wsf 0.6 0.4 59 yes 37 54 8.7 0.7 12 5
A4wsf 38 22 171 yes 46 66 754 9.7 78 5
A6wsf 683 248 715 yes 47 76 6958 18 387 5

A2wst 0.4 0.3 43 yes 41 49 4.4 0.8 5.5 7
A4wst 10 18 139 yes 52 62 260 6.6 39 19
A6wst 644 410 683 yes 55 71 11170 72 155 43

G10wsf 2.1 1.8 50 no 124 19 65 53 1.2 9
G20wsf 0.8 2.4 92 no 215 42 29 118 0.3 9
G40wsf 2.0 12 176 no 473 57 165 1317 0.1 9
G100wsf 10 225 204 no 4205 >40k

G10wst 0.2 0.2 10 yes 42 73 3.4 1.1 3.1 7
G20wst 0.5 0.6 22 yes 40 89 13 2.0 6.5 7
G40wst 2.7 4.3 40 yes 61 94 105 4.0 26 7
G100wsf 19 64 46 yes 64 99 4214 18 234 7

total 1897 1133 31470 1660 19

indicator how simple it is to gain meaningful insights. As it
can be seen, it is reduced dramatically by minimization.

In our experiments, a countertrace was found in about
80% of the cases without minimization, and in all cases after
minimization. Our subjective impression is that countertraces
are far easier to understand than strategies. The time for the
computation of the countertrace from a given counterstrategy
is negligible. Hence, with very little additional computational
costs, our heuristic provides us with much simpler explana-
tions for unrealizability in many cases.

Minimization reduces the number of formulas in the speci-
fication by 85% on average, making them much easier to ana-
lyze. Simultaneously, it raises the chance that a countertrace is
found and significantly reduces the size of the graph that the
user must explore, if no trace is found. Minimization does not
take much time in most cases. Additionally, the times for the
computation of counterstrategies, countertraces and graphs for
the simplified specification are then negligible. Thus, using
minimization provides results that are more helpful for the
user, without additional costs in terms of CPU time in many
cases.

Compared to [5], delta debugging needs about 50% fewer
realizability checks in average. However, the reduction in
the number of checks does not directly correlate with the
time savings, as the time per check heavily depends on the
complexity of the specification. Following [5], this complexity
decreases quite steadily. With delta debugging there is a chance
of removing many guarantees in one step. If this happens early,

(a) Simulation (b) Design Intent (c) Countertrace

Fig. 4. Example: Illustrating a conflict with the design intent.

the performance of delta debugging is overwhelmingly supe-
rior. If significant reductions happen late, the performance may
be worse, which explains the results for G20wsf, G40wsf,
and G100wsf. However, in most cases of our experiments
delta debugging is much faster. Both minimization methods
lead to specifications of about the same size.

Example

In this section we present a practical example that illustrates
our concepts. It specifies a bus arbiter with 2 masters. We will
use lower case letters for inputs and upper case letters for
outputs. The output signal HMASTER is set to 0 whenever the
bus is currently owned by master 0, and set to 1 whenever the
bus is occupied by master 1. The output START must be raised
when the bus ownership changes. With the inputs hbusreq0
and hbusreq1, the bus can be requested by master 0 and
master 1, respectively. There are further signals, among them
hburst0, but their meaning is irrelevant for this example.

Fig. 4(a) depicts a possible simulation run, simplified to
signals of interest. The infinite loop is marked with gray
background. Suppose the design intent was that START=0
as long as the input hburst0 keeps on changing. This
behavior is not observed. Following our debugging approach
(see Section III-A), the user specifies the design intent as
shown in Fig. 4(b). This design intent is added as an additional
guarantee to the specification. The new specification (A2wst in
Table I) is unrealizable, which means that the design intent that
was just added is in conflict with the rest of the specification.

To explain this conflict, our tool first minimizes the specifi-
cation. The minimization algorithm removes 70% of the 15
output signals and 90% of the 66 formulas specifying the
system. Besides the trace with which the user specified the
design intent, the following guarantees remain:

HMASTER=0 ∧ START=1, (4)
G((XSTART=0) → (HMASTER=1↔ XHMASTER=1)) (5)

GF(HMASTER=1 ∨ hbusreq1=0). (6)

As long as hburst0 keeps changing, START cannot be
raised, since this is forbidden by the trace in Fig. 4(b).
Without START being raised, the bus ownership cannot change
(Equation 5). The bus is initially granted to master 0 (Equation
4). When the bus remains granted to master 0 (HMASTER=0)
forever and is requested by master 1 (hbusreq1=1), the
fairness constraint stated in Equation 6 cannot be fulfilled.

Our heuristic is able to find a countertrace that illustrates
this problem. It is presented in Fig. 4(c) together with the
only output trace that conforms to the design intent and fulfills
Equation 4 and 5. Equation 6 is not fulfilled.

There are multiple ways to solve this conflict. Deciding
which way is best depends on the design intent and can thus
not be answered automatically.

VI. CONCLUSIONS AND FUTURE WORK

In this work we proposed the use of counterstrategies to
debug specifications that are unrealizable or in conflict with
the design intent. We also discussed techniques to keep the
explanations for conflicts as simple as possible.

Countertraces give much simpler explanations than normal
counterstrategies, because they are independent of the op-
ponent’s moves. We presented a heuristic algorithm without
exponential blow-up of the state space that is able to compute
such a countertrace for some of the cases in which one exists.
Our experience and experimental results show that they are
a powerful tool. To the best of our knowledge, countertraces
have not been mentioned in literature before.

Minimization by means of delta debugging can greatly
reduce the complexity of an unrealizable specification, while
still preserving the conflict. Compared to the minimization
method of Cimatti et al. [5], our technique is much faster on
average. Minimized specifications allow faster computations
of counterstrategies, lead to simpler games and summarizing
graphs, and increase the chance of finding a countertrace.
Thus, performing minimization before applying other debug-
ging techniques is crucial for larger specifications.

In the future, we plan to evaluate our techniques on bugs
that were not artificially constructed, but occurred in real
specification-development processes. We already started to
integrate our debugging approach into RAT [18], utilizing
its graphical user interface. Our goal here is to provide high
usability and interoperability with other features of RAT.

Acknowledgments: We would like to thank Amir Pnueli
for suggesting the use of counterstrategies. We also thank Vik-
tor Schuppan and anonymous reviewers for valuable comments
on earlier versions.

REFERENCES

[1] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, and
D. Lime. UPPAAL-Tiga: Time for playing games! In Proc. Computer
Aided Verification (CAV’07), pages 121–125, 2007.

[2] R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and
M. Weiglhofer. Automatic hardware synthesis from specifications: A
case study. In In Proceedings of the Design, Automation and Test in
Europe, pages 1188–1193, 2007.

[3] R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and M. Wei-
glhofer. Specify, compile, run: Hardware form PSL. In 6th International
Workshop on Compiler Optimization Meets Compiler Verification, 2007.
Electronic Notes in Theoretical Computer Science http://www.entcs.org/.

[4] Y. Bontemps, P.-Y. Schobbens, and C. Löding. Synthesis of open
reactive systems from scenario-based specifications. Fundamamenta
Informaticae, 62(2):139–169, 2004.

[5] A. Cimatti, M. Roveri, V. Schuppan, and A. Tchaltsev. Diagnostic
information for realizability. In Proc. Verification, Model Checking, and
Abstract Interpretation (VMCAI’08), pages 52–67, 2008.

[6] K. Claessen. A coverage analysis for safety property lists. In Proc.
Formal Methods in Computer Aided Design, pages 139–145, 2007.

[7] S. Dellacherie. Automatic bus-protocol verification using assertions. In
GSPx, 2004.

[8] D. Fisman, O. Kupferman, S. Seinvald, and M. Y. Vardi. A framework
for inverent vacuity. In Proc. Haifa Verification Conference (HVC),
2008.

[9] D. Große, U. Kühne, and R. Drechsler. Estimating functional coverage
in bounded model checking. In DATE, pages 1176–1181, 2007.

[10] B. Jobstmann and R. Bloem. Optimizations for LTL synthesis. In
6th Conference on Formal Methods in Computer Aided Design (FM-
CAD’06), pages 117–124, 2006.

[11] B. Jobstmann, S. Galler, M. Weiglhofer, and R. Bloem. Anzu: A tool
for property synthesis. In Computer Aided Verification, pages 258–262,
2007.

[12] S. Katz, O. Grumberg, and D. Geist. “Have I written enough properties?”
— A method of comparison between specification and implementation.
In Correct Hardware Design and Verification Methods (CHARME’99),
pages 280–297, Berlin, September 1999. Springer-Verlag. LNCS 1703.

[13] D. Kozen. Results on the propositional µ-calculus. Theoretical
Computer Science, 27:333–354, 1983.

[14] O. Kupferman and M. Y. Vardi. Safraless decision procedures. In
Foundations of Computer Science, pages 531–542, Pittsburgh, PA,
October 2005.

[15] M. Leucker. Model checking games for the alternation-free µ-calculus
and alternating automata. In Proc. Int. Conf. on Logic Programming
and Automated Reasoning (LPAR’99), pages 77–91. Springer, 1999.

[16] M. Leucker and T. Noll. Truth/SLC - a parallel verification platform
for concurrent systems. In Computer Aided Verification, pages 255–259.
Springer, 2001.

[17] R. Mori and N. Yonezaki. Several Realizability Concepts in Reactive
Objects. Information Modeling and Knowledge Bases, 1993.

[18] I. Pill, S. Semprini, R. Cavada, M. Roveri, R. Bloem, and A. Cimatti.
Formal analysis of hardware requirements. In Design Automation
Conference, pages 821–826, 2006.

[19] N. Piterman, A. Pnueli, and Y. Sa´ar. Synthesis of reactive(1) designs.
In 7th International Conference on Verification, Model Checking and
Abstract Interpretation, pages 364–380. Springer, 2006. LNCS 3855.

[20] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In
Proc. Symposium on Principles of Programming Languages (POPL ’89),
pages 179–190, 1989.

[21] R. Rosner. Modular Synthesis of Reactive Systems. PhD thesis,
Weizmann Institute of Science, 1992.

[22] P. Stevens and C. Stirling. Practical model-checking using games. In
Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 1998. LNCS 1384.

[23] C. Stirling. Local model checking games. In Proc. Concurrency Theory,
pages 1–11. Springer-Verlag, 1995.

[24] L. Tan. PlayGame: A platform for diagnostic games. In Computer Aided
Verification, pages 492–495. Springer, 2004. LNCS 3114.

[25] S. Tripakis and K. Altisen. On-the-fly controller synthesis for discrete
and dense-time systems. In World Congress on Formal Methods, pages
233–252, 1999.

[26] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing
input. IEEE Transactions on Software Engineering, 28(2):183–200,
February 2002.

