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ABSTRACT
Oblivious Pseudorandom Functions (OPRFs) are an elementary

building block in cryptographic and privacy-preserving applica-

tions. While there are numerous pre-quantum secure OPRF con-

structions, it is unclear which of the proposed options for post-

quantum secure constructions are practical for modern-day ap-

plications. In this work, we focus on isogeny group actions, as

the associated low bandwidth leads to efficient constructions. We

introduce OPUS, a novel Naor-Reingold-based OPRF from isoge-

nies without oblivious transfer, and show efficient evaluations of

the Naor-Reingold PRF using CSIDH and CSI-FiSh. Additionally,

we analyze a previous proposal of a CSIDH-based OPRF and that

the straightforward instantiation of the protocol leaks the server’s

private key. As a result, we propose mitigations to address those

shortcomings, which require additional hardness assumptions. Our

results report a very competitive protocol when combined with

lattices for Oblivious Transfer.

Our evaluation shows that OPUS and the repaired, generic con-

struction are competitive with other proposals in terms of runtime

efficiency and communication size. More concretely, OPUS achieves

almost two orders of magnitude less communication overhead com-

pared to the next-best lattice-based OPRF at the cost of higher

latency and higher computational cost, and the repaired construc-

tion. Finally, we demonstrate the efficiency of OPUS and the generic

NR-OT in two use cases: first, we instantiate OPAQUE, a protocol

for asymmetric authenticated key exchange. Compared to classical

elliptic curve cryptography, which is considered insecure in the

presence of efficient quantum computers, this results in less than

100 × longer computation on average and around 1000× more com-

munication overhead. Second, we perform an unbalanced private

set intersection and show that the communication overhead can

be roughly the same when using isogenies or elliptic curves, at the

cost of much higher runtime. Conversely, for sets of the size 2
10
,

we report a runtime around 200× slower than the elliptic curve

PSI. This concretizes the overhead of performing PSI and using

OPAQUE with isogenies for the first time.
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1 INTRODUCTION
Cloud computing, authenticated key exchange and secure data

sharing are ubiquitous in modern-day computation. All of these

high-level applications may use Oblivious Pseudorandom Func-

tions (OPRFs) as an underlying building block to strengthen security

and guarantee privacy. Informally, OPRFs take input from a client

and a key from a server, then return a pseudorandom output to the

client. The OPRF is secure when the client learns nothing about the

key, and the server learns nothing about the output or the client

input. This basic functionality gives rise to various applications.

For example, consider password authentication: To prove the

knowledge of a pre-registered password, the client transmits their

password, ideally in a salted and hashed form. The server checks the

transmitted password against a stored record and authenticates the

client if the record matches the password. However, passwords no-

toriously lack entropy and may be recovered from a server record in

the event of a breach. In addition, this ideal setting is not always the

case, as attacks leaking cleartext passwords are still common. For ex-

ample, PwnedPasswords [Hun] consolidates breaches of passwords

and finds over 90 matches when searching for plain text breaches.
This attack vector can be mitigated by never storing passwords on

a server in the first place. A great example of a protocol solving the

password storage problem is OPAQUE, an asymmetric password-

authenticated key agreement protocol for which standardization

efforts are ongoing at the CFRG [DFHSW22].

Use cases of ORPFs expand beyond passwords and include pri-

vate set intersection (PSI), where two partieswith respective datasets

wish to compute the overlapping elements in both sets without

revealing their non-shared elements. This can be used for private

contact discovery [KRS
+
19] to protect the highly sensitive social

graph of messenger app users from ever being uploaded to a server.
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While there is a variety of sound and efficient constructions

for OPRFs from classical primitives, efficient and secure OPRFs

from post-quantum hardness assumptions remain an open ques-

tion. An interesting primitive for quantum-resistant OPRFs are

isogenies, which have small communication complexity but suffer

from slow runtimes. Until now, there was only one OPRF based on

CSIDH [BKW20]. We show that the naïve approach to the imple-

mentation is not sufficient, and subsequently propose a fix using

uniform sampling for the keys as used in the signature scheme CSI-

FiSh [BKV19]. We combine the OPRF with a lattice-based Oblivious

Transfer protocol to achieve a relatively fast construction that com-

putes the OPRF in under 100 ms online time. Of independent inter-

est, we report that the Naor-Reingold PRF is nearly constant-time

with respect to the input length when using the lattice reductions

of CSI-FiSh. Based on the work on this OPRF, we introduce OPUS,

a novel construction that only uses CSIDH operations. It efficiently

computes the Naor-Reingold OPRF while only using 60% of the

group actions of the previous proposal, without needing a trusted

setup. Furthermore, we present the first post-quantum implemen-

tation of OPAQUE using two isogeny-based OPRFs. In addition,

we implemented and evaluate private set intersection with both

OPRFs.

2 PRELIMINARIES
We recall (Oblivious) Pseudorandom Functions.

Definition 1 (Pseudorandom Function). A pseudorandom func-

tion (PRF) [GGM84, GGM86] is a deterministic and polynomial time

function 𝐹 : {0, 1}𝑘 × {0, 1}𝑥 → {0, 1}𝑛 such that 𝐹 i there is no

probabilistic polynomial-time algorithm to distinguish any output

𝑁 from a randomly chosen element from {0, 1}𝑛 .

Definition 2 (Oblivious Pseudorandom Function). An oblivious

pseudorandom function (OPRF) [FIPR05] is a protocol between two

parties. One party holds the secret key 𝐾 and the other holds their

secret input 𝑋 . The OPRF privately realizes the joint computation

outputting 𝐹 (𝐾,𝑋 ) for a PRF 𝐹 to the party holding 𝑋 , and nothing

to the party holding 𝐾 .

2.1 CSIDH
CSIDH [CLM

+
18], was originally proposed as a quantum-safe re-

placement for Diffie-Hellman key exchanges. It builds on the ideas

of Couveignes [Cou06] and Rostovtsev-Stolbunov [RS06](CRS), but

restricts the isogeny graph to supersingular curves over F𝑝 . 𝑝 is a

prime in the form 𝑝 = 4

∏𝑛
𝑖=1 ℓ𝑖 −1 and 𝑝 ≡ 3 mod 4. For 𝜋 =

√−𝑝
and O = Z[𝜋], each ℓ𝑖 splits the endomorphism ring O into 𝔩𝑖
isogenies with degree ℓ𝑖 . The isogeny 𝜙 : 𝐸 → 𝐸′ is a map from

an elliptic curve 𝐸 to another curve 𝐸′ that preserves the point at
infinity and the algebraic structure [Sil86]. Hence, both curves have

the same number of rational points. The isogeny is unique up to

isomorphism. It is computed using Velu’s formula [Vél71].

The heart of CSIDH is the group action ∗, which iteratively com-

putes the ℓ𝑖 isogenies. It acts on the set of elliptic curves Eℓℓ𝑝 (O, 𝜋),
denoted as E. To ensure the group action is efficient, each ℓ𝑖 is re-

quired to be a small, distinct, odd prime.

2.1.1 Private Key and Public Key. The ideal class group 𝐶𝑙 (O) acts
freely and transitively on E. The element {𝔩𝑒1

1
· · · 𝔩𝑒𝑘

𝑘
} of 𝐶𝑙 (O) is

represented in CSIDH as the private exponent vector. This array

of 𝑘 elements (𝑒1, . . . , 𝑒𝑘 ) forms the private key whereas a single

element of the vector is called a key coefficient. Each key coefficient

𝑒𝑖 is a random element in the range [−𝑚,𝑚].𝑚 is a bound obtained

from the parameter generation to store approximately
log

2
𝑝

2
bits.

The sign of the key coefficient describes the direction of the walk:

Walking 𝑒 steps from some point and then −𝑒 steps results in re-

turning to the starting point. This is a result of the dual isogeny

theorem, which states that for each isogeny 𝐸 → 𝐸′, a correspond-
ing isogeny 𝐸′ → 𝐸 exists. The dual isogeny can be directly used

to invert the key: negating each key coefficient 𝑒𝑖 ↦→ −𝑒𝑖 results in
the inversion of 𝑘 , which we will denote as 𝑘−1. It is also possible

to add two private keys, where their respective coefficient vectors

are added, which we will denote as 𝑘 + 𝑙 , with 𝑘 and 𝑙 being CSIDH

private keys. Following the notation in [LGD21], we use s ∗ 𝐸 as

shorthand to denote the class group action between 𝔰 = {𝔩𝑠1
1
· · · 𝔩𝑠𝑘

𝑘
}

and 𝐸 using the vector s = (𝑠1, . . . , 𝑠𝑘 ).
The corresponding CSIDH public key is the Montgomery coef-

ficient 𝐴 ∈ F𝑝 of the supersingular curve 𝐸 : 𝑣2 = 𝑢3 + 𝐴𝑢2 + 𝑢
and deterministically obtained by repeatedly applying the private

key to the base curve 𝐸0 : 𝑣
2 = 𝑢3 + 0 · 𝑢2 + 𝑢. Of 𝑝 possible public

keys, approximately

√
𝑝 of those keys are valid, meaning that they

describe supersingular curves.

2.1.2 Computational Assumptions. For the security proof, we recall
the key recovery problem [CLM

+
18, Problem 10] for CSIDH.

Problem 1 (Key Recovery Problem). Given the two different
supersingular curves 𝐸, 𝐸′ ∈ E, find an s ∈ 𝐶𝑙 (O) such that s∗𝐸 = 𝐸′.

[LGD21] give a useful lemma showing that sampling elements of

the class group𝐶𝑙 (O) is statistically close to uniform which follows

directly from Problem 1.

Lemma 1 (ComputationalHiding in CSIDH). Given a curve 𝐸 ∈
E and a distribution 𝐷 on𝐶𝑙 (O), let 𝐷 ∗𝐸 be the distribution on E of

𝑎∗𝐸 for 𝑎 $←− 𝐷 . If𝐷 is statistically indistinguishable from the uniform
distribution on 𝐶𝑙 (O), 𝐷 ∗ 𝐸 is statistically indistinguishable from
the uniform distribution on E. Therefore, we say that 𝐷 statistically
hides 𝐸.

We recall the computational CSIDH problem from [CLM
+
18].

Problem 2 (Computational CSIDH Problem). Given curves
𝐸 ∈ E, r ∗ 𝐸 ∈ E, and s ∗ 𝐸 ∈ E where r, s ∈ 𝐶𝑙 (O), find 𝐸′ ∈ E such
that 𝐸′ = r ∗ s ∗ 𝐸.

Finally, we recall the decisional CSIDH problem from [EKP20]:

Problem 3. Decisional CSIDH Problem Given the set of curves E
and the ideal class group 𝐶𝑙 (O), the decisional CSIDH (D-CSIDH)
problem asks to distinguish between the following two distributions:

• (𝐸, 𝐻, 𝑎 ∗ 𝐸, 𝑎 ∗ 𝐻 ) with 𝐸, 𝐻 $←− E and 𝑎
$←− 𝐶𝑙 (O).

• (𝐸, 𝐻, 𝐸′, 𝐻 ′) where 𝐸, 𝐻, 𝐸′, 𝐻 ′ $←− E.
If for all PPT adversaries A, the advantage in distinguishing the two
distributions is negligible, we say that the C-CSIDH assumption holds.

2.1.3 Parameterization and Security. The size of the prime 𝑝 de-

notes the security parameter of CSIDH. There is heavy disagree-

ment in the literature on the secure parameterization of CSIDH
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[BLMP19, BS20, Pei20], as several theoretical and concrete quan-

tum attacks with subexponential complexity dispute that a prime

𝑝 which is 512 bits long is sufficient for security. Related work on

OPRFs [BKW20] recommends using 2260-bit prime numbers for

aggressive parameterization and 5280-bit primes for a conserva-

tive instantiation based on analysis of these algorithms. Recent

work analyzing and implementing CSIDH with bigger primes con-

cludes that a bitlength of at least 2048 bits, up to 9216 bits is neces-

sary [CSCJR22].

For best comparability with other implementations, we use the

512-bit reference implementation of CSIDH throughout this pa-

per, but point out that the prime length may not be sufficient. An

additional benefit of this implementation is the use of hardware

instructions, which speed up the computation.

2.2 CSI-FiSh
Building on CSIDH, the signature scheme CSI-FiSh introduces a

uniform representation of the class group elements. In their pa-

per, this is necessary for the Fiat-Shamir transformation to obtain

a signature scheme, but the use cases stretch beyond signatures.

Intuitively, increasing the bound 𝑚 of the key coefficient comes

closer to sampling uniformly over the class group. To sample fully

uniform keys, CSI-FiSh computes the class number and class group

structure and reduces the key after the arithmetic operation to

avoid leakage. Due to the different distribution of the class group

ideals, the group action is around 15% slower.

2.3 The Naor-Reingold Pseudorandom Function
(NR-PRF)

The Naor-Reingold PRF [NR04] is a generic construction for PRFs

from Abelian group actions that is widely used in the literature

and practice. The PRF requires 𝑛 + 1 group elements, or keys, for

𝑛 bits of PRF input. To compute the PRF, we take the initial group

element 𝑘0. For each input bit 𝑥𝑖 for 𝑖 ∈ [1, 𝑛], a group action is

performed if the 𝑖𝑡ℎ bit 𝑥𝑖 is set. For a group action denoted as ◦,
the Naor-Reingold PRF is defined as

𝐹𝑁𝑅 ((𝑘0, 𝑘1, . . . , 𝑘𝑛, 𝐸0), (𝑥1, . . . , 𝑥𝑛)) := 𝑘0 ◦ 𝑘𝑥1
1
◦ . . . ◦ 𝑘𝑥𝑛𝑛

where the exponentiation with 𝑥𝑖 may be read as perform ◦ if input
bit is set.

2.4 Oblivious Transfer and Naor-Reingold OPRF
The NR-PRF gives rise to oblivious evaluation using oblivious trans-

fer (OT). OT takes two messages (𝑚0,𝑚1) from the sender, usually

the server, and a choice bit 𝑐 from the receiver, usually the client.

The protocol functionality returns𝑚𝑐 to the client and is secure

when the client learns nothing about𝑚1−𝑐 and the server learns

nothing about 𝑐 .

To compute the NR-PRF obliviously using OT, the input 𝑋 is bit-

decomposed into𝑋 = [𝑥1, . . . , 𝑥𝑛] to use as an input for the OT. The
server samples 𝑛 blinding elements [𝑟1, . . . , 𝑟𝑛] and inputs 𝑟𝑖 , 𝑘𝑖 ◦ 𝑟𝑖
to the OT, with 𝑟𝑖 perfectly hiding 𝑘𝑖 . The client queries the OT with

each 𝑥𝑖 to obtain 𝑘𝑖
𝑥𝑖 ◦ 𝑟𝑖 and aggregates all results with the group

action to obtain the blinded group element 𝑘1
𝑥1 ◦𝑟1 ◦ . . . ◦𝑘𝑛𝑥𝑛 ◦𝑟𝑛 .

To finalize the computation, the server evaluates the inverse of all

blinding elements with the key and sends the result, which we will

call finalization element, 𝑓 𝑖𝑛 = 𝑘0 ◦ 𝑟−1
1
◦ . . . ◦ 𝑟−1𝑛 to the client.

The client now performs a final group action with the finalization

element and the blinded group elements to obtain the result:

𝑘1
𝑥1 ◦ 𝑟1 ◦ . . . ◦ 𝑘𝑛𝑥𝑛 ◦ 𝑟𝑛 ◦ 𝑘0 ◦ 𝑟−11

◦ . . . ◦ 𝑟−1𝑛 = 𝑘0 ◦ 𝑘1𝑥1 ◦ 𝑘𝑛𝑥𝑛

2.5 Notation
We write a vector v as a bold, lowercase variable, which is used for

private exponent vectors. For two vectors a and b, a + b and a − b
denote coefficient-wise addition and substraction.

We denote the sequential application of the group action

csidh(csidh(𝐸, a), b) as b ∗ (a ∗ 𝐸). Due to the commutativity of

CSIDH, this is also equivalent to (a + b) ∗ 𝐸. We denote the zero

curve as 𝐸0 and any other curve as 𝐸, potentially annotating it to

give more context. For example, the result of applying some key c
will be denoted 𝐸𝑐 = csidh(c, 𝐸0) = c ∗ 𝐸0.

We will use an ideal functionality keygen() to sample random,

uniform CSIDH private keys. [k1, k2]
$←− keygen() samples two

random, independent and uniform keys. We will call a curve 𝐸 ran-

domized after sampling a private key r
$←− keygen() and computing

𝐸′ = r ∗ 𝐸. We remove the property after applying r−1 to the curve

𝐸′, therefore removing the randomness.

2.6 Benchmarks
All benchmarks, unless specified otherwise, are averaged over 100

executions with random input and have been run on a computer

with an AMD Ryzen 7 PRO 4750U Processor with a fixed proces-

sor speed at 1.7 GHz and 24 GiB RAM, under the Linux kernel

6.1.44-1-lts. We will refer to this setup as the test machine. Unless
otherwise stated, the input length to the OPRF is 128 bits.

3 ATTACKING AND REPAIRING THE
GENERIC NAOR-REINGOLD OPRF FROM
CSIDH

Previous work [BKW20] describes the Naor-Reingold (NR) OPRF

for CSIDH to compare against their SIDH-based proposal. While the

latter has been broken [BKM
+
21] and subsequently repaired [Bas23],

the approximations for the Naor-Reingold OPRF from CSIDH are

widely cited in the literature and have not been studied further.

We fill this gap with a thorough investigation of both NR-PRF and

NR-OPRF from CSIDH. More concretely, we show in this section

that the naïve instantiation of the OPRF leads to a full key recovery

in a passive attack and propose a mitigation.

3.1 Instantiating the NR-PRF from CSIDH
To instantiate the NR-PRF with CSIDH, the protocol samples 𝑛 + 1
CSIDH private keys and computes the group action as in Section 2.3.

The textbook variant of the PRF outlined in Figure 1 is prohibitively

slow, requiring𝑛+1 sequential group actions to compute the PRF for

𝑛 input bits. A recent paper [ADMP20] describes an effective way

to evaluate the PRF by splitting the evaluation into two parts: First,

a subset-product, in the case of CSIDH addition of all key elements

where 𝑥𝑖 = 1, is computed. This first step can be parallelized. The

group action is then evaluated using the aggregated key elements

in a second step on the base curve.
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𝐹𝑁𝑅−𝐶𝑆𝐼𝐷𝐻 ((k0, k1, . . . , kn), (𝑥1, . . . , 𝑥𝑛)) :=
k0 ∗ k1𝑥1 ∗ . . . ∗ kn𝑥𝑛 ∗ 𝐸0

Figure 1: Naor-Reingold PRF from CSIDH using 𝐸0 as a start-
ing curve. We use 𝑘𝑥𝑖

𝑖
as a shorthand notation for perform the

group action with 𝑘𝑖 if and only if 𝑥𝑖 is set.

𝐹𝑁𝑅−𝐶𝑆𝐼𝐷𝐻−𝑂𝑃𝑇 ((k0, k1, . . . , kn, 𝐸0), (𝑥1, . . . , 𝑥𝑛)) :=(
k0 +

𝑛∑︁
𝑖=1

ki𝑥𝑖
)
∗ 𝐸0

Figure 2: Optimized two-step Naor-Reingold PRF from
CSIDH. The first step is a subset-sum of the required keys
and the second step is the application of the group action to
the base curve 𝐸0.
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Figure 3: Runtime divergence between the traditional Naor-
Reingold CSIDH PRF in blue and the same PRF with our
optimization in green for different bit lengths.

The subset-sum computation requires a tiny tweak in the CSIDH

implementation
1
, from 8-bit to 32-bit key elements to avoid over-

flows. Other than adding addition and subtraction subroutines, the

implementation is the same. In Figure 3, we benchmark the PRF

computation for input sizes between 1 and 512 bits. We see that

the two-step computation approach reduces the evaluation time.

This is due to two factors: one, the key coefficients are in the range

[−5, 5] and will partially cancel out when added, reducing the re-

quired steps on the isogeny graph. Two, the optimization saves 𝑛−1
computations of the first step of the algorithm, which is computing

a point of the correct order. A smaller value of ℓ𝑖 corresponds to a

higher cost in computing a point of correct order, as the probability

1
All CSIDH benchmarks use the reference implementation from https://yx7.cc/code/

csidh/csidh-latest.tar.xz, which is from 27-06-2021.
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recomputating the PRF

updating the PRF

Figure 4: Runtime divergence between updating 𝑥 bits of the
PRF vs. recomputing the full 256 bits of the PRF.

𝐹𝑁𝑅−𝐶𝑆𝐼𝐹𝑖𝑆ℎ−𝑂𝑃𝑇 ((k0, k1, . . . , kn, 𝐸0), (𝑥1, . . . , 𝑥𝑛)) :=

reduce_mod

(
(k0 +

𝑛∑︁
𝑖=1

ki ∗ 𝑥𝑖 ), 𝑐𝑛
)
∗ 𝐸0

Figure 5: Optimized two-step Naor-Reingold PRF from
CSIDH. The first step is a subset-sum of the required keys
and the second step is the application of the group action to
the base curve 𝐸0.

of sampling a correct point is
ℓ𝑖−1
ℓ𝑖

. Therefore, the optimization

is particularly of interest for an aggressive parameter choice in

CSIDH.

Additionaly, this PRF is updatable; that is, if parts of the input

change, updating the output requires a single group action to update

the PRF. This is useful for applications requiring to hash multiple

inputs, so the individual inputs differ in less than
𝑛
2
bits. In Figure 4,

we show that the effort between recomputing the OPRF and up-

dating a previous result holds fairly clearly to our expectations: It

is cheaper to update the OPRF when less than 128 bits differ and

otherwise recomputation is more efficient. Note that the divergence

in the runtime is due to non-uniform keys in CSIDH.

3.1.1 Instantiation from CSI-FiSh. The PRF is even more efficient

with CSI-FiSh, as the keys can be added and then reduced modulo

the class group number as depicted in Figure 5 The reduction step

leads to an almost constant-time computation. In Figure 6, we show

the improvement in runtime when using a reduction, leading to an

almost constant time complexity when computing the PRF, inde-

pendent of the input. More concretely, the difference between the

lowest and the highest execution time is 0.0032s for the optimized

variant and 0.4377s for the aggregation variant.
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Figure 6: Comparing PRF runtimes using aggregation only
and aggregation and a reduction modulo the class group
number before applying the group action.

3.2 Oblivious NR-PRF from CSIDH
The OPRF in [BKW20] is not rigorously described; they initially

give a description of the NR-PRF in Protocol 24 of the same paper.

In a later paragraph, they state instantiating their protocol with

CSIDH results in a NR-OPRF similar to the protocol in Section 2.3.

Since the protocol uses OT, we will call it NR-OT henceforth. Using

our addition trick from Section 2.3, a correct intuition to compute

the OPRF is to instantiate the OT with (ri, ki + ri) and finalizing

the OT by sending k0 ∗
∑𝑛
𝑖=1 −ri.

3.2.1 Analyzing the Construction. While the OPRF above produces

a correct result, due to the non-uniform representation of the CSIDH

private key, the construction leaks the server key.
2
A passive ad-

versary, that is, an adversary who carries out the protocol faithfully,

can observe the distribution of the blinded keys.

3.2.2 Key Leakage Example. Consider the key coefficient 𝑘𝑖 = 𝑦,

with 𝑦 ∈ [𝑚,−𝑚] (for a discussion on bounds, see Section 2.1).

When it is blinded with a random element 𝑟𝑖 , the blinded element

𝑟𝑖 + 𝑘𝑖 is always within the range [𝑦 −𝑚,𝑦 +𝑚], as the blinding co-
efficient is uniformly sampled within the same range 𝑟𝑖 ∈ [−𝑚,𝑚].
Over several iterations, 𝑟𝑖 will change and reveal more and more in-

formation about the key, giving the information outright when the

difference between the blinding results is 2𝑚. To obtain the correct

coefficient 𝑦, take the largest result 𝑙 and compute 𝑦 := 𝑙 −𝑚.

3.3 Fixing the NR-OPRF
Signature schemes using the Fiat-Shamir Transformation[FS87]

require uniform keys as well. For CSIDH, the signature scheme

SeaSign [DG19] mitigates the non-uniform mitigation by rejection

sampling, concretely using the Fiat-Shamir transformation with

2
In personal communication, authors of [BKW20] confirmed that the specific instan-

tiation of their construction using class groups (or isogenies) blinds the class group

element representing the key by multiplying a random element, but that the non-

uniform key distribution leads to the CSIDH instantiation of protocol [BKW20] being

"currently broken".

aborts [Lyu09]. To translate the technique to the CSIDH setting,

SeaSign uses somewhat short, long-term secret keys k with coeffi-

cients 𝑘𝑖 ∈ [−𝐵, 𝐵]𝑘 for some 𝐵 and large, ephemeral secret keys

r with each coefficient 𝑟𝑖 ∈ [−(𝛿 + 1)𝐵, (𝛿 + 1)𝐵]𝑘 , rejecting any r
where the vector r − k contains a coefficient is outside of the range

[−𝛿𝐵, 𝛿𝐵]. In the NR-OT setting, the long-term sender keys are the

short keys s and the ephemeral keys are sampled as r. While using

tactics from SeaSign is a good mitigation, it puts a computational

load on the server and introduces the drawbacks of lattice signa-

tures in the scheme. Additionally, the large ephemeral keys add

communication overhead to the protocol.

Most of these issues are mitigated by using the sampling algo-

rithm from the signature scheme CSI-FiSh [BKV19] introduced

in Section 2.2. The protocol would largely remain the same, with

ki + ri being a reduced element of the class group.

3.3.1 Trusted Setup in Oblivious Transfer. Another roadblock on

the way to a secure NR-OT instantiation is the underlying OT.

The estimations for the communication complexity of the NR-

OT [BKW20] use an isogeny-based OT protocol [LGD21] that re-

quires a supersingular curve with an unknown endomorphism ring.

A recent paper [BCC
+
23] proposes an algorithm for the generation

of supersingular curves with unknown endomorphism over F𝑝2 .
However, there are no known efficient algorithms for the curves

over F𝑝 used by CSIDH, which is denoted as an open problem in

the same paper. Therefore, using the OPRF protocol requires either

an efficient construction of curves with unknown endomorphism

over F𝑝 or a different OT protocol without a trusted setup.

3.3.2 Alternate OT protocols using CSIDH. The semi-honest proto-

col of [dSGOPS20] gives similar performance to the OT protocol

of [LGD21], but requiring two trusted curves for the setup. A good

alternative may be the single-bit OT of [ADMP20], which requires

a key distribution closer to uniform than CSIDH and therefore

uses the CSI-FiSh key sampling algorithm for the entire protocol.

The main issue with this protocol is that the number of isogeny

computations depends on the length of the client input and the

bitlength of the input log
2
𝑝 = 𝜎 . The overall number of isogeny

computations would be 𝛾 (5𝜎 + 5). For an input length of 128 bits

and a key size of 256 bits, this would amount to 164480 isogeny

computations, which is prohibitive.

Hence, to instantiate the protocol chose a two-round OT pro-

tocol based on additive homomorphic encryption [BDK
+
20], as it

provides an implementation and is round-optimal. In addition, the

protocol offers batching, making it more efficient for multiple OT

invocations, and expects the input to be given as a GMP integer,

which is how CSI-FiSh encodes the private key. The protocol is

implemented in C++ using Microsoft SEAL [SEA21] for the ho-

momorphic operations. Using the BFV [Bra12, FV12] scheme, it

follows in three steps, with □ denoting homomorphic operations

on encrypted messages.

(1) The client encrypts their choice bit 𝑐𝑏 = Enc(𝑝𝑘, 𝑏) and
sends it to the server.

(2) The server computes 𝑐𝑚𝑏
= (𝑚0 � (1⊟𝑐𝑏 )) ⊞ (𝑚1 �𝑐𝑏 ) and

sends 𝑐𝑚𝑏
to the client.

(3) The client decrypts the ciphertext to obtain𝑚𝑏 = Dec(𝑠𝑘, 𝑐𝑚𝑏
)

Using the OT and CSI-FiSh, the full protocol is displayed in Figure 7.
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Server Client
keys 𝐾 = k0, . . . , kn input 𝑋 = [𝑥1, . . . , 𝑥𝑛 ]
R← [0] K← [0]
for 𝑖 ∈ [1, 𝑛] : for 𝑖 ∈ [1, 𝑁 ] :

ri
$←− keygen( )

kiri ← ri + ki
kiri ← reduce_mod(kiri )

R← R + ri (
2

1

)
-OT

𝑥𝑖ri
kiri 𝑥𝑖 ∗ ki + ri

K← K + 𝑥𝑖 ∗ ki + ri

k← reduce_mod(K)

𝐸𝑓 𝑖𝑛 ← (k0 − R) ∗ 𝐸0 𝐸𝑓 𝑖𝑛 𝐸 ← k ∗ 𝐸𝑓 𝑖𝑛

return 𝐸

Figure 7: Full protocol of evaluating the NR-OPRF with CSI-
FiSh and 𝑁 OT calls. The function reduce_mod describes the
reduction modulo the class group number.

Table 1: Comparison between PRF and OPRF execution time
locally on the test machine for our NR-OT OPRF. The net-
work traffic is always denoted as sent kilobytes. OT keygen
is a separate column for key generation measuring the client
communication and computation time.

Input- Keygen Comp.

Client Server OT keygen

length PRF PRF

128 204ms 43ms

90ms 91ms 429ms

128 kiB 256 kiB 256 kiB

256 378ms 43ms

97ms 97ms 428ms

256 kiB 512 kiB 256 kiB

512 763ms 45ms

101ms 101ms 427ms

384 kiB 768 kiB 256 kiB

3.3.3 Performance. Using the lattice-based OT, the NR-OT OPRF

becomes relatively efficient. This is due to two factors: first, the

added keys are reduced modulo the class number, which results in

a very fast PRF runtime, see Section 3.1.1. This results in a protocol

that only requires two group actions to complete. Second, while

the lattice OT requires a lot of communication, it is relatively fast.

3.3.4 Conclusion. The construction repairs the issues from the

initial proposal [BKW20], namely by using an OT protocol that

does not require a trusted setup and using the sampling approach

from CSI-FiSh for uniform keys. This introduces two new issues:

First, the OT protocol allows the client’s choice bit to be neither

0 nor 1, which may result in a response that is a superposition of

messages. Hence, the security model is weaker, as a semi-honest

client would only be passively secure. Second, when using uniform

sampling, the class group structure is only available for primes of

length 512 [BKV19] or 1024 [DFK
+
23], which may not provide a

sufficient security margin as discussed in Section 2.1.3.

Table 2: Comparison of OPUS complexity on the testmachine.
The overall time is the addition of the time from the client
and the server, as the protocol is sequential.

Bit- Keygen Comp.

Client Server Overall

length PRF PRF

128 0.11ms 168ms

3.00s 5.73s 8.73s

8.06 kiB 16.06 kiB 24.13 kiB

256 0.26ms 234ms

5.83s 11.30s 17.13s

16.1 kiB 32.1 kiB 48.13 kiB

512 0.51ms 326ms

11.47s 22.42s 33.89s

32.06 kiB 64.06 kiB 96.13 kiB

4 OPUS: OBLIVIOUS PSEUDORANDOM
FUNCTION USING CSIDH

While the above construction is relatively efficient, it would be of

interest to build a similar OPRF exclusively from a single type of

problem, i.e., isogenies, without the need for hard lattice problems.

To avoid sending any private keys over the network, we propose

OPUS, a novel OPRF that only sends evaluated curves, that is,

CSIDH public keys. In the protocol, both parties iteratively blind

their intermediate results, with the client getting anything useful

only in the end, beforehand computing over randomized curves.

This eliminates the need for a trusted setup, which is the main

obstacle hampering other OPRF protocols from CSIDH. The main

operations in OPUS are blinding and key addition. In each step, the

client blinds a curve, starting with 𝐸0, with a random class group

element rc,i and sends it to the server, which returns the curve

blinded againwith its own, fresh blinding element 𝑟𝑠,𝑖 and oncewith

the own blinding element and the key. Now, the client decides based

on the 𝑖𝑡ℎ bit of the input with which curve the computation should

continue, blinding again to ensure the server learns nothing about

their choice. By the hiding Lemma 1, this perfectly protects the

client input and the server keys from malicious parties, see Figure 8.

4.1 Efficiency
Once again, the OPRF is made more efficient with the addition trick

from Section 2.3, as both client and server aggregate the blinding

keys in vector 𝑅 to quickly reduce the number of group actions.

Overall, OPUS needs 2𝑛 + 1 group action computations for the

server and 𝑛 + 1 for the client. Experimental runtimes can be found

in Table 2.

The low communication cost gives lower bandwidth require-

ments. This is also of benefit in cloud environments and when data

is transmitted over cellular networks. An additional advantange

of OPUS is that the server carries the highest computational load,

while the client only has to perform 𝑛 + 1 CSIDH computations.

Aside from the isogeny computations, the main performance

issue in OPUS is the large number of rounds. To address this con-

cern, we rented virtual machines around the world and used them

as clients performing OPUS with a server in London. As clear

from Figure 9, the runtime of OPUS directly corresponds to the

580



OPRFs from Isogenies: Designs and Analysis ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

Server Client

{k0, k1, · · · , kn}
$←− keygen( ) input 𝑋 ← {𝑥1, · · · , 𝑥𝑛 },

rs ← [0] rc ← [0], 𝐸𝑐𝑙𝑖𝑒𝑛𝑡 ← 𝐸0

foreach i ∈ {1, . . . , 𝑛}: foreach i ∈ {1, . . . , 𝑛}:

rc,i
$←− keygen( )

rs,i
$←− keygen( ) 𝐸𝑏𝑙𝑖𝑛𝑑𝑒𝑑 𝐸𝑏𝑙𝑖𝑛𝑑𝑒𝑑 ← rc,i ∗ 𝐸𝑐𝑙𝑖𝑒𝑛𝑡

𝐸𝑠,𝑖,0 ← rs,i ∗ 𝐸𝑏𝑙𝑖𝑛𝑑𝑒𝑑
𝐸𝑠,𝑖,1 ← ki ∗ 𝐸𝑠,𝑖,0

rs ← rs − rs,i 𝐸𝑠,𝑖,0, 𝐸𝑠,𝑖,1 𝐸𝑐𝑙𝑖𝑒𝑛𝑡 ← 𝐸𝑠,𝑖,𝑥𝑖

rc ← rc − rc,i

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Finalize and Unblind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rc,0 ∗ 𝐸𝑐𝑙𝑖𝑒𝑛𝑡 rc,0
$←− keygen( )

𝐸𝑠 ← (k0 + rs ) ∗ rc,0 ∗ 𝐸𝑐𝑙𝑖𝑒𝑛𝑡 𝐸𝑠 𝐸𝑐𝑙𝑖𝑒𝑛𝑡 ←
(
rc − rc,0

)
∗ 𝐸𝑠

return 𝐸𝑐𝑙𝑖𝑒𝑛𝑡

Figure 8: The full protocol of our novel OPRF 𝑂𝑃𝑈𝑆 .
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Figure 9: Online runtimes of clients in different cities com-
puting OPUS with a bit length of 128 with a server in London.
All machines run on Debian 11 using the simplest Google
Cloud instance.

round-trip time of the ping. In a real-life setting, this overhead may

be mitigated by running several, distributed instances of a server.

4.2 Verifiability
When the OPRF is used as a building block in a protocol, and the

resulting OPRF output is utilized at a later stage, it is crucial to

safeguard user anonymity by preventing any link between the

result and the OPRF evaluation. For instance, a malicious server

may tag an individual by using a distinct key for OPRF evaluation.

This discloses the user’s identity when revealing the OPRF result.

For example, the PrivacyPass protocol [DGS
+
18] hands out tokens

to the user after they completed a CAPTCHA. These tokens can

be redeemed instead of completing a new CAPTCHA. By using

a different key for each challenge, the browser can distinguish

tokens handed out for different challenges and track the user across

websites.

To mitigate this attack, some OPRFs are verifiable, which means

the functionality ensures a server uses a certain key that it previ-

ously committed to for the evaluation. Adding verifiability to OPUS

is difficult as the communication is entirely over randomized curves,

similar to the challenges imposed by the requirements for malicious

security. Another OPRF based on isogenies over F𝑝2 [Bas23] uses a
proof of parallel isogeny, which provides a zero-knowledge proof to

show that two curves were computed by applying the same secret

key to two starting curves and torsion points. Unfortunately, this

does not carry over to CSIDH’s F𝑝 and cannot be applied OPUS or

the NR-OT. A recent survey [BFGP23] details strategies and gives

an overview of zero-knowledge proofs for isogenies. While it seems

possible, we leave the task of constructing a verifiable OPRF for

future work.

5 SECURITY ANALYSIS
To prove our novel OPRF secure against a semi-honest adversary

in the ROM, we will first show that the OPUS is a PRF. We now

show that the protocol OPUS in Figure 8 generates output in corre-

spondence to the CSIDH NR-PRF 𝐹𝑁𝑅 from Section 2.3.

Proposition 1 (OPUS produces correct NR-PRF outputs).

For all keys k ∈ K and inputs x ∈ {0, 1}𝑛 , the output of an honest
computation of OPUS is an evaluation of the CSIDH-based 𝐹𝑁𝑅 . That
is P[𝐹𝑂𝑃𝑈𝑆 (k, x) = 𝐹𝑁𝑅 (k, x)] = 1, with the probability being over
the internal randomness of OPUS.
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Experiment om-PRF:

• (𝑝𝑘, 𝑠𝑘) $←− K , 𝑞, 𝑐 ← 0

• (𝑖1, . . . , 𝑖ℓ , 𝑏′) ← ARoR,PRF-Srv

• If ℓ > 𝑞 or 𝑐 ≥ ℓ or ∃𝛼 ≠ 𝛽 : 𝑖𝛼 = 𝑖𝛽 return 0.

• Return 𝛽′ =
⊕ℓ

𝛼=1 𝑏𝑖𝛼

RoR(𝑚):

• 𝑞 ← 𝑞 + 1, 𝑏𝑞
$←− {0, 1} 𝑍0

$←− R, 𝑍1 ← 𝐹𝑘 (𝑚)
• Return 𝑍𝑏𝑞

PRF-Srv(𝑚):
• 𝑐 ← 𝑐 + 1
• Return PRF-Srv𝑘 (𝑚)

Figure 10: Security game for one-more pseudorandomness.

Correctness of OPUS. Given input 𝑋 = (𝑥1, . . . , 𝑥𝑛) and keys

𝐾 = (k0, . . . , kn), the client C initializes 𝐸 ← 𝐸0. For each 𝑖 ∈ [1, 𝑛],
C generates a random key rc,i and sends a randomized curve rc,i ∗𝐸
to the server S, which samples their randomness rs,i and returns

𝐸𝑖,0 ← rs,i ∗𝐸 and 𝐸𝑖,1 ← ki ∗ rs,i ∗𝐸 to C. If 𝑥𝑖 = 1, C sets 𝐸 ← 𝐸𝑖,0
and 𝐸 ← 𝐸𝑖,1 otherwise. Clearly, repeating this step 𝑛 times is

equivalent to computing( (∑𝑛
𝑖=1 rs,i +

∑𝑛
𝑖=1 rc,i +

∑𝑛
𝑖=1 ki

𝑥𝑖
)
∗ 𝐸0

)
.

The computation is finalized by C blinding the result again with

the term rc,0 and sending it to the server, which applies k0 as well
as the sum of the inverse blinding terms rs such that

(k0 −
∑𝑛
𝑖=1 rs,i) ∗

( (
rc,0 +

∑𝑛
𝑖=1 rs,i +

∑𝑛
𝑖=1 rc,i +

∑𝑛
𝑖=1 ki

𝑥𝑖
)
∗ 𝐸0

)
,

which is equivalent to(∑𝑛
𝑖=0 rc,i + k0 +

∑𝑛
𝑖=1 ki

𝑥𝑖
)
∗ 𝐸0 .

The client is left to compute the inverse of their respective blinding

elements such that∑𝑛
𝑖=0 −(rc,i) ∗

(∑𝑛
𝑖=0 rc,i + 𝑘0 +

∑𝑛
𝑖=1 ki

𝑥𝑖
)
∗ 𝐸0,

which is equivalent to computing

(k0 +
∑
𝑖=1 ki

𝑥𝑖 ) ∗ 𝐸0 .
Therefore, OPUS correctly evaluates the NR-PRF for honest parties.

□

Consequently, we obtain the following corollary from [BKW20,

Theorem 23]:

Corollary 1. Assuming computational CSIDH (cf. Problem 2)
holds, then OPUS is a secure pseudorandom function.

For the security proof, we consider the one-more pseudoran-

domess security game of Everspaugh et al. [ECS
+
15] in the fully

oblivious setting.

Definition 3. A OPRF 𝐹𝑘 : M → R provides one-more pseu-

dorandomess if for any PPT adversory A the advantage in the

one-more pesudorandomness experiment defined in Figure 10,

| Pr[om-PRF = 1] − 1

2
| is negligible.

This notion, as shown by Everspaugh et al., implies the weaker

one-more unpredictability security notion of OPRFs. Note though,

that in Figure 10, the PRF-Srv oracle is modelled as a single query.

In our case, this algorithm takes part in a multi-round protocol,

whereas the output depends on client-provided random values

which on their own depend on previous outputs of PRF-Srv. We

will however keep the notation for simplicity and assume that all

the required information to produce a transcript is passed as part

of𝑚. We now show that OPUS is one-more pseudorandom based

on the D-CSIDH assumption:

Theorem 1. If the D-CSIDH assumption holds, then OPUS is one-
more pseudorandom.

Proof. The basic idea is to replace the use of the secret key 𝑘𝑖
step-by-step with randomly sampled curves.

• Game 0: The initial game.

• Game 𝑖: Everything is as before, but compute 𝐸𝑠,𝑖,1 by sam-

pling uniformly at random from E.
• Transition 𝑖 − 1 to 𝑖: an adversary that can distinguish be-

tween game 𝑖 − 1 and 𝑖 , can also solve D-CSIDH. Indeed, let

(𝐸, 𝐻, 𝐸′, 𝐻 ′) be from a D-CSIDH challenger. We set 𝐸𝑠,𝑖,0 ←
𝐻 and 𝐸𝑠,𝑖,1 ← 𝐻 ′ which interpolates between the two

games.
3

In Game 𝑛, the adversary can only guess as none of the 𝑘1, . . . 𝑘𝑛
are used in the protocol execution. □

Proofing the security of OPUS in the universal composability

model and in an adaptive setting, is currently open and future

work. To achieve adaptve security, it would be required at least to

produce the output of OPUS via a random oracle, i.e., by outputting

𝐻 (𝑚, 𝐸𝑐𝑙𝑖𝑒𝑛𝑡 ), as observed by Jarecki et al. [JKX18].

6 CASE STUDY: OPAQUE
TheOPAQUE [JKX18] protocol introduces a Password-Authenticated

Key Exchange (PAKE) protocol that does not reveal the user’s pass-

word to the server. Instead, it performs an OPRF calculation with

the server, using the hash of the password as the user’s input and a

PRF key provided by the server. Hence, offline dictionary attacks

effectively require compromise of the server’s PRF key and are oth-

erwise rendered impossible. OPAQUE is unable to prevent online

attacks, yet they incur additional costs for the attacker as they have

to perform the client’s side of the OPRF evaluation. To make online

attacks even more costly, additional client hardening steps (e.g.,

memory hard functions) can be employed as discussed in [JKX18].

OPAQUE consists of two phases: Password Registration and

Password Authentication with Key Generation. Authentication and

key generation are accomplished by either combining the OPRF

with an asymmetric PAKE (aPAKE) or an Authenticated Key Ex-

change (AKE) protocol. In our implementation, we focus on the

composition using the AKE protocol, since no CSIDH-based aPAKE

protocols are available. During registration, both parties generate a

long-term asymmetric keypair, later used during authentication to

perform the AKE protocol. Using the output of the OPRF, the client

derives a symmetric key and uses it to encrypt its private key. For

3
We could set 𝐸0 ← 𝐸 and 𝐸′ would represent the public key of the server. As we do

not have a public key, though, this step is not required.
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Client Server

username, password {k0, . . . , k256}
$←− keygen()

username

OPUS
Hash(password)

out

k

y← Hash(password | |out)
rw← HkdfExtract(y | |PWHash(y) )
(ekC, dkC ) ← KEM.KeyGen( ) (ekS, dkS ) ← KEM.KeyGen( )
(vkC, skC ) ← SIG.KeyGen( ) (vkS, skS ) ← SIG.KeyGen( )
IpkC ← (ekC, vkC ) IpkS ← (ekS, vkS )
IskC ← (dkC, skC ) IskS ← (dkS, skS )

IpkS

n
$←− {0, 1}256 s

$←− {0, 1}256

c← AuthEncrw (IpkC | |IpkS | |IskC, n)

c, n, IpkC
User Record: IpkS | |IskS | |IpkC | |c | |n | |s | |k

Store User Record for given username

Figure 11: Description of PQ OPAQUE Password Registration

simplicity, our implementation includes the client and server public

key in the encryption process. The ciphertext is sent and stored on

the server. During authentication the server fetches the ciphertext

and sends it to the client, where it is decrypted after performing the

OPRF again, requiring the user to only remember their password,

but not the long-term keypair, to authenticate. A shared key is then

generated by performing the AKE protocol.

6.1 Post-Quantum OPAQUE Implementation
Constructing a post-quantum version of the OPAQUE protocol re-

quires the replacement of the used OPRF and AKE protocols with

suitable post-quantum variants. We instantiate two PQ versions,

one using our novel OPRF OPUS and the other one using our NR-

OT OPRF. Both versions use a post-quantum secure replacement

of the X3DH protocol, proposed by Hashimoto et al [HKKP21], as

the AKE. We chose this AKE since it provides security against Key

Compromise Impersonation (KCI) attacks and forward secrecy, as

required by the OPAQUE protocol, and is suitable for implementa-

tion using CSIDH-based primitives. The protocol is based on a Key

Encapsulation Mechanism (KEM) scheme and a signature scheme.

We chose the CSIDH-based CSIKE [Qi22] as the KEM, since it is

IND-CCA secure as required by the used AKE. As the signature

scheme, we chose CSI-FiSh [BKV19], as there already is an im-

plementation available. The full protocol flow for the OPAQUE

Password Registration and Password Authentication is detailed in

Figure 11 and Figure 12 respectively. Exts and FK are PRF using

KMAC256 instead of HMAC256, since we require variable length

output. The PRF uses s and K as the respective keys, with different

labels to differentiate between Exts and FK.
Note that the security of PAKE is defined in the UC setting and

OPAQUE is proven secure for UC-secure OPRFs. As this is left open

as future work for OPUS, we consider the evaluation of OPUS with

in an OPAQUE as an outlook for future applications of OPUS.

Client Server
username, password

username
Retrieve User Record for given username

OPUS
Hash(password)

out

k

y← Hash(password | |out) c, n

rw← HkdfExtract(y | |PWHash(y) )
(ekT, dkT ) ← KEM.KeyGen( )
(IpkC | |IpkS | |IskC ) ← AuthDecrw (c, n)

𝜎C ← SIG.SignskC (ekT ) SIG.VerifyvkC (ekT, 𝜎C )
!

= 1

ekT, 𝜎C (K, C, 𝜏 ) ← KEM.EncapekC ( )

(KT, CT, 𝜏T ) ← KEM.EncapekT ( )
K← KEM.DecapdkC (C, 𝜏 ) K1 ← Exts (K) ; K2 ← Exts (KT )
KT ← KEM.DecapdkT (CT, 𝜏T ) sid← username | |hostname | |IpkC | |IpkS | |ekT | |C | |CT
K1 ← Exts (K) ; K2 ← Exts (KT ) kS | |k← FK1 (sid) ⊕ FK2 (sid)
sid← username | |hostname | |IpkC | |IpkS | |ekT | |C | |CT 𝜎 ← SIG.SignskS (sid)
kC | |k← FK1 (sid) ⊕ FK2 (sid) b← 𝜎 ⊕ k

𝜎 ← b ⊕ k C, CT, 𝜏, 𝜏T, b, s

SIG.VerifyvkS (sid, 𝜎 )
!

= 1

Output kC as shared secret key Output kS as shared secret key

Figure 12: Description of PQ OPAQUE Password Authentica-
tion and Key Generation

Table 3: Comparison between the execution time of li-
bopaque and our two OPAQUE instantiations. The execution
time is averaged over 100 runs. Reg. refers to the registration
and Auth. to the authentication phase of the protocol.

Function libopaque PQ PQ / libopaque

OPUS NR-OT OPUS NR-OT

Reg. Client 119.37ms 39.82s 11.59s × 333.62 × 97.10

Reg. Server 95.63ms 39.84s 11.61s × 416.62 × 121.42

Auth. Client 96.54ms 31.21s 3.25s × 323.27 × 33.69

Auth. Server 120.32ms 32.01s 2.74s × 268.15 × 22.80

6.2 Comparison to Pre-Quantum
implementation

To measure the performance difference, we compare our implemen-

tation to libopaque,4 an open-source, pre-quantum implementa-

tion of OPAQUE. The average execution time for the client and

the server is shown in Table 3, while the communication cost is

shown in Table 4. Our implementation is the first PQ-secure in-

stantiation of the OPAQUE protocol. While it leads to a increase

in execution time and communication cost, this concretizes the

overhead of switching to post-quantum cryptography for advanced

protocols.

7 CASE STUDY: PRIVATE SET INTERSECTION
In a private set intersection (PSI), two or more parties, commonly

a server and a client, hold data sets 𝑆 and 𝐶 . After performing the

PSI protocol, one or both parties learn 𝑆 ∩ 𝐶 without revealing

anything about the other parties set. In the client-server case, the

sets are very often unbalanced, as the server set is much larger

than the client set |𝑆 | ≫ |𝐶 |. A well-studied application of PSI is

4
https://github.com/stef/libopaque
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Table 4: Comparison between the communication overhead
of libopaque and our PQ OPAQUE instantiations

Function libopaque PQ PQ / libopaque

OPUS NR-OT OPUS NR-OT

Reg. Client 224B 64kiB 817kiB × 294.4 × 3733

Reg. Server 64B 48kiB 144kiB × 770 × 2307.4

Auth. Client 160B 17kiB 769kiB × 106.1 × 4920.2

Auth. Server 320B 65kiB 161kiB × 208.2 × 515.7

Private Contact Discovery, where clients want to know which of

their contacts also use the same service [KRS
+
19].

To perform PSI using OPRFs, the holder of the larger set com-

putes the PRF for each set entry and, optionally, inserts the results

in an efficient data structure, e.g. a cuckoo filter. Then, the OPRF is

computed in the online phase. The client uses their set entries as

input and the server oblivious evaluates them with the same key

as in the keyed PRF and checks whether the result is in the filter.

Performing PSI without a verifiable OPRF may lead to a tag-

ging attack where a malicious server uses different keys for each

client when performing the OPRF, leading to the identification

of the results later (see also Section 4.2). This is why previous

work by [KRS
+
19] relaxes the security assumption and assumes

a malicious client and a semi-honest server. They also postulate

three goals for unbalanced PSI: The server should perform the

computationally most expensive tasks, all expensive tasks are only

performed once and updates are fast. We now instantiate their PSI

framework with both isogeny-based OPRFs and compare it to our

implementation. Of independent interest, we propose a small opti-

mization for the setup of the elliptic curve Naor-Reingold(ECNR)

PSI protocol in the full version using precomputation tricks. The

results can be found in Table 5.

7.1 PSI with ECNR
The ECNR-PSI protocol is divided into three phases: First setup

phase, where a Cuckoo filter is filled with the PRF results of server

set entries and sent to the client. Then, a base phase, where some

initial, data-independent Oblivious Transfer is performed. Using

cheap symmetric cryptography, the parties generate many more OT

pairs from this base OT using a technique calledOT Extension. Then,
in the online phase, the OPRF is performed using the extended OT

pairs. This is currently the most efficient PSI protocol. [KRS
+
19]

7.2 PSI with NR-OT
The implementation with the NR-OT is relatively close to the ECNR

files. The setup phase is identical other than replacing the com-

munication interface with the one provided by the PQ-OT imple-

mentation. Since the PQ-OT implementation does not provide an

implementation for OT extensions, we skip the base phase and

only implement an online phase. In the online phase, the OPRF is

performed with all client elements.

The communication overhead may be lower when using OT

extensions, which uses symmetric cryptography to generate more

OT pairs from a few base OT queries. [BDK
+
20] show that the

IKNP protocol [IKNP03] is secure against quantum adversaries

Table 5: PSI comparison using ECNR, NR-OT, and OPUS as
the OPRF for set intersection. The ECNR column combines
base and online for better comparability.

parameters setup online

|𝑆 | |𝐶 | |𝑆 | |𝐶 | |𝑆 | |𝐶 |

N
R
-
O
T

2
0

2
0

0.26s 0.51s 0.06s 0.10s

134 bytes 1 byte 128 kiB 0.75MiB

2
5

2
5

1.63s 1.88s 3.11s 3.15s

263 bytes 1 byte 4MiB 8.5 MiB

2
10

2
10

45.04s 45.28s 99.66s 99.71s

4.31 MiB 1 byte 128 MiB 256.6 MiB

O
P
U
S

2
0

2
0

0.26s 0.26s 15.47s 15.91s

133 bytes 0 bytes 17.07 kiB 9.04 kiB

2
5

2
5

8.71s 8.71s 328.46s 329.14s

262 bytes 0 bytes 546.25 kiB 290.26 kiB

2
10

2
10

303.38s 303.38s 16367.12s 16367.60s

4.31 kiB 0 bytes 34.14 MiB 18.08 MiB

E
C
N
R

2
0

2
0

0.01s 0s 0.23s 0.05s

133 bytes 0 bytes 12.04 kiB 16 bytes

2
5

2
5

0.02s 0s 0.21s 0.06s

262 bytes 0 bytes 137.05 kiB 512 bytes

2
10

2
10

0.3s 0s 0.64s 0.57s

4.36 kiB 0 bytes 4.04 MiB 16 kiB

conditional on updating the bit length of both the hash function

and the base OT length, but unfortunately do not integrate the

extensions in their implementation.

To perform PSI with OPUS, we use parallel execution to amortize

the round cost. Observe that the protocol is relatively stateless, as

a curve is either awaiting evaluation or in transit. More concretely,

on a client side, the client either awaits a server result or performs

a blinding/unblinding evaluation. This can be parallelized by at-

taching an ID to the curve to note the element that is evaluated.

Since we assume that the server is semi-honest, the client can trust

the server that the ID is correct. In Figure 13, the ID is denoted

as 𝑖 . To keep track of the current index, we attach a state variable

𝑗 . Then, the only state kept on the client about an element is the

corresponding unblinding key.

7.3 PSI with OPUS
The server pregenerates all blinding keys and computes the un-

blinding element at the time an element is first seen. This simplifies

the implementation and also ensures that no intermediate values

are leaked when the client decides to finish the computation prema-

turely by setting 𝑗 = 𝑛. Using the stateless approach, we forego the

limitation imposed by the required rounds in the protocols, as we

simply evaluate other set elements while an element is in transit.

In our measurements, the client seems to perform badly in the

setup phase. This is a measurement artifact as most of the time is

spent waiting for the cuckoo filter from the server due to the choice

of network connection.
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Server Client

{k0, k1, · · · , kn}
$←− keygen( )

𝑙 inputs {𝑆1, · · · , 𝑆𝑙 } 𝑚 inputs {𝐶1, · · · ,𝐶𝑚 }
𝐶𝐹 = cuckoofilter( )
foreach i ∈ {1, . . . , 𝑙 }:

CF.insert(PRF(𝑋𝑙 ) ) CF 𝐸𝑐𝑙𝑖𝑒𝑛𝑡 = [ ]

foreach i ∈ {1, . . . ,𝑚}: foreach i ∈ {1, . . . ,𝑚}:
rs,i ← [0] rc,i ← [0], 𝐸𝑐𝑙𝑖𝑒𝑛𝑡,𝑖 ← 𝐸0

foreach j ∈ {1, . . . , 𝑛}: foreach j ∈ {1, . . . , 𝑛}:

rc,i,j
$←− keygen( )

rs,i,j
$←− keygen( ) (𝐸𝑏𝑙𝑖𝑛𝑑𝑒𝑑 , 𝑖, 𝑗 ) 𝐸𝑏𝑙𝑖𝑛𝑑𝑒𝑑 ← rc,i,j ∗ 𝐸𝑐𝑙𝑖𝑒𝑛𝑡

𝐸𝑠,𝑖,0 ← rs,i,j ∗ 𝐸𝑏𝑙𝑖𝑛𝑑𝑒𝑑
𝐸𝑠,𝑖,1 ← ki ∗ 𝐸𝑠,𝑖,0

rs,i ← rs,i − rs,i,j (𝐸𝑠,𝑖,0, 𝐸𝑠,𝑖,1, 𝑖, 𝑗 ) 𝐸𝑐𝑙𝑖𝑒𝑛𝑡,𝑖 ← 𝐸𝑠,𝑖,𝑐𝑖,𝑗

rc,i ← rc,i − rc,i,j

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Finalize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(rc,i,0 ∗ 𝐸𝑐𝑙𝑖𝑒𝑛𝑡,𝑖 , 𝑖,𝑚) rc,i,0
$←− keygen( )

𝐸𝑠,𝑖 ← (k0 + rs ) ∗ rc,i,0 ∗ 𝐸𝑐𝑙𝑖𝑒𝑛𝑡,𝑖 (𝐸𝑠,𝑖 , 𝑖, 𝑗 ) 𝐸𝑐𝑙𝑖𝑒𝑛𝑡 .append(
(
rc,i − rc,i,0

)
∗ 𝐸𝑠,𝑖 )

return𝐶𝐹 .contains(𝐸𝑐𝑙𝑖𝑒𝑛𝑡 )

Figure 13: Amortizing the round cost of OPUS by reducing
the state and adding labels.

7.3.1 Updatable OPRF. For very large sets, the probability that

several elements are quite similar is relatively high. It would be

thus be beneficial to take an existing evaluation and update the

value where the bits differ. This could yield a runtime improvement:

consider two inputs𝑋1, 𝑋2 and the evaluation𝑌1 = OPUS(𝑋1), with
𝑋1 ⊕ 𝑋2 having a low Hamming weight. A potential improvement

could come from an updatable form of OPUS, where 𝑌1 is updated

at the indices. For example, imagine 𝑋1 and 𝑋2 only differ at the

first bit, which is set in 𝑋2 but not 𝑋1, and the third bit, which is

not set in 𝑋2 but is set in 𝑋1. Then, OPUS(𝑋2) can be computed as

OPUS(𝑋1) = 𝑘1 ∗ 𝑘−1
3
∗OPUS(𝑋2). This results directly from the

commutativity of CSIDH.

The simple realization of this functionality has the client reveal

the indices where two inputs 𝑋1, 𝑋2 differ. The parties then engage

in a reduced execution of OPUS, where the server responds with

(r ∗ ki−1 ∗ 𝐸, ki ∗ r ∗ 𝐸) for the given indices 𝑖 . The client iteratively

updates the PRF by selecting the correct output. Note that the

finalization step is still necessary for the unblinding to ensure that

no intermediate results are leaked, but without adding k0.
While this produces another PRF result, the simple protocol

violates the OPRF security guarantee of the server learning nothing

about the client input, since the server knows the index where

two evaluations differ. An extended version sends some dummy

indices as well and requires the server to respond with (r ∗ k−1 ∗
𝐸, r ∗ 𝐸, k ∗ r ∗ 𝐸), with r ∗ 𝐸 being used if the index was a dummy

index. This approach would reduce the latency introduced by the

rounds and the group actions, but requires either very similar inputs

or extensive preprocessing by the client to ensure the results are

updated ideally.

7.4 Result and Overhead
We compare against the EC-NR implementation of [KRS

+
19] as it is

the most performant implementation of OPRFs for set intersection.

While we were able to remedy the round cost of OPUS, the high

number of group action computations still make the protocol less

efficient than the NR-OT protocol. However, OPUS requires less

than 14× the bandwidth of the NR-OT protocol, making it more

attractive for use-cases where bandwidth criteria are of concern.

We point out that recent work [HSW23] optimizes the PSI pro-

tocol with sublinear communication size of the server’s client data-

base, which may make the ECNR protocol more efficient.

8 RELATEDWORK
OPUS and the generic NR-OPRF from isogenies are only two of

several recent proposals. In Table 6 we provide a comparison of

these proposals which we discuss in more detail below. Note that

the estimates for the communication complexity may change dras-

tically as the concrete security of CSIDH remains an open research

question (cf. Section 2.1.3).

The CSIDH proposals of this paper only cover Naor-Reingold

style OPRFs. SIDH, which also uses isogenies but operates over

F𝑝2 , uses isogenies of degree two and three and is not commutative,

enables the construction of a Diffie-Hellman style OPRF [Bas23,

BKW20]. The resulting OPRF is round-optimal and gives rise to

a verifiable construction, which the Naor-Reingold Constructions

(including ours) do not offer, but requires a 9000 bit prime due to the

SIDH attack mitigations [FMP23]. A drawback of the SIDH-based

construction is that an epensive trusted setup is necessary [BCC
+
23].

On the lattice side, an initial proposal for round-optimal, ver-

ifiable OPRFs [ADDS21] has a very large overhead imposed by

heavy zero-knowledge proofs. A proof-of-concept implementation

is available in Sage and takes around one second for an offline

computation, being around nine times faster than OPUS. However,

the implementation is not necessarily complete, as it omits proofs

and samples from a uniform instead of a Gaussian distribution.

A recent lattice OPRF [ADDG23] improves the communication

cost in a malicious setting. The provided implementation in Rust

does not include the non-interactive zero-knowledge proofs needed

for a malicious client security and therefore is only semi-honest,

while the communication estimates in Table 6 include proofs from

a malicious client. Comparing the runtime of OPUS to [ADDG23]

is a bit more nuanced. While the former needs ≈ 15s for the key

generation, the NR-OT OPRF is vastly faster, as it only requires

0.14ms for the same operation. The communication complexity of

the lattice OPRF is also largely dominated by the key generation,

which accounts for 108.5 MB of the communication cost. For the

actual OPRF, only 36 kB of communication are necessary, which is

slightly more than OPUS. A big advantage of the construction is the

lower round complexity. The current impelmentation gives around

14.4s of execution time, making the NR-OPRFwith a CSIDH security

parameter 𝑝 = 512 vastly faster. However, the authors describe an

optimization that could lead to both OPRFs matching in speed.

Dinur et al. [DGH
+
21] propose a very efficient, semi-honest

OPRF using preprocessing and dedicated symmetric primitives.
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Table 6: Comparison with all other post-quantum OPRF proposals. DM denotes the dark matter PRF [BIP+18, CCKK21]. The
instances aim at a security level of roughly 128 bits and use log

2
𝑝 = 512 for the isogeny protocols.

comm. model no no trusted full impl.

work assumption rounds cost (C-S) preproc. setup available verifiable

[ADDS21] R(LWE)+SIS 2 2MB - ✓ ✓ ✓ p
[ADDS21] R(LWE)+SIS 2 > 128GB - ✓ ✓ p ✓

[SHB23] multivariate 3 𝛾 · 13 kB - p ✓ p ✓

[DGH
+
21] DM 2 308 B - p p p p

[ADDG23] DM+lattices 2 16.9MB - ✓ ✓ ✓ ✓
[Bas23] Isogenies F𝑝2 2 3.0MB - ✓ p p p

[Bas23] Isogenies F𝑝2 2 8.7MB - ✓ p p ✓

NR-OT Isogenies F𝑝 + lattices 2 20.54 kB - ✓ p p p

NR-OT Isogenies F𝑝 + lattices 4 34.88 kB - ✓ p p p

NR-OT Isogenies F𝑝 + lattices + HE OT 2 640 kB - ✓ ✓ ✓ p

OPUS CSIDH 258 24.7 kB - ✓ ✓ ✓ p

They also require a trusted third party to generate correlated ran-

domness. The implementation is unfortunately not publicly avail-

able. A different path is taken by Seres et al.[SHB23], who use their

result that key-recovery of the Legendre PRF is equivalent to solv-

ing sparse multivariate equations over a prime field to construct

an OPRF. It requires a preprocessing step to distribute correlated

randomness amongst the participants of the protocol.

9 CONCLUSION
In this paper, we have shown that the computational complexity of

Naor-Reingold OPRFs can be significantly reduced by using prop-

erties of the CSIDH group action. We introduced OPUS, an OPRF

that gains its hardness directly from the underlying CSIDH group

action. The new construction explores the generic construction of

Naor-Reingold protocols, which traditionally use oblivious trans-

fer to send blinded private keys. In comparison to previous work,

OPUS has three strong advantages: First, it can be used stand-alone

without requiring any trusted setup. The only hardness assumption

is CSIDHwhich improves over previous propsals [BKW20]. Second,

the simple structure also makes it straightforward to extend to a

threshold and distributed OPRFs. Third, OPUS requires 40% fewer

isogeny computations than the best previous CSIDH-based OPRF

proposals. When using no preprocessing, no trusted setup, and a

semi-honest client and server, OPUS requires 83× less communi-

cation than the next-best approach which uses LWR. The main

drawback of our construction is the large number of rounds, which

can be amortized over several executions.

We also revisited the previous proposal CSIDH-based OPRF from

Boneh et al. [BKW20] and showed that the implementation is more

complex than described in the original paper: A straightforward

implementation leaks the entire server key after a few evaluations.

To secure the construction, it is necessary to use CSI-FiSh, which

introduces several new hardness assumptions, concretely lattice

assumptions for either rejection sampling or reducing the private

key, and also also adds additional overhead.

Of independent interest, we also discuss the Naor-Reingold PRF

in CSIDH further and give a concrete strategy that gives rise to

optimizations in all of our protocols and also enables somewhat fast

offline computation of both our novel OPRF and the Naor-Reingold

OPRF. All the code to obtain our benchmarks and the CSV files

for the figures are available with the submission and will be made

public with the publication of this paper.

To show the real-world impact of our protocols, we benchmarked

the OPRFs for two use-cases: first, asymmetric password authen-

tication using OPAQUE, where we report an overhead of around

35× for authentication and 123× for registration. Second, we im-

plement private set intersection with the OPRFs. To the best of our

knowledge, these are the first implementations of a post-quantum

version of OPAQUE and PSI using isogenies.

Future Work. While our results are immediately useful for a

variety of protocols requiring OPRFs, the slow group action is

still hindering large-scale deployment. Based on our findings, we

envision future studies for the applicability of OPUS and the NR-OT

OPRF, especially in settings with low bandwidth.

The recent call for threshold cryptography by NIST [BDV20]

opens a new avenue for post-quantum threshold schemes which

distribute the secret key amongst several servers but only requires

that 𝑡 out of 𝑛 honest servers are required to produce an OPRF

result. For CSIDH, a recent paper [DM20] demonstrates threshold

key sharing. Their results should be directly applicable to OPUS

and the NR-OT to obtain a threshold OPRF.

On the implementation side, we point out that the current imple-

mentations are neither optimized nor side-channel free, and that the

code is not audited. We expect a side-channel free implementation

to be relatively easy for OPUS, as it only requires side-channel free

key addition and group actions, as well as the conditional assign-

ment of 𝐸𝑐𝑙𝑖𝑒𝑛𝑡 . On a theoretical side, elliptic curves with trusted

setup over F𝑝 would greatly add to the current research, as it eases

concretizing the overhead of the OT for the NR-OT proposal over

OPUS using only isogenies.
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