
Credential Issuance Transparency:
A Privacy-preserving Audit Log of Credential

Issuance

Anonymous Author(s)

Abstract Digital identity ecosystems are rapidly transforming the land-
scape of identity management. Self-Sovereign Identity (SSI) promises to
enhance the individual’s agency over their identity; and related concepts
form core parts of the EU’s upcoming eIDAS 2.0 regulation. Yet, this
privacy-preserving technology must become less privacy-preserving for
one overlooked party – credential issuers. Issuers are trusted to validate
users’ attributes and attest to them. Thus, a compromised or misbehav-
ing issuer is an immense threat, being able to issue credentials that allow
them to impersonate anyone.
We address this concern by introducing Credential Issuance Transparency
(CIT), a transparency framework for the issuance of identifying creden-
tials. We take concepts from the Web PKI’s Certificate Transparency
(CT), such as using public append-only logs, but adapt them to a privacy-
preserving SSI world. In contrast to CT, the public logs of CIT disclose
no information about a credential or its subject. Still, genuine subjects
can monitor the log to discover mis-issued credentials that would al-
low an attacker to impersonate them; and empowered by non-interactive
zero-knowledge proofs, verifiers can mandate correct logging.
CIT is practical. It adds a neglectable overhead of less than 2ms to
credential showing. Daily monitoring for mis-issuance requires less than
1GB of data to be downloaded, and less than 10 seconds of computa-
tion to be invested. This makes CIT an important step towards SSI’s
organizational acceptance and real-world feasibility.

Keywords: self-sovereign identity · transparency logs · credential is-
suance · unlinkability · non-interactive zero-knowledge proofs · certificate
transparency

1 Introduction

Digital identities play a pivotal role in our daily interactions. They facilitate a
secure online environment and fosters trust in digital interactions. However, as
Microsoft’s Chief Identity Architect Kim Cameron, aptly identified almost 20
years ago – the internet was built without an identity layer [5]. This absence
of a standardized framework for managing digital identities in the foundational
design of the internet has led to a diverse range of fragmented solutions for
digitally identifying and authenticating individuals. Today, centralized solutions
that enable users to use a single set of credentials across multiple services are



2 Anonymous Author(s)

CIT Log

M
on

ito
r f

or
M

is
is

su
an

ce

Present
Credential

Holder
Verifier

Record
Issuance

Issue
Credential

Issuer

Ensure
Consistency

CIT Auditor

Figure 1: Credential Issuance Transparency architecture

commonly in use [33]. However, credential-based approaches under the banner
of Self-Sovereign Identity (SSI) have emerged, promising to enhance privacy and
restore user agency.

The European Union, recognizing this trend, is looking to incorporate SSI
paradigms into the eIDAS 2.0 regulation [12]. This regulation thrusts many of
the technology’s challenges into the spotlight of forced practicability, with vision
giving way to viability.

Challenge. A crucial open research area of such a privacy-preserving tech-
nology is the need for transparency. By allowing public visibility into both the-
ories and practices of operation, corruption risks can be reduced, shortcomings
can be noticed, and reputation-based penalties can be inflicted.

In computer science, such enforced transparency is not a novel concept; it
is used to great effect in the Web PKI, where Certificate Transparency (CT)
should serve as a safeguard against misbehavior by certificate authorities [20].
However, it is not clear how to translate such technologies to a privacy-preserving
world. On the web, malicious actors commonly crawl certificate issuance audit
logs – which are public by design – to discover target hosts for scanning cam-
paigns [31,26,22]. In a credential ecosystem, which holds highly sensitive personal
information, such information leakage must be avoided at all costs.

Contributions. We introduce Credential Issuance Transparency (CIT), a
privacy-preserving audit logging mechanism for the issuance of identifying cre-
dentials. CIT takes CT’s append-only log concept, but fully blinds the log entries,
removing all sensitive information from them while retaining public auditability
of the log’s append-only nature as well as user discoverability. Instead of the
publicly visible domain name, we rely on a randomly blinded commitment to
obscure the credential subject’s identity.

By also borrowing CT’s trust model, we rely on truthful verifiers to en-
force a logging mandate; in order for a credential to be accepted, it must have
been logged in an appropriate manner. Here, our log entries’ blinded nature
introduce an additional validation challenge. We overcome this by employing



Credential Issuance Transparency 3

non-interactive zero-knowledge proofs (NIZKPs) to demonstrate the claimed log
entry’s consistency with the presented credential.

CIT (illustrated in Figure 1) thus allows users to monitor for issuance of
any identifying credentials that could serve to impersonate them. Such an au-
diting framework is crucial in bringing self-sovereign identity principles closer to
acceptability in legislative circles.

Outline. We first introduce relevant concepts (Section 2). In Section 3,
we list involved entities and concepts; formally describing our system’s design
goals and threat model. In Section 4, we introduce CIT, its building blocks,
and the issuance, showing, and validation processes. We particularly emphasize
the importance of the unlinkability of user identifiers present in the log and
zero-knowledge proofs for binding credentials and maintaining user privacy. In
Section 5, we evaluate CIT’s performance and practicability. Finally, we discuss
possible adjustments to the protocol and related work in Section 6.

2 Background

2.1 Credential Schemes

A credential is a declaration about a user (or holder) made by an issuer. It
may encompass various attributes, such as the user’s name, physical character-
istics, group affiliations, or other personal details that the issuer has verified.
Users holding a credential can present it to a verifier. If the verifier trusts the
issuer, this convinces the verifier that the user possesses the claimed attributes.
The combined procedures for issuing and presenting a credential constitute a
credential scheme.

Traditional credential schemes often adopt a centralized structure, where
the issuer’s server stores all user information. In contrast, user-centric digital
identity paradigms such as Self-Sovereign Identity (SSI) enable individuals to
independently handle digital attestations of their identity attributes and cryp-
tographic keys for authentication. This is often done on users’ personal devices,
such as mobile phones, through a so-called “wallet” application. Such attesta-
tions contain cryptographic evidence of integrity, commonly in the form of a
digital signature created by the issuer. This signature renders the information
verifiable by machines. This concept led to the common term “verifiable creden-
tials” (VCs) being used for the associated attestations [32]. We further describe
the VC presentation process in Appendix A.

SSI concepts are seeing adoption in the European Union’s eIDAS 2.0 reg-
ulation that introduces a “European Digital Wallet” [12] capable of receiving,
storing, and showing digital credentials with high levels of assurance.

2.2 Transparency Logs

Transparency logs are a reliable mechanism for storing and showcasing informa-
tion. They ensure that all users can independently confirm they are viewing the



4 Anonymous Author(s)

same entries irrespective of their role. This functionality is pivotal in maintain-
ing integrity and trust within a system as it significantly reduces the chances of
tampering or misrepresenting data.

These logs were initially introduced in the Web PKI. Here, they serve to
record all certificates issued by Certificate Authorities (CAs). This allows mis-
taken or malicious certificate issuance to be detected. The resulting system is
called Certificate Transparency (CT) [20].

Recognizing the potential of these transparency logs, developers have started
applying them in various other ecosystems. Notably, they are now used to offer
tamper-proofing in diverse sectors such as binary transparency, supply chain
transparency, and data access transparency [1,19,18]. Binary transparency logs
can help in tracking software updates and ensuring that they are consistent
across all users [24]. Supply Chain transparency can detect malicious software
updates. Data Access transparency can prevent covert violations of a published
data protection policy, and allows public verification of access statistics.

When incorporated effectively in a responsive cycle, transparency logs can
significantly enhance the speed of detecting and responding to any wrongdoing.
This is because any changes or additions to the log can be immediately observed
and scrutinized, thereby enabling swift action against potential security threats.

2.3 Merkle Hash Trees

t = 2t = 1t = 0

Figure 2: A time-based forest of merkle trees.

Transparency logs organize their entries in a cryptographically verifiable data
structure, specifically in a Merkle Hash Tree [23]. A Merkle Hash Tree is a form
of tamper-evident history tree [8] that stores data at the leaves of a binary tree.
A forest consisting of three such trees is depicted in Figure 2. Each Merkle tree
consists of leaf nodes (solid border), intermediate nodes (dotted border), and a
root node (dashed border). Every non-leaf node is formed by concatenating the
hash of its two child nodes, and hashing the result. Thus, each non-leaf node
constitutes a commitment to the contents of its children, and transitively the
children of its children. Consequently, each tree’s root node is a commitment to
the entire tree’s contents.

The integrity of merkle threes is protected by two cryptographic proofs (as
further described in Appendix B): An inclusion proof persuades external entities
that a leaf is part of the log. A consistency proof proves that the log is append-
only by demonstrating that the published root hashes are consistent.

Based on these proofs, the concept of verifying a log generally involves four
steps: (i) confirming entry inclusion, (ii) ensuring consistency in log growth, (iii)



Credential Issuance Transparency 5

validating uniformity across user views, and (iv) scrutinizing entries for potential
malfeasance. The first three checks verify the correct conduct of the log operator,
while the last check strives to guarantee the reliability of log entries and detect
indications of malicious actions. Ensuring the accuracy of log entries is equally
crucial as recording them to derive security benefits from transparency. Any
system aiming to enhance security through transparency logs must incorporate
one or more entities responsible for validating the correctness of log entries.

In the Certificate Transparency use case, Certificate Authorities (CAs) sub-
mit their newly issued certificates to the CT Log. Upon acceptance of a certifi-
cate, the log issues a signed timestamp that serves as future evidence of submis-
sion. TLS clients or browsers can subsequently mandate that all certificates must
be accompanied by such a signed timestamp to be deemed valid. Domain owners
can actively monitor the logs, regularly requesting all new entries to check for
unexpectedly issued certificates for the domains under their responsibility.

It is worth noting that the fundamental infrastructure of applications where
these transparency logs are used remains largely unchanged. Instead, this paradigm
offers a mechanism to monitor and audit the activities to swiftly identify and
exclude authorities engaging in improper practices.

2.4 Zero-Knowledge Proofs

Zero-Knowledge (zk) proofs are widely defined as cryptographic techniques that
enable a prover to demonstrate their knowledge of specific information to a ver-
ifier without disclosing the actual information [15]. Zero-Knowledge Succinct
Non-Interactive Argument of Knowledge (zkSNARK) refers to short-proof con-
structions that do not require any back-and-forth interaction between the prover
and the verifier.

3 Assumptions & Goals

3.1 Participating Actors

We now introduce our system’s entities and their roles.
Credentials & Users. A credential is a data structure containing claims

regarding a particular data subject. This data subject is commonly called the
user or the holder. They operate a user device implementing a wallet application,
which stores credentials on their behalf, and can present them to services.

Verifiers. The (credential) verifier, also known as the service provider, is a
party requiring the user to prove or reveal certain attributes about themselves.
The user achieves this by presenting a credential. There are many different ser-
vice providers, which may offer wildly disparate services. An internet message
board, a virtual storefront, a health provider’s appointments software, a bank’s
online banking application, and a government bureau’s web portal, are very dif-
ferent kinds of service providers, with different needs.



6 Anonymous Author(s)

Many service providers share a need to (re-)identify users. If a user visits a
message board, they should have the ability to edit messages they have previ-
ously sent; if they visit a storefront, they should be able to see their pending
orders; if they visit their health provider, they should be able to see and cancel
their appointments; and so forth. It is, therefore, commonly desirable that the
credential presentation results in a trusted persistent identifier for the user.

Credential Issuers. The credential issuer is the party that issues creden-
tials to users. They also store additional information that lets them authenticate
users, such as password digests, shared secrets, or public keys.

Each service provider must decide whether it will trust a given credential.
This decision almost always includes verifying that a trusted issuer issued the
credential. In choosing this policy, the service provider determines to which is-
suers it will delegate the responsibility of actually verifying that the attributes
contained in the credential accurately describe the user holding the credential.

We now outline actors not already involved in typical credential systems.
Log Provider. The log provider is an untrusted party that maintains a

public append-only audit log containing chunks of information known as log
entries. This role is primarily concerned with providing storage of information,
and ensuring that this information remains publicly available; a responsibility
that none of the traditional actors may wish to assume. The role is untrusted; it
does not obtain any information that is not public, and can be cryptographically
prevented from modifying or retracting information.

Auditor. Auditors ensure that the Log Provider strictly appends and main-
tains global consistency. In other words, Auditors are tasked with uncovering any
misbehavior of the Log Provider. Any auditor can detect a cheating log provider,
and can irrefutably prove that they cheated. Since any member of the public can
operate an auditor, requiring no additional access or privileges, log providers
must assume that the data they publish is monitored and audited at all times.
This, combined with a robust gossip scheme of the observed log fingerprints,
ensures they operate faithfully. Any interested party can act as an auditor; no
particular access is required.

Monitor. Monitors routinely query the data published by the log provider
and ensure internal consistency within individual trees. By verifying that the
content of the log remains free from inconsistencies, monitors assist in identifying
misconduct by the log provider. In doing so, monitors also process individual log
entries and can detect mis-issuance.

Monitors may also act as mirrors of the log, and offer search and notification
services.1

3.2 Mis-issuance

In this work, we address a particular type of misbehavior by a credential issuer:
the issuance of legitimate credentials to illegitimate recipients. We are not con-

1 See Section 6.2 for a discussion of the privacy implications of such delegation.



Credential Issuance Transparency 7

cerned with the issuer lying about someone’s age; we are concerned about them
attesting that someone is me even though they are not.

We thus limit ourselves to a particular class of credential, which we will
call identifying credential. We define this as a credential which, when shown to
a particular verifier, will result in that verifier learning some trusted, stable,
persistent, unique identifier of that user towards that verifier. Note that these
identifiers (or pseudonyms) are not necessarily global; the same user may have
different pseudonyms towards different verifiers. However, multiple showings by
the same user at the same verifier will result in the same pseudonym; this makes
the pseudonym suitable for re-identification.

This is a common class of credential; it is used in both OpenID Connect [28]
and SAML [25], the most widely used authentication protocols on today’s inter-
net. These stable pseudonyms are commonly derived from some private global
user identifier (which we’ll call userId) only known to the issuer. A naive exam-
ple of this, commonly used in OpenID Connect’s pairwise pseudonymous iden-
tifiers, is pseudonym derivation as H(verifier||userId) for some cryptographic
hash function H.

With these preliminaries in place, we now define mis-issuance in the context
of this work as follows: an issuer surreptitiously issues a credential based on
a victim’s UID to some malicious collaborator, who is not the victim. The
collaborator may be the issuer themselves. This credential allows the collaborator
to impersonate the user towards verifiers, as presenting the credential will result
in verifiers associating the victim’s pseudonym with the collaborator.

Our work allows the victim to detect such missuance, allowing them to take
appropriate reputation-based action against the issuer. This parallels the efforts
of the certificate transparency system to allow website administrators to detect
mis-issued TLS certificates. However, certificate transparency concepts do not
trivially translate to the credential context; the content of credentials is private,
and the user’s global identifier is doubly so.

3.3 Threat Model

Users, issuers, auditors, and log providers may all act maliciously, attempting to
subvert the protocol’s intent. We identify the following challenges.

A malicious Log Provider might seek to present different views of the trans-
parency log to different entities. This might serve to avoid disclosing a mis-issued
credential to the user, while convincing a verifier that it was logged correctly.

A malicious or compromised issuer might cooperate with or incorporate an
imposter acting as a user. It might try to issue a credential allowing this malicious
user to impersonate another genuine user. This is the core challenge that our
work mitigates; in the context of our work, the issuer might thus attempt to hide
the issuance from the public log, such as by not submitting it, or not submitting
it correctly.

A malicious auditor – a role that requires no particular authorization – might
attempt to learn private information about the user. For example, it might try
to enumerate a particular user’s credentials.



8 Anonymous Author(s)

Finally, collaborating verifiers might attempt to correlate multiple credentials
issued to the same user; something that scoped pseudonyms schemes typically
aim to prevent. In the scope of this work, we must not enable this via the logged
information. The augmented version of any given credential scheme should be
as unlinkable as the base version.

3.4 Goals

Certificate Transparency offers an inspirational example of such public audit
logging being both practicable and practical. Yet, it cannot be translated directly
to the credential context; there are multiple challenges, which we outline here.

Fundamentally, a credential’s contents are not public. By contrast, in certifi-
cate transparency, certificates’ contents are public. Thus, we cannot simply log
the entire credential, as certificate transparency does.

The blinding mechanism we employ needs to be able to solve two challenges.
First, user discoverability. Given an entry in the credential log, a user should be
able to determine whether this entry corresponds to their userId. Second, verifier
verifiability. Given a credential and a log entry, the verifier needs to be able to
determine whether the log entry corresponds to this credential.

Additionally, the following privacy requirements need to be met. First, cre-
dential privacy. Given all public information, including the public log entry, it
is infeasible to determine any claims contained within the credential.2 Second,
credential unlinkability. Given two credentials and their associated log entries, it
should be infeasible to determine whether they correspond to the same userId.3

4 Credential Issuance Transparency

This section describes our Credential Issuance Transparency scheme. It is based
on append-only logs, cryptographic blinding, and zero-knowledge proofs, and
enables genuine users to detect credential mis-issuance while not compromising
the privacy properties of the underlying credential scheme.

4.1 Building Blocks

We utilize some of the previously-described building blocks unchanged, and make
some assumptions regarding the underlying credential scheme.

Append-Only Logs. We assume that an append-only, tamper-evident log,
as described in Section 2.2, exists. It features efficient proofs of inclusion and
consistency, allowing us to ensure the integrity of the recorded information in
the log. We assume that auditors have the capability to identify log misbehavior,
such as altered logs or split-view attacks. This may necessitate connecting the
2 We assume that the entire credential contains sufficient entropy to prevent brute

force attacks.
3 We assume that the existing credentials, without logging, have this property.



Credential Issuance Transparency 9

public snapshots of the log to some form of transparency overlay [7]. We also
assume that the log provider can somehow identify authorized credential issuers,
preventing the log from being rendered unusable by garbage data.

Pseudonyms. We assume that users’ stable pseudonyms can be determin-
istically computed with knowledge of the verifier’s identity in addition to some
secret global userId, which is only known to the user and issuer. In particular,
we assume that this userId is known to the user. In a user-centric identity model,
we find this assumption to be reasonable.

Zero-Knowledge Proof System. We assume that some trusted proce-
dure has been used to globally initialize a non-interactive zero-knowledge proof
system. This allows any user to prove zero-knowledge statements over disclosed
or undisclosed inputs to any verifier. Such setup could employ multi-party com-
putation, or some other scheme to ensure its compliant execution. Regardless of
how this is done, it only needs to be done once, and the resulting parameters
can be used globally.

Under these initial assumptions, we now introduce our protocol.

4.2 Protocol

To solve these challenges, we propose our Credential Issuance Transparency pro-
tocol for privacy-preserving credential issuance audit logging. Its log entries con-
sist of the hash digest of the user’s credential and a blinded commitment to the
referenced userId. Knowing their userId, a user can then test whether a given
entry corresponds to them by simple trial calculation. To satisfy verifiability, we
supply verifiers with a non-interactive zero knowledge pre-image proof. Thus,
they can verify that the blinded userId in the log entry equals the userId under-
lying their learned pseudonym, without learning that userId.

We now formalize this intuitive explanation.
Let C(n, x) is a deterministic commitment function; n is a nonce, and x is

the input. Given n and x, C(n, x) is easy to obtain. At the same time, even given
n and C(n, x), x is hard to determine. Additionally, given n1, C(n1, x1), n2, and
C(n2, x2), it is hard to decide whether x1 = x2.

Let P (s, u) be the pseudonym derivation function; s is some service ID, and u
is the user ID. Given s and u, P (s, u) is easy to obtain. Yet, given s and P (s, u),
u is hard to determine. Additionally, given s, s′, P (s, u), and p′, it is hard to
determine whether p′ = P (s′, u) or not.

Let H be a cryptographic hash function, with the standard properties.
We now augment the credential issuance process as stated in Protocol 1.

Steps marked with + are newly introduced by our protocol. The user can then
verify that C(n, userId) and H(x) are correct, and that the append proof is valid.

The showing process is augmented as stated in Protocol 2. Once again, steps
marked with + are added by us. In this process, the verifier convinces itself
that the credential has been correctly appended to the public log; due to its
append-only nature, the credential cannot be removed once appended.

Finally, in Protocol 3 we introduce a discovery process by which the user can
discover all credentials issued for its userId.



10 Anonymous Author(s)

– The issuer creates credential x based on user ID userId.
+ The issuer samples a random nonce n, then sends a signed log entry l :=

(n,C(n, userId), H(x)) to the log provider.
+ The log provider appends l to the append-only audit log, then returns a signed

append-proof to the issuer.
– The issuer returns credential x, the log entry, and the append proof to the user.

Protocol 1: Issuance Process

– The verifier with verifier ID s prompts the user to prove their identity.
– In response, the user shows identifying credential x.
+ They also show the log entry (n,C(n, userId), H(x))

and its append proof.
– The verifier verifies the credential’s provenance.

It learns pseudonym p := P (s, userId) as a result.
+ The user provides a NIZKP of the statement

c = C(n, userId) ∧ p = P (s, userId). The user does not reveal userId.
+ If necessary, the verifier may query a consistency proof from the log provider to

validate the inclusion proof.
+ The verifier checks that H(x) in the log entry matches the provided credential.
+ The verifier checks the NIZKP, and compares the revealed inputs n, s, c and p against

the expected values.
+ The verifier can now be confident that the issuance of x was correctly logged.

Protocol 2: Showing Process

+ The user requests all new audit log entries since the last time the process was run.
+ For each entry (n,C(n, userId′), H(x)), the user trial calculates C(n, userId) and com-

pares this against C(n, userId′).
+ If the values match, this entry corresponds to a credential that was issued for the

user’s identity
+ The user compares H(x) against the values for its known pseudonyms. If no match

is found, this credential was mis-issued.

Protocol 3: Discovery Process

4.3 Analysis

We now argue that our protocol solves the challenges outlined in Section 3.4,
and thus also addresses the threats discussed in Section 3.3.

User discoverability. Assuming that the credential has been correctly
appended to the log, the user will necessarily encounter its entry. Once the user
encounters the entry, the trial calculation will succeed.

Verifier verifiability. In a scenario where the identity provider has mis-
issued a credential, both it and the user the credential was issued to are not
trustworthy. Therefore, it falls to the verifier to verify whether the credential
has been correctly appended. In order to be correctly appended, three criteria
need to be met. 1. The log entry needs to be contained in the log. 2. The hash



Credential Issuance Transparency 11

digest in the log entry needs to match the credential. 3. The commitment in the
log entry needs to match the userId used for the pseudonym.

After performing the verification steps in Section 4.2, the verifier can be
assured of all three requirements. 1. It has performed the inclusion check as
described in Section 2.2. Therefore, the log entry is contained in the log. 2. It has
verified that the hash digest of the credential is included in the log entry. 3. It has
verified the user-provided NIZKP. Thus, it is assured that the userId committed
to in the log entry is the same userId used in the pseudonym derivation.

Credential privacy. The log entry makes H(cred) publicly available. If
cred has sufficient entropy, it is infeasible to find cred from this value.

Additionally, the log entry makes the pair (n,C(n, userId)) publicly available.
However, assuming that userId has sufficient entropy, it is infeasible to find userId
from this pair. Additionally, we note that, if userId did not have sufficient entropy,
the pseudonym derivation P (s, userId) would not be privacy-preserving.

Credential unlinkability. Given that the credentials in question are al-
ready known, only the two pairs (n1, C(n1, userId1)) and (n2, C(n2, userId2)) are
learned from the log entry. Due to our security assumptions regarding C, this
does not allow an adversary to decide whether userId1 = userId2.

5 Evaluation

To demonstrate the feasibility and practicability of CIT we provide a proof-
of-concept evaluation based on the Trillian framework.4 Trillian is a general-
ization of the tamper-evident log employed by Certificate Transparency, and
it accommodates logs of arbitrary data. We use SHA-256 hashes, and commit
to userId using C(n, userId) := SHA(n||userId). We similarly derive pseudonyms
using P (s, userId) := SHA(s||userId). In both cases, || is concatenation.

Further, we evaluate the NIZKP proving the relation between the log entry
l and the user’s pseudonym p. For the implementation of the NIZKP we utilize
the gnark zk-SNARK library5 [4].

To ensure the practicability of CIT, two criteria must be met: (i) Logging
of issued credentials should not introduce significant delays to the credential
issuance and verification process, and (ii) the underlying log storage layer should
not impede scalability for broader deployments.

5.1 ZKP Proof

While our CIT concept is described on a generic level, the concrete choice
of ZKP proof system and implementation is important to assess the feasibil-
ity and to evaluate the performance and security. Thus, we provide a con-
crete instantiation of CIT’s NIZKP. To do so, we implement the statement
c = C(n, userId) ∧ p = P (s, userId) in the form of a gnark circuit [4]. Para-
phrased, this states that the commitment c (in the log entry) and pseudonym
4 https://github.com/google/trillian
5 https://github.com/consensys/gnark

https://github.com/google/trillian
https://github.com/consensys/gnark


12 Anonymous Author(s)

p (which the verifier will use) correspond to the same userId. This circuit is
compiled into a Rank-1 Constraint Systems (R1CS) by gnark. As the proving
scheme, we utilize Groth16 [16] on the BN254 elliptic curve. We choose Groth16
for its better performance over, e.g., PLONK [13]. Groth16 uses a circuit-specific
trusted setup,6 but this is not a downside as our system uses the same circuit
for all entities in the system. BN254 provides 102 bits of security [17, Table
8]. We benchmark three different commitment functions, demonstrating their
impact on the performance. Specifically, we apply the SHA-256, SHA3, MiMC
hash functions [9,10,2]. While the SHA family is commonly used in practice,
we additionally chose MiMC as representative of a family of ZKP-friendly hash
functions. Implementing a ZKP proof on a ZKP-friendly function results in a
smaller circuit and, thus, better performance.

5.2 Performance Results

We analyze the overhead of employing CIT in a real-world scenario and conclude
that doing so would be practical.

Logging. We identify three key areas of concern when analyzing CIT’s
impact on performance.

First, a monitor – i.e., the user – must download all log entries that were
appended since the last check. In Web PKI Certificate Transparency, a solution
that is deployed in practice, Bingyu Li et al. report an average size of 5.93 KB for
log entries, and an average growth rate of 7,778,870 records per day, resulting in
43.99 GB of new log content per day [21]. This makes it practically challenging
for anyone except well-supported enterprises to run a CT monitor. In stark
contrast, due to only storing blinded data, Certificate Issuance Transparency
log entries are constant size – 96 bytes in our implementation.7 Even assuming
the monumental growth rate of CT, this results in only 746 MB of log content per
day; certainly feasible for users to keep up with on a home internet connection.

Second, the user must go through all downloaded entries and trial calculate
to test the userId commitment. In our implementation using SHA-256, hardware
acceleration allows for a hash rate of upwards of 3 million hashes per second on
consumer hardware [11]. Even discounting various operating system overhead,
performing such verification on the 8 million records per day reported by Bingyu
Li et al. would clearly be feasible for home users.

Third, the entry must be submitted to the log, and an append proof must
be obtained. Both involve negligible transfers of data. Merkle Tree append proof
size is logarithmic in the number of elements in the tree; assuming SHA-256
hashes, day-long epochs, and the CT append rate reported by Bingyu Li et al.,
append proofs would be less than 1 KB each.

We conclude that, even at the scale reached by a potential worldwide deploy-
ment, Certificate Issuance Transparency would still be feasible to monitor for end

6 i.e., the trusted setup of verifier- and prover-key must be redone if the circuit changes
7 32 bytes SHA-256 userId commitment, 32 bytes random blind, 32 bytes SHA-256

credential hash



Credential Issuance Transparency 13

users on home hardware. Additionally, we conclude that the logging operations
imposed by CIT do not impose noticeable overhead.

Proofs of Logging Correctness. To evaluate our ZKP implementation,
we perform several benchmarks on an office laptop with an Intel i7-8550U CPU.
The results of this evaluation are given in Table 1 and visualized in Figure 3. We
divide the steps into three phases: i) the initiation phase is only performed once
for the whole system and comprises the (trusted) setup and the compilation of
the circuits, ii) the preparation phase is performed once for each nonce-userID-
spID tuple and can be pre-computed by the user, and iii) the showing phase is
performed by the verifier on each credential showing. We note that the showing
phase is fast enough that caching at the verifier is not useful, but possible.

Figure 3: NIZKP Evaluation

BN254
MiMC SHA256 SHA3-256

security 102 bit
#constraints 1322 170157 235032

initiation compile policy [s] 0.002 1.541 1.891
setup (gen. keys) [s] 0.176 39.134 58.189

prepare gen. witness [s] 0.00002 0.0001 0.0002
prove statement [s] 0.028 1.444 2.515

show verify proof [s] 0.001 0.002 0.002

Table 1: Evaluation Results

6 Discussion

In a given application scenario, it might be desirable to tweak the functionality
of our protocol. We discuss potential avenues for doing so; allowing the trading
of privacy for performance alongside various axes.

6.1 Identifying Credentials

Our work is limited to auditing the issuance of identifying credentials, which
produce a stable pseudonym for the user at a particular verifier. We have done
this because for this class of credential, the intuitive concept of “mis-issuance”
can be defined rather plainly, by tying it to the pseudonym in question.

Of course, not all credentials are identifying credentials. I might be issued a
credential that only includes my date of birth. We might also want to audit mis-
issuance of such credentials. However, I almost certainly share a date of birth
with some other legitimate credential subject. If a date-of-birth credential for
my date of birth is issued to them, this is not mis-issuance. Yet, from my point
of view, the two cases are indistinguishable; it is not even clear how to define
“mis-issuance” in this context.

Finally, we turn to a third case: identifying credentials being used in contexts
where the identifying information – the pseudonym – is not used by the verifier.
For example, this may be achieved by not selectively disclosing the pseudonym.



14 Anonymous Author(s)

At first, a path forward seems apparent in this scenario: perform issuance audit
logging as usual, but instead of disclosing the pseudonym, extend the NInowZKP
in Section 4.2 to prove consistency with the undisclosed pseudonym contained in
the credential. While the details might vary based on the pseudonym derivation
method used, this seems intuitively possible. Yet, this hope, too, is fleeting. After
all, consider a scenario where the issuer, cooperating with some malicious user,
issues a modified credential to that user containing otherwise identical claims,
but a bogus pseudonym derived from a non-existent userId. The issuer then
faithfully records this credential in the audit log. Since the only information the
verifier makes use of in this scenario is non-identifying information – not the
pseudonym – this credential is functionally equivalent to a genuine credential.
Clearly, the modified credential was also mis-issued ; yet, since the identifying
attributes are not used by the verifier, this mis-issuance is functionally equivalent
yet hard to capture in a rigorous definition.

Other uniquely identifying information. In this work, we have focused
on “a pseudonym” as the unique identifier of a user towards a given verifier.
One might reasonably argue that no specific pseudonym is necessary to define
“mis-issuance”; after all, if someone else is issued a credential containing my first
name, last name, and date of birth, isn’t this also clearly mis-issuance? It is
not clear that this is the case; identity is a hard concept to pin down. “Data
twins”, people sharing both the same name and the same date of birth, are not
unheard of. However, if one is convinced that they have identified such a uniquely
identifying combination of attributes, the concepts of this work can be extended
seamlessly by substituting the combination of these attributes for a pseudonym.

6.2 Delegating Log Monitoring

Our base scheme, described in Section 4.2, requires interested users to monitor
all new additions to the audit log, and trial calculate to test whether the addition
matches their own userId. This may not be desirable for some users. While the
effort expended to perform this monitoring is not excessive, it may nevertheless
be desirable for users to delegate this duty to professional monitors. Such a
monitor could process the log just once, and notify each user only of the log
entries that concern them.

This delegation can be supported by a slight adjustment to our protocol,
and at a trade-off in NIZKP performance. Our current protocol publicly logs
a commitment to userId, in the form of C(n, userId). Knowing userId, the user
can test each log entry. However, delegating monitoring to a third party would
then also require userId to be disclosed to the third party. This allows the user
to be de-anonymized at SPs globally. Even if the monitor is trusted to perform
monitoring, disclosing such sensitive data is not desirable.

Thus, if delegation should be supported, instead of logging a commitment to
userId, a commitment to H(userId)8, i.e., C(n,H(userId)), can be logged instead.
This allows a third-party monitor to operate only with knowledge of H(userId).

8 or, in practice, H(”LOG_KEY ”||userId) to provide domain separation



Credential Issuance Transparency 15

This knowledge permits the monitor to determine whether a given log entry
corresponds to the underlying user, as desired; but it does not allow it to perform
any other operations on the userId, nor does it allow it to learn the userId.
Of course, the NIZKP provided to the verifier also needs to incorporate this
additional operation. This corresponds to a 50% increase in system setup and
proof generation time compared to our existing benchmarks in Section 5.

6.3 Anonymity versus Monitoring Efficiency

Another venue for improving monitoring efficiency is trading off some of the
user’s anonymity for a corresponding decrease in entries to be monitored. For n-
bit userIds, this is achieved by choosing a parameter p from 0 to n, and treating
the first p bits of the user’s userId as public information. The audit log can
then effectively be fragmented into 2p different audit logs. Each user only needs
to monitor one of these logs, which contains 2−p times as many entries as the
unparameterized log. The correct assignment of the entry to a particular log can
be verified as part of the existing NIZKP by simply revealing the first p bits
of the userId input. This does not induce significant overhead. However, such
a parametrization comes with a commensurate reduction in anonymity, as the
user base is split into 2p disjoint anonymity sets.

6.4 Related Work

We examine research associated with transparency overlays and digital (ver-
ifiable) credentials regarding the underlying data structures and sanitization
mechanisms employed.

In Certree, Saramago et al. suggest a system that adds transparency to cer-
tification systems of academic credentials [29]. Their approach enhances trans-
parency in the issuance process by leveraging metadata about each individual
certification stage, such as a course completed towards a degree, recorded in a
blockchain. However, at the same time, their approach requires all credentials to
be made public. This allows tracking all users’ credentials and related activities
through on-chain data, as user addresses (hash of their public key) are included
in the metadata for each credential.

Zk-Cert maintains the transparency of certifying academic credentials sys-
tems provided by Certree while significantly enhancing privacy by implementing
zero-knowledge proofs [30]. Their approach employs a blockchain as a verifiable
data registry with robust timestamping capabilities. A group of smart contracts
systematically records cryptographic commitments of all issued credentials in an
incremental Merkle Tree, and zero-knowledge proofs enable subjects to demon-
strate ownership over these commitments without disclosing them.

Chase et al. propose and formalize their credential transparency framework
(CTS) for remote (possibly cloud-based) credential management systems (CMS) [6].
CTS adds transparency guarantees by logging every time a credential manage-
ment service provider presents a credential on behalf of a user to an honest
verifer, in such a way that the user can then audit all the presentations made



16 Anonymous Author(s)

on their behalf, without the remote CMS being able to manipulate or omit
any presentation without detection. This cloud-based CMS maintains a Strong
Accumulator (SA) data structure that stores commitments of credential pre-
sentations’ contexts and a zero-knowledge set (ZKS) of the number of uses of
the user’s credential. The framework is compatible with credential management
systems of varying degrees of privacy-preservation. By taking this approach and
abstracting each credential presentation as a “showing”, they ensure that incor-
porating logging guarantees does not introduce substantial additional privacy
leakage beyond what the credential presentation already discloses.

Goldwasser et al. address the lack of accountability of anonymous creden-
tials that restricts their practical applications in real-world scenarios [14]. They
present an anonymous verifiable logging scheme that allows decentralized in-
spectors to enforce accountability for anonymous credential users. This scheme
guarantees that the user’s activities are recorded and encrypted using a key that
is unique to the user. A third-party auditor that possesses the user’s log de-
cryption key, can subsequently access and assess the user’s actions to ascertain
compliance to regulations. They adapt the issuing protocol by including a log
encryption key chosen by the user and the auditor in the credential. They asso-
ciate the log entries of anonymous credential presentations with the credential
user identified during issuance so that a comprehensive log of all the user’s ac-
tivities at honest verifiers can be retrieved. Importantly, this retrieval doesn’t
compromise the privacy of other users.

Zk-creds, besides employing general-purpose zero-knowledge proofs as a basis
for anonymous credentials, proposes to eliminate the requirement for credential
issuers to secure signing keys by issuing credentials to a public bulletin board [27].
By doing so, every issued credential is observable and the issuance process is
auditable. A user can use her credential by showing a membership proof that the
credential is present in the issuance list. Membership proofs are realized through
Merkle Forests rather than a single Merkle Tree for an improved tradeoff between
proving and verification time.

6.5 Future Work: Multi-show Unlinkability

Our approach described in this work has one log line correspond to one issued
credential. The user then provides this log line, and a traditional inclusion proof,
to verifiers when showing the credential. This prevents multi-show unlinkability,
where multiple instances of showing the same credential cannot be correlated.
Current eIDAS 2.0 implementations do not provide this property. However, more
advanced cryptographic schemes such as BBS+ do [3].

It may be possible to adopt our approach to work in such schemes without
compromising multi-show unlinkability. We believe this might be achieved by
a two-step process: first, by replacing the credential hash H(x) with a blinded
commitment; and second, by showing a NIZKP that merely proves that a correct
log line exists in a given tree instead of disclosing the particular line. We do not
pursue this idea further in this work.



Credential Issuance Transparency 17

References

1. Al-Bassam, M., Meiklejohn, S.: Contour: A practical system for binary trans-
parency. CoRR abs/1712.08427 (2017)

2. Albrecht, M.R., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: Mimc: Efficient
encryption and cryptographic hashing with minimal multiplicative complexity. In:
ASIACRYPT (1). LNCS, vol. 10031 (2016)

3. Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k -taa. In: SCN. LNCS,
vol. 4116. Springer (2006)

4. Botrel, G., Piellard, T., Housni, Y.E., Kubjas, I., Tabaie, A.: Consensys/gnark:
v0.9.0 (feb 2023), https://doi.org/10.5281/zenodo.5819104

5. Cameron, K.: The laws of identity (2005)
6. Chase, M., Fuchsbauer, G., Ghosh, E., Plouviez, A.: Credential transparency sys-

tem. In: International Conference on Security and Cryptography for Networks
(2022)

7. Chase, M., Meiklejohn, S.: Transparency overlays and applications. In: Proceedings
of the 2016 acm sigsac conference on computer and communications security (2016)

8. Crosby, S.A., Wallach, D.S.: Efficient data structures for tamper-evident logging.
In: USENIX security symposium (2009)

9. Dang, Q.: Secure hash standard (shs) (2012-03-06 2012)
10. Dworkin, M.: Sha-3 standard: Permutation-based hash and extendable-output

functions (2015-08-04 2015)
11. ECRYPT VAMPIRE: Measuremants of hash functions, index by machine. https:

//bench.cr.yp.to/results-hash.html (2024)
12. European Parliament, Council of the European Union: Regulation (EU) 2024/1183

of the European Parliament and of the Council of 11 April 2024 amending Reg-
ulation (EU) No 910/2014 as regards establishing the European Digital Identity
Framework (eIDAS 2) (2024)

13. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. IACR
Cryptol. ePrint Arch. (2019)

14. Godtschalk, L.: Accountability and access control using anonymous credentials
(2022)

15. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (2019)

16. Groth, J.: On the size of pairing-based non-interactive arguments. In: EURO-
CRYPT (2). LNCS, vol. 9666. Springer (2016)

17. Guillevic, A., Singh, S.: On the alpha value of polynomials in the tower number
field sieve algorithm. IACR Cryptol. ePrint Arch. (2019)

18. Hicks, A., Mavroudis, V., Al-Bassam, M., Meiklejohn, S., Murdoch, S.J.: VAMS:
verifiable auditing of access to confidential data. CoRR abs/1805.04772 (2018)

19. Hof, B., Carle, G.: Software distribution transparency and auditability (2017)
20. Laurie, B., et al.: Certificate transparency v2.0. RFC 9162 (2021)
21. Li, B., Lin, J., Li, F., Wang, Q., Li, Q., Jing, J., Wang, C.: Certificate transparency

in the wild: Exploring the reliability of monitors. In: CCS. ACM (2019)
22. Marquardt, F., Schmidt, C.: Don’t stop at the top: Using certificate transparency

logs to extend domain lists for web security studies. In: LCN. IEEE (2020)
23. Merkle, R.C.: A digital signature based on a conventional encryption function. In:

CRYPTO. LNCS, vol. 293. Springer (1987)

https://doi.org/10.5281/zenodo.5819104
https://bench.cr.yp.to/results-hash.html
https://bench.cr.yp.to/results-hash.html


18 Anonymous Author(s)

24. Nikitin, K., Kokoris-Kogias, E., Jovanovic, P., Gailly, N., Gasser, L., Khoffi, I.,
Cappos, J., Ford, B.: CHAINIAC: proactive software-update transparency via col-
lectively signed skipchains and verified builds. USENIX Association (2017)

25. OASIS Security Services TC: Security assertion markup language (saml)
v2.0 technical overview. https://docs.oasis-open.org/security/saml/Post2.0/
sstc-saml-tech-overview-2.0-cd-02.html (2008)

26. Roberts, R., Levin, D.: When certificate transparency is too transparent: Analyzing
information leakage in HTTPS domain names. In: WPES@CCS. ACM (2019)

27. Rosenberg, M., White, J., Garman, C., Miers, I.: zk-creds: Flexible anonymous
credentials from zksnarks and existing identity infrastructure. In: IEEE Symposium
on Security and Privacy (2023)

28. Sakimura, N., Bradley, J., Jones, M.B., de Medeiros, B., Mortimore, C.: Openid
connect core 1.0. https://openid.net/specs/openid-connect-core-1_0.html (2014)

29. Saramago, R.Q., Jehl, L., Meling, H., Estrada-Galiñanes, V.: A tree-based con-
struction for verifiable diplomas with issuer transparency. In: IEEE International
Conference on DAPPS (2021)

30. Saramago, R.Q., Meling, H., Jehl, L.N.: A privacy-preserving and transparent cer-
tification system for digital credentials. In: International Conference on Principles
of Distributed Systems (OPODIS) (2023)

31. Scheitle, Q., Gasser, O., Nolte, T., Amann, J., Brent, L., Carle, G., Holz, R.,
Schmidt, T.C., Wählisch, M.: The rise of certificate transparency and its implica-
tions on the internet ecosystem (2018)

32. Sporny, M., Longley, D., Chadwick, D.: Verifiable credentials data model v1.1.
https://www.w3.org/TR/vc-data-model/ (2022)

33. Zwattendorfer, B., Zefferer, T., Stranacher, K.: An overview of cloud identity
management-models. In: WEBIST (1). SciTePress (2014)

A Verifiable Presentations

A Verifiable Credential (VC) showing process begins with a verifier sending a
credential presentation request to the user. This request generally includes a
nonce to prevent replay attacks and asks for the disclosure of certain attributes
from one or several of the user’s credentials. It also includes additional parame-
ters and constraints, such as a timestamp for expiration and revocation-related
requirements, or a list of trusted issuers for each identity attribute.

Verifiable Presentation (VP) refers to a process involving individuals, or
"users", who use their credentials to disclose identity attributes to "verifiers"
or relying parties. Upon receiving the presentation request, the user’s digital
wallet application automatically searches for stored credentials that include the
requested attributes and meet the requirements specified in the request. With
the user’s consent, the wallet app creates a cryptographic proof of the correctness
of these attributes and sends them, along with the proof, to the verifier.

To avoid showing excessive information, VPs with a privacy emphasis selec-
tively disclose specific attributes to the verifier. VPs also contain some form of
blinded cryptographic evidence originating from the credential, indicating that
the displayed subset of attributes is genuinely derived from a credential endorsed
by the corresponding issuer. These proofs may be built using a variety of tech-
nologies, such as Merkle hash trees (Section 2.3) or zero-knowledge proofs (see

https://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0-cd-02.html
https://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0-cd-02.html
https://openid.net/specs/openid-connect-core-1_0.html
https://www.w3.org/TR/vc-data-model/


Credential Issuance Transparency 19

also Section 2.4). The verifier can then automatically check the proof, and ver-
ify that the credential was issued by an issuer that it trusts. It thus trusts the
authenticity of the identity attributes claimed by the user, allowing them to be
used to provide services to them.

B Merkle Hash Tree Security

It is possible to link multiple hash trees trees together to form an incrementally
growing forest. Each append batch consists of a single Merkle Tree. The root
hash of the previous Merkle tree forms part of the input to the new tree’s root
hash. Thus, the new root hash also doubles as a commitment to the previous
root hash; and, transitively, as a commitment to the previous tree’s contents,
as well as any other previous trees’ root hashes and contents. This gives us two
categories of cryptographic proofs: inclusion proofs and consistency proofs.

An inclusion proof persuades external entities that a leaf is part of the log. It
consists of a path within the Merkle Tree, extending from the leaf containing the
relevant data to the root hash embedded in the published fingerprint. A Merkle
audit path is computed for an inclusion proof and consists of the set of missing
nodes that are essential for calculating the tree’s root. If the computed root from
the audit path aligns with the actual root, it serves as evidence that the leaf in
question is present in the tree. In Figure 2, the inclusion proof for the bolded
node is depicted with a dark background.

On the other hand, a consistency proof proves that the log is append-only
by demonstrating that the published root hashes are consistent. Consistency
proofs enable external entities to confirm that the log strictly appends, ensuring
that the log reflected by a fingerprint at an earlier point in time is a precursor
of the log indicated by a fingerprint at a subsequent time. A consistency proof
contains a subset of intermediary nodes in the Merkle Tree that are essential for
linking the two root hashes. Entities within the system share the observed log
snapshots using so-called "gossiping" mechanisms that ensure that all parties
have the same view of the log at the point of time of the snapshot.


	Credential Issuance Transparency: A Privacy-preserving Audit Log of Credential Issuance

