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Abstract. VDFs are characterized by sequential function evaluation but an immediate
output verification. In order to ensure secure use of VDFs in real-world applications,
it is important to determine the fastest implementation. Considering the point of
view of an attacker (say with unbounded resources), this paper aims to accelerate
the isogeny-based VDF proposed by De Feo-Mason-Petit-Sanso in 2019. It is the
first work that implements a hardware accelerator for the evaluation step of an
isogeny VDF. To meet our goal, we use redundant representations of integers and
introduce a new lookup table-based algorithm for modular reduction. We also provide
both a survey of elliptic curve arithmetic to arrive at the most cost-effective curve
computations and an in-depth cost analysis of the different base degree isogeny and
method for the isogeny evaluation. The evaluation step of a VDF is defined to be
sequential, which means that there is limited scope for parallelism. Nevertheless,
taking this constraint into account our proposed design targets the highest levels of
parallelism possible on an architectural level of an isogeny VDF implementation. We
provide a technology-independent metric to model the delay of isogeny evaluation,
which a VDF developer can use to derive secure parameters. ASIC synthesis results
in 28nm are used as a baseline to estimate VDF parameters.
Keywords: Verifiable delay functions · Isogeny · Redundant representation ·
Accelerator

1 Introduction
The classic adage, “Good things come to those who wait” has been made palpable in
recent times by blockchains and cryptocurrencies: two of the most popular modern-day
technologies. Blockchains rely on cryptographic protocols for authorizing and validating
digital exchanges, often aided by ‘randomness’ in the form of desirable time delays to avoid
counterfeits. Considering block variables such as timestamps as a source of entropy or
randomness have shown to be vulnerable to bias because a block miner has the potential
to manipulate them. As an example, consider an on-chain lottery where the miner has
to guess if the next block hash is even or odd. While betting on even, if a miner is able
to generate a block comparatively ‘faster’ than the others and finds out that it is odd,
they can discard it, thereby increasing the probability of getting an even hash the next
time and hence, winning the lottery. Verifiable Delay Functions (VDF) are cryptographic
primitives that came as a solution to mitigate such foul-play. They possess the ability
to run for a certain fixed amount of sequential time T but their result can be verified
rather quickly. In applications that need the generation of randomness beacons from public
sources like stock prices, VDFs can ensure security by adding enough delay to calculate
the beacon, thus preventing powerful seasoned traders to adjust the market for their gain.
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Thus, VDFs are useful only when they run for more than a specific time. Determining
the fastest implementation or identifying speed-ups are immensely important to set the
required security level of a VDF instance.

One of the earliest attempts at construction was to compute a T -long chain of a hash
function H (which would take T steps irrespective of amount of parallelism), however the
verification of the output, say, y = HT (x), takes the same order of time as the only way to
verify is to recompute the composition of the functions. So, although it is a delay function,
it is not efficiently verifiable. Constructing delay functions that were easily verifiable as
well as quantum-secure became an interesting open problem. After their introduction by
[BBBF18], research around VDFs intensified. Since by virtue of their construction, VDFs
need to be sequential, there is limited scope for algorithmic optimization and parallel
computations. Thus, a VDF implementation on hardware has different aims and challenges
than the implementations of conventional cryptographic primitives.

Motivation: The knowledge of the time required for a VDF under a parameter set is
critical for establishing security parameters and ensuring their standardized use in the public
domain. Indeed, proprietors of companies or technologies utilizing VDF typically have a
good understanding of current technological constraints and their client’s computational
powers. Hence, they might believe that the evaluation time of the VDF aptly matches the
established security standards. However, the computational capabilities of an attacker with
massive resources, which could be an organization rather than an individual, possessing
significant power as well as resources cannot be underestimated.

This paper examines the perspective of such an attacker with massive resources. In
this context, it is crucial to note one fundamental difference between the expectations
from a cryptoprocessor design of a cryptographic primitive (for example, encryption or
signature schemes) and an attack hardware accelerator. The design of a cryptoprocessor
is expected to fulfill the constraints of a given application such as area, energy, time,
etc. On the other hand, as noted by the authors of [SHT22], the primary objective in
a VDF attack implementation is to achieve the highest possible speed, whereas area or
power consumption does not hold much significance as attackers’ capabilities cannot be
underestimated. Hence, our goal is to design a fast VDF evaluation accelerator to achieve
the massive parallelization of computations possible during the VDF evaluation. Lastly,
we only implemented the VDF evaluation because it is the only part that is interesting
from an attacker’s perspective, in a VDF, setup or verification do not need a fast hardware
design.

Related work: Several forms of VDFs have been proposed so far, such as the ones
based on computing square roots in a modular field or the more recent by [Wes19]
and [Pie18] on groups of unknown order. Isogenies came into limelight with the works
[CLG09], who presented a collision-resistant hash function based on deterministic walks
in isogeny graphs of supersingular elliptic curves. Soon they gained popularity in the
cryptographic landscape because of their resistance to quantum attacks and smaller key
sizes. [DFMPS19, CSRHT22, DMS23] are some of the recent works on isogeny-based VDFs.
In this paper, we particularly focus on a new type of VDF constructed using isogenies
on supersingular elliptic curves proposed in [DFMPS19]. Hereafter, we refer to this VDF
construction as FMPS19. This construction offers only partial resistance to quantum attacks
(quantum annoyance) because the verification step employs bilinear pairings. Isogeny
VDFs are interesting because they can be constructed by combining already existing
cryptographic research on isogenies with respect to efficiency and security [DFMPS19].

In the literature there are several implementations (software and hardware) of VDFs
based on modular square roots, time-lock puzzles [MÖS22, SHT22] but when it comes
to isogeny-based VDFs, high-performance implementation works are scanty. A proof-
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of-concept Sage implementation of the isogeny-based VDF FMPS19 on an Intel Core
i7-8700 processor is provided by the authors of the paper. They choose a 1506-bit prime to
achieve 128-bit security. These results correspond to 2-isogeny computation and evaluation
during the execution of the VDF components. The following work [CSRHT22] leaves
it as an open area of research to decide concrete parameters for their isogeny-based
VDF construction. [BF21] on the other hand, give a form of isogeny-based time delay
primitive which they refer to as Delay Encryption and discuss certain implementation-level
optimizations. Since their basic building blocks are closely related to FMPS19’s VDF
primitive, these optimizations, in theory, could apply to the VDF too. However, the authors
note that further investigations are required to test their practical advantages. Thus the
only performance results for isogeny VDFs are based on software implementations. It
would therefore come as no surprise that an optimized hardware implementation of isogeny
computation would easily beat the existing benchmarks. We however note that [SB23]
presents a design for a high-performance hardware accelerator that can aid isogeny-based
cryptographic primitives such as the SIKE key exchange scheme. It employs optimizations
within the curve arithmetic to improve performance.

We also note that isogeny-based VDF schemes remain completely unaffected by the re-
cent attacks on SIDH/SIKE [CD23, Rob23, MMP+23]. While in the context of SIDH/SIKE,
the underlying hard problem is to find the secret ℓT isogeny, in isogeny-based VDFs this
isogeny is a part of the public setup. Their hardness assumption relies on the sequential
property of point evaluation [DFMPS19, Definition 3]. SIDH/SIKE was broken because of
their use of auxiliary image points being computed through isogenies that leaked sensitive
information.

1.1 Main Contributions
As stated earlier, since the branch of isogeny-based VDFs is fairly recent, no work has
been done to establish and verify security parameters using highly parallel implementa-
tions. Our work is the first to address this gap by providing an efficient and extremely
fast hardware implementation of the ℓT -isogeny evaluation. Note that, hardware imple-
mentations of isogeny walks exist in the context of post-quantum cryptography (PQC)
[SB23]. However, an isogeny VDF implementation would differ greatly from such a PQC
implementation due to the vast difference in their respective parameter sizes (1506 vs 434
bits for SIKE [JAC+22]) as well as their constraint conditions. We identify optimization
opportunities targeting various levels of the VDF construction.

We start with optimization techniques on the basic modular arithmetic that would
be common to any VDF construction involving isogenies between supersingular elliptic
curves. We find that using a redundant representation for integers called the Carry-Save
representation (CS) [Par00] and carry-save adders (CSA) for all the isogeny modular
arithmetic significantly decreases the latency of the hardware architecture. Using CS
representation for isogeny arithmetic also led us to design a new method for modular
reduction. This representation eventually helps us estimate the delay of low-level building
blocks of our hardware using a technology-independent delay metric such as the number of
Full Adders (FA). We discuss the relevance of this metric in the later part of this section
when we elaborate on our hardware design.

Next, we move on to conduct a survey of the different forms of elliptic curves to
identify the optimal curve that requires the least amount of resource expenditure during
the isogeny evaluation. Furthermore, we show that using 4-isogenies as building blocks for
evaluating the 2T -isogeny walk gives the best performance in hardware, when compared
to other powers-of-two base degree isogenies. We provide details of how this method
compares to other techniques of computing large-degree isogenies such as those explored
in [BFLS20, DMPR23]. In fact, computing one 4-isogeny is more efficient in terms of
complexity and latency compared to computing a chain of two 2-isogenies as pointed out



4 Accelerating Isogeny Walks for VDF Evaluation

by [FJP14].

Finally, endowed with the aforementioned low and high-level optimization strategies,
we propose two high-performance VDF evaluation architectures: FAVE and FITER.
Where FAVE represents the attacker’s “favorite” and stands for Fastest Accelerator for
VDF Evaluation. By ‘Fastest’, we mean that FAVE is an extreme 4k-isogeny evaluation
accelerator architecture with near-maximum parallel processing, assuming the availability
of massive computational resources to the attacker. However, due to its extensive resource
requirements, FAVE’s RTL-based hardware design is too complex for our current EDA
tools to synthesize using commercially available desktops and servers.

The design “FITER” resembles a homophone for “fighter” and stands for an accelerator
that “fits” within current technological constraints to achieve fast VDF evaluation timing.
FITER is a less parallelized 4k-isogeny architecture, utilizing the same building blocks
as FAVE, and can be synthesized using present-day EDA tools on a server with 512 GB
RAM. The synthesis results of FITER are used to estimate the time and area required for
FAVE. FAVE provides a lower bound on VDF evaluation time, which is crucial for setting
conservative parameters for the VDF, considering the attacker’s potential capabilities. We
present the results for both hardware accelerators using a technology-independent delay
metric, expressed in terms of the number of FA gates.

Our design is capable of evaluating an ℓT (with ℓ = 2) degree isogeny with a much
better throughput (51, 020/281, 690 isogenies/ms for FITER/FAVE) during evaluation
compared to FMPS19 [DFMPS19] estimates (0.75 isogenies/ms in software). Hence our
choice of curves and strategies, algorithmic optimizations, as well as our tweaks in the
architecture design, helps us get significantly closer towards achieving the most parallelized
isogeny evaluation possible. Our RTL code is available at https://github.com/dj33-9
6/Isogeny-VDF.

Real world significance of our work: As discussed in Sec. 1, VDFs enforce a minimum,
sequentially irreducible computation time for evaluating a mathematical function, say
f(x), while allowing fast verification of f(x) = y. Hence, these cryptographic primitives
are particularly valuable in time-sensitive applications such as blockchains or leader
selection in consensus protocols, where it is essential that no participant can compute the
function substantially faster than anyone else. In isogeny-based VDFs like [DFMPS19], this
computational delay is determined by the degree of the isogeny to be evaluated, reflecting
the inherently sequential nature of the isogeny computation in [DFMPS19]. However,
existing research does not fully explore how a high-performance hardware accelerator might
affect the practical real-world time for VDF evaluation.

Our work addresses this gap by designing and analyzing hardware accelerator architec-
tures and providing a technology-agnostic metric that establishes a realistic lower bound on
the computation time. By understanding the fastest possible hardware evaluation, a VDF
developer or an organization wanting to use a VDF can select security parameters that
guarantee the required delay remains secure against well-funded adversaries. This ensures
that the VDF continues to meet its time-lock property, even in the face of advanced or
specialized hardware implementations.

We demonstrate the practical significance of our work in a scenario where a VDF
developer, say Alice, wants a secure VDF. Alice would first check the latest silicon
technology. Let us assume that the latest silicon technology is 3nm ASIC. By utilizing
our technology-independent delay metrics (Sec. 4.4-5), Alice chooses conservative VDF
parameters based on the delay of an elementary full-adder gate (which is 5 to 10 picoseconds
(ps) in 3nm) in the state-of-the-art technology of her time.

https://github.com/dj33-96/Isogeny-VDF
https://github.com/dj33-96/Isogeny-VDF
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1.2 Paper organization
In Sec. 2 we discuss all relevant mathematical concepts necessary for the paper. We give
a brief description of some of the different types of VDF available in literature, discuss
the basics of elliptic curve arithmetic, then describe in detail the isogeny-based VDF
from [DFMPS19] and finally introduce some concepts for carry-save representation, which
will serve as the backbone for integer arithmetic. The details of our contributions span
Sec. 3 to Sec. 5, where we describe the different optimizations and implementation strategies
we adopt for designing our attack hardware accelerator. The different subsections within
Sec. 3 are organized in a bottom-up approach where we start at fundamental modular
arithmetic (bottom layer-3, Sec. 3.2) and discuss our optimizations for arithmetic in
carry-save representation. We then move up a layer (layer-2, Sec. 3.3-3.4) and describe
elliptic-curve arithmetic built on layer-3 and also discuss all relevant optimizations, such
as choice of elliptic curve representation and base isogeny-degree. Finally, we move up to
the topmost layer–the design of the entire attack hardware accelerator (layer-1, Sec. 4)
which encompasses all previous layers and provides design decisions based on elliptic-curve
and modular arithmetic optimizations discussed in Sec. 3. In this section, we introduce
two potential architecture designs of the attack accelerator, FAVE and FITER. Finally,
in Sec. 5 we report all relevant implementation results and provide a technology-agnostic
analysis of our obtained results. This technology-agnostic analysis aims to explain the real
world use-case of our research endeavor. We conclude the paper in Sec. 6.

2 Mathematical background

2.1 Verifiable Delay Functions
Verifiable Delay Function or VDF is a mathematical function that takes T sequential steps
for its evaluation irrespective of the processing power, however, the verification of the
output of its evaluation is efficient and almost immediate. A VDF consists of the following
three algorithms.
1. Setup(λ, T )→ (ek, vk): It takes a certain security parameter λ and a delay parameter
T to set public parameters consisting of the evaluation key ek, and the verification key vk
for the next steps. It should have a runtime in poly(λ).
2. Eval(ek, s)→ (a, π): This step involves the evaluation of the function on a given input s
using ek to produce an output, a = f(s), which is sequential in T but cannot be completed
in a time less than T . It may also produce a proof π.
3. Verify(vk, s, a, π) → {true, false}: It is the verification of the output a in time
poly(λ) using vk and the proof π, that a is indeed the correct image corresponding to the
input s.

Some examples of other forms of VDFs in the literature are listed as follows:
Modular square roots: Given a prime p = 3 mod 4, compute a square root a =

√
s mod

p using the formula, a = s
p+1

4 . Clearly, evaluating the square root is sequential and the run
time increases logarithmically as p grows but the verification is done in a single step; just
check if a2 = s. However, the computation phase actually turns out to be parallelizable.
[DN93, LW17] are two well-known VDFs based on modular square roots.

Rivest-Shamir-Wagner time-lock puzzles, [RSW96]: Based on the RSA construc-
tion, it selects a modulus N = pq (p, q are prime) and sets the output to a = s2T mod N .
Unless someone knows the prime factorization of N (which is secret), they would need to
go through all the sequential powering steps to achieve a. The knowledge of the Euler-ϕ
function for N, ϕ(N), will provide a shortcut to the evaluation, of course. It lacks efficient
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verification because the factorization of N has to be compromised.

Wesolowski’s and Pietrzak’s VDF: To overcome the problem of efficient verifica-
tion of time-lock puzzles, both [Wes19] and [Pie18] came up with their own versions of
VDFs. [Wes19] worked with groups of unknown orders and [Pie18] introduced a new
verification protocol for Rivest-Shamir-Wagner time-lock puzzles. Both these constructions,
however, rely on interactive verification protocols.

Univariate permutation polynomials (UPP): This approach uses permutation poly-
nomials of degree, say, T in a finite field Fp and bases the evaluation on inverting these
polynomials which is sequential in time. [BBBF18] based their initial VDF discussions on
such permutation polynomials.

VDFs using SNARGs: [BBBF18] and [DGMV20] independently designed a more
theoretical VDF based on succinct non-interactive arguments or SNARGs. This concept
was however used in a slightly different VDF construction by [CSRHT22], which we
mention in Sec. 2.3.2.

Since the already existing VDFs had certain shortcomings, a new branch of VDFs using
isogenies of supersingular elliptic curves has gained the attention of the cryptographic
community [DFMPS19, CSRHT22].

2.2 Elliptic curves
An elliptic curve E defined over a field K with char ̸= 2, 3 is a smooth, projective algebraic
curve of genus 1 with a special point, the unique point O. The points of an elliptic curve
form a group under addition with O as the identity element. The standard normal form of
an elliptic curve is the Weirstrass form given by,

Ew : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (1)

with ai ∈ K. For fields of characteristic greater than 3, there is a short Weirstrass form

Esw : y2 = x3 + ax+ b (2)

such that 4a3 + 27b2 ≠ 0. Every elliptic curve is defined uniquely up to K̄-isomorphism
(except for char = 2, 3) through its j-invariant,

j(E) = 1728 4a3

4a3 + 27b2 .

Two frequently used forms of elliptic curve equations over the affine coordinates are the
Montgomery and the Edwards, given by the respective equations:

Em : by2 = x3 + ax2 + x (3)

and
Eed : x2 + y2 = 1 + dx2y2; d /∈ {0, 1} (4)

Let Ea and Eb be two elliptic curves over Fp2 . An isogeny ϕ : Ea → Eb is defined as a
non-constant rational map which is also a group homomorphism from Ea(Fp2) to Eb(Fp2)
(or over Fp) that preserves the identity O. Two elliptic curves are isogenous if their orders
(number of points over Fp2) are the same [Tat66]. The degree of an isogeny is its degree
as a rational map [Sil09]. An isogeny is separable if it induces a separable extension of
function fields [DFMPS19]. When the degree of the isogeny, deg(ϕ) = ℓ is coprime to
p, the isogeny is necessarily separable. Modulo composition with an isomorphism, an
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isogeny that is separable has a one-to-one correspondence with its kernel, so this isogeny
can be computed with the knowledge of its kernel using Vélu’s formula. For two isogenies
ϕ : Ea → Eb and ψ : Eb → Ec, there exists a composite isogeny ϕ ◦ψ : Ea → Ec such that,
deg(ϕ ◦ ψ) = deg(ϕ) · deg(ψ). If an isogeny ϕ has a degree deg(ϕ) =

∏n
i=1 p

ki
i then it can

be factored as a composition of ki isogenies of degree pi for all i ∈ {1, 2, · · · , n}. For an
ℓ-isogeny ϕ : Ea → Eb, there is a unique ℓ-isogeny ϕ̂ : Eb → Ea such that ϕ ◦ ϕ̂ = [ℓ] on
Eb, and vice versa, where [ℓ] denotes the multiplication-by-ℓ map.

2.3 Isogeny-based VDFs
Unlike other VDFs that rely on ad-hoc assumptions for proving their security, isogeny-
based VDFs enjoy the property of being cryptographically secure due to the underlying
supersingular isogeny ‘hard problem’. Supersingular isogeny VDFs make use of the fact that
computing ℓT -isogenies involves a series of sequential steps whereas the verification using
bilinear pairings is instant. Several constructions of isogeny VDFs have been proposed
in recent years. The first one FMPS19 [DFMPS19] was introduced in 2019, followed by
another in 2021 [CSRHT22], and a more recent contribution in 2023 [DMS23]. While all
these approaches rely on the computation of an isogeny walk, these constructions have
difference in the evaluation step and the methods used for verification differ greatly.

To begin with, we give a brief description of the VDF instances discussed in FMPS19.
They are non-interactive, and by virtue of their design, the proof is empty, meaning that
no additional resources are consumed in obtaining the proof; it is a part of the output
itself. They need a trusted setup to establish all public parameters. The evaluation is a
T -sequential walk on a ℓ-isogeny graph of a supersingular curve E. The verification uses
the output isogeny to evaluate a Weil (or a Tate) pairing. The Weil pairing eN is a form
of bilinear pairing over supersingular elliptic curves E and E′, eN : E[N ]×E′[N ]→ µN

where N is a prime, E[N ] and E′[N ] are the subgroups of order N containing points in E
and E′ respectively of order N , and µN = {x ∈ K : xN = 1}.

2.3.1 FMPS19 VDF construction [DFMPS19] over Fp

Consider a prime p such that p+ 1 contains a large prime factor N , and a supersingular
elliptic curve E over Fp. The choice of the starting degree ℓ has two options: ℓ = 2 only
if p = 7 mod 8, or, ℓ is a small prime such that (−p

l ) = 1. For a supersingular elliptic
curve E over Fp, let E[N ] be its subgroup of N -torsion points and eN be the Weil pairing
defined over E[N ]. By virtue of its construction FMPS19, |E(Fp)| = p+ 1 and E has a
unique cyclic subgroup of order N . Let X2 = E[N ] ∩ E(Fp). Define a map v : E → Ẽ,
such that, (x, y)→ (u2x, u3y), where u ∈ Fp2 \Fp and Ẽ is a quadratic twist of E over Fp2 .
Ẽ contains a unique cyclic subgroup X̃ = Ẽ[N ] ∩ Ẽ[Fp]. The isogenous image curve E′

has the same group structure as E and so contains cyclic groups, Y1 = v−1(Ẽ′[N ]∩ Ẽ′[Fp])
and Y2 = E′[N ] ∩ E′[Fp], with Ẽ′ = v(E′) as the quadratic twist of E′. The three main
steps of the VDF are given below.

• Setup(λ, T): For a security parameter λ, choose primes N and p with the properties
stated above. Next, choose a supersingular elliptic curve E over Fp and a suitable
degree ℓ of the isogeny to compute the ℓT -isogeny ϕ : E → E′ and its dual ϕ̂. Also
compute ϕ(P ) for a choice of generator P of v−1(Ẽ[N ] ∩ Ẽ[Fp]). The output is the
pair, (ek, vk) = (ϕ, (E,E′, P, ϕ(P ))).

• Evaluation(ek, Q ∈ Y2): For Q ∈ Y2, compute ϕ̂(Q). A key point here is that the
isogeny is fixed, so all the kernel points are known in advance for the evaluation. So
given sufficient memory, this will translate the main computation of the evaluation
step from a standard ℓT -isogeny walk like in [JAC+22] to a sequence of ℓ-isogeny
point evaluations of the input point Q.
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• Verification(vk, Q, ϕ̂(Q)): Verify, ϕ̂(Q) ∈ X2, eN (P, ϕ̂(Q)) = eN (ϕ(P ), Q).

FMPS19 VDF construction over Fp2 : The construction for this VDF follows a similar
construction as the one over Fp. Most of the the VDF setup phase is similar to the previous
case, with the curve E being define over Fp2 . In this construction, the authors also take
into account the N − to− 1 trace map defined as, Tr : E/Fp2 → E/Fp, P 7→ P + π(P ),
where π is the Frobenius endomorphism on E/Fp. Hence, in the evaluation step, one needs
to compute (Tr ◦ ϕ̂)(Q). Verification involves checking if the following equality is true:
(Tr ◦ ϕ̂)(Q) ∈ X2 and, eN (P, (Tr ◦ ϕ̂)(Q)) = eN (ϕ(P ), Q)2. Although the use of bilinear
pairings means that the aforementioned VDFs are not entirely quantum secure, they can
still possess the property of ‘quantum annoyance’, as referred to in FMPS19.

2.3.2 Other isogeny VDF constructions

The work by [CSRHT22] proposed a quantum-safe version in 2022 by addressing most of
the shortcomings of the previous construction by FMPS19. The Setup involves selecting a
delay parameter T and a prime p such that p = poly(T ) and p2 ≡ 9 mod 16. Since the
isogeny walk in the evaluation step is computed only as a function of the j-invariants of the
two previous curves, the setup only considers two specific vertices in the 2-isogeny graph
corresponding to j−1 = 1728 and j0 = 287496, respectively. Evaluation is computing an
isogeny walk-in Fp2 of length T on a 2-isogeny graph wherein the exact path is determined
by an input string s. Since bilinear pairings can be solved using quantum algorithms for
solving discrete logarithms, [CSRHT22] replaced them with SNARGs for the verification.

In 2023, [DMS23] proposed another quantum-resistant but “weak” VDF. Here, the
term “weak” refers to the fact that parallelism may give a significant computational
advantage during the VDF evaluation step. With enough parallel cores, the computational
complexity of the VDF evaluation goes from O(poly(T )) to O(T ). Their construction
involves one-dimensional isogenies as well as higher-dimensional ones for Kani’s criterion.
We give a brief description of their construction in the following part of the paragraph.
Let E/Fp be a supersingular elliptic curve. The setup involves sampling and constructing
the two primes ℓ and p. Such that there exist two horizontal ℓ-isogenies ϕ and ϕ′ towards
two others elliptic curves E1 and E′

1. The evaluation step consist of evaluating those two
horizontal ℓ-isogeny ϕ and ϕ′. The verification step makes use of Kani dimension 2 to
evaluate ϕ and ϕ′ over a subgroup of E of smooth order for fast verification.

In this paper, we focus on FMPS19 as a case study. Their methods of isogeny
computation have been extensively studied in the context of elliptic curve cryptography.
Moreover, it is the only VDF construction work which proposes some concrete parameters
based on their a proof-of-concept software implementation.

2.4 Carry-save representation

The redundant binary representations (RBR) are numeral systems where integers are
represented using more bits than the standard representation. The standard representation
represents a positive integer a using the minimal m = ⌈log2 a⌉ bits. In contrast, RBRs
introduce redundancy by representing an integer using additional bits to gain faster
arithmetic in some computational scenarios. Because of the redundancy, a number has
more than one representation. The most interesting property of RBR is its ability to
perform addition (and subtraction) without using any carry chain propagation. This makes
addition constant time regardless of the bit size. Thus addition becomes significantly faster
in RBR than in standard representation as the bit size grows [SKN08, MÖS22, SHT22].

One commonly used RBR is the carry-save (CS) representation [Par00]. In the CS
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FA FA

FA 0FA

Figure 1: Addition of two numbers in CS representation

representation, an integer a is viewed as the sum of two positive integers:

a = a0 + a1, with a0 =
m−1∑
i=0

ai,0 · 2i and a1 =
m−1∑
i=0

ai,1 · 2i.

In the CS representation, addition uses a long array of individual one-bit full adders (FA)
called carry-save adders (CSA). Fig. 1 shows how the addition of two large-bit integers a
and b is performed when they are represented in the CS using four integers a0, a1, b0 and
b1 such that a = a0 + a1 and b = b0 + b1. This method is very efficient in hardware, as the
critical path of addition is only two full adders [RM19]. In contrast, a ripple carry adder
with the standard representation incurs a critical path proportional to the bit-length of
the integers.

For example, we want to add a = 12 and b = 11. Let, a0 = 10, a1 = 2, b0 = 0, and
b1 = 11 (or any other combinations). Following fig. 1, first a0, a1 and b0 are added using
one CSA array, which gives 4 and 8 as outputs. Next, the two outputs 4, 8 and b1 are
added together using another CSA array. The outputs are c = 16 and s = 7. We never
recombine c and s because the combination will introduce a carry propagation chain, thus
severely increasing the critical path. A longer critical path means lower clock frequency
and slower design.

3 Optimizations
In this section, we first list certain VDF-specific challenges that motivate the optimization
strategies adopted in the proposed attack accelerators.

3.1 Challenges in accelerating VDF evaluation
Various VDF constructions [DFMPS19, CSRHT22, DMS23] use distinct evaluation proce-
dures, each presenting its own set of challenges. The VDF evaluation in [CSRHT22] relies
solely on modular arithmetic as the isogeny walk is computed on the j-invariants and is
determined by the j-invariants of the two previous curves. The primary computational
bottleneck in this VDF is calculating a modular square root, and the VDF parameters
are set to facilitate this computation as a series of modular multiplications, using Kong’s
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algorithm [KCYL06]. The VDF evaluation in FMPS19 involves evaluating a point through
an ℓT -isogeny. With sufficient memory, this becomes a sequence of ℓ-isogeny evaluations of
the point since the isogeny is fixed and known. Hence, fast evaluation requires fast modular
arithmetic and optimal setup (identifying the best curve, formula, and degree). The VDF
presented in [DMS23] involves computing two large prime and horizontal isogenies during
the evaluation step. The evaluation is mostly similar to [DFMPS19], but with two main
differences: the isogeny is neither pre-defined nor smooth.

We observe that in all the three aforementioned VDF constructions [DFMPS19,
CSRHT22, DMS23], fast modular arithmetic is critical for speeding up the VDF evaluation.
Beyond the modular arithmetic layer, algorithmic and arithmetic optimizations specific
to each scheme further accelerate the process. Therefore, in this paper, we focus on
parallelizing modular arithmetic. As a case study, we examine the first isogeny-based VDF
FMPS19 and explore high-level optimizations.

1. FMPS19 construction suggests a field prime of 1506-bits to achieve 128-bit secu-
rity [DFMPS19]. Large integer arithmetic is problematic due to carry propagation
issues. Hence, efficient design strategies are crucial to achieve a highly parallel
implementation with a low latency.

2. Various prior works have used CS form to speed up certain operations or algorithms
[Pur83, MMM03, SHT22]. One such optimization was also used in elliptic curve
cryptography [RM19], only to speed up the Montgomery multiplication. No previous
work has tried a full CS form for isogeny-based cryptography. We observe that using
CSAs in practice for an isogeny hardware design brings up challenges that have not
been previously addressed, such as:

• Checking the sign: It is well-known that identifying the sign of an integer with
utmost certainty in CS representation is not straightforward. Most previous
works on CSA have avoided this issue by converting it back to standard rep-
resentation [SHT22]. Only [KH98] has tried to address this and has managed
to narrow down the uncertainty range, which unfortunately, is not enough for
isogeny-based cryptography. This problem is addressed in Sec. 3.2.1.

• Modular addition and subtraction: Various works have addressed the issue
of how to do a Montgomery reduction in CS representation [RM19, MÖS22],
which is useful following a squaring or multiplication. It is not efficient to use
such an algorithm after addition or subtraction. We address the issues with
reduction in Sec. 3.2.2 and those with modular subtraction in Sec. 4.1.

3. In Sec. 2.2, we discussed elliptic curve arithmetic over its different forms. The first
challenge in our isogeny VDF implementation is to choose the right form of elliptic
curve that needs the least elliptic curve arithmetic operations and an appropriate
base isogeny degree. The reason why the choice of curve is one of the deciding
factors is stated as follows: there exist transformation maps between almost all
forms of elliptic curves. So in theory, an attacker can port the evaluation isogeny
to the optimal curve-form to gain speedup. This threat model is valid since the
transformation is just a one-time operation done at the beginning and at the end
of the VDF evaluation. This step can be done very efficiently: switching from a
Montgomery curve to an Edwards curve in projective coordinates takes only two
additions as explained in [KYK+18, MS16]. We show how we narrow down our
search to the starting isogeny degree as 4 and settle for the best curve in Sec. 3.3
and Sec. 3.4.

4. Most isogeny-based cryptographic primitives in the literature [JAC+22, SB23] use
an optimized strategy which is well suited for efficient isogeny computations when



David Jacquemin, Anisha Mukherjee, Ahmet Can Mert, Sujoy Sinha Roy 11

resources are limited. However, an adversary with extensive memory and parallel
processing capabilities could adopt a different and much faster approach for evaluation.
Therefore, it is essential to identify the most efficient isogeny evaluation strategy that
such a powerful adversary could use for rapid VDF evaluation. More information on
the different strategies can be found in appendix B.

We explain our solutions for overcoming all the aforementioned challenges one-by-one.
We also describe our algorithmic and design optimizations to achieve a massively parallel
hardware accelerator for isogeny-based VDF evaluation.

3.2 CS representation for a fast design
The solution to challenge 3 in Sec. 3.1 lies in the use of a carry-save representation for
integers as working with large parameters is made easy with CS representation, see Sec. 2.4.
In challenge 4, we presented two issues with using CS representation in isogeny-based
cryptography: modular reduction and sign checking. We mitigate these issues in the
following part of the section. Let, p be an m-bit prime.

For modular reduction, we use two distinct algorithms. The first is adapting the
Montgomery algorithm for CS representation, as proposed by [MÖS22]. This algorithm
takes a (2m+ 2)-bit integer a in CS form and returns an (m+ 1)-bit integer b in CS form,
where b ≡ a ·R−1 mod p, b < 2p, R = 2m+3. The algorithm utilizes m · (3m+ 7) logical-
AND gates and three adder trees, making it highly efficient for reducing the output after a
multiplication or squaring operation. However, the algorithm has one major shortcomings:
it is inefficient for reducing the result in a modular addition or subtraction. To address
this, we have developed a new alternative algorithm (see Alg. 1), which is primarily used
for the modular reduction following an addition and a subtraction.

3.2.1 The sign issue in CS representation

To perform modular operations in the CS representation, we need to reduce the result
modulo p. In the standard integer representation, modular reduction after addition or
subtraction is performed as an inequality test (a + b > p) or (a − b < 0) followed by a
conditional subtraction or addition of p. While addition (or subtraction) is very easy in
CS form, testing the two aforementioned inequalities is impossible without implementing a
large degree adder. To test a+b > p, we compute a+b−p and check for an overflow (i.e., if
the (m+1)-th bit of the output is 1 or 0). To correctly do this, we need to add the carry and
the save of d = a+ b−p, which will result in using a large-sized adder. We have to combine
the two “shares”, as it is not possible to guarantee the presence of an overflow just by
looking at the two uncombined shares: as an example, let us consider p = 61 prime, and two
integers a = 40 and b = 24 with CS form a : a0 = 32(0b00100000), a1 = 8(0b0001000) and
b : b0 = 16(0b0010000), b1 = 8(0b0001000). When performing a modular addition in normal
representation, we compute d = a+ b− p = 40 + 24− 61 = 3. We change the subtraction
of p by an addition by its two’s complement −p = p̄+ 1: in our example, −p = 61 XOR
127 + 1 = 67. So d = a+ b− p = 40 + 24 + 67 = 131 = 3 mod 64. In CS, e = a+ b− p =
32(0b00100000) + 8(0b0001000) + 16(0b0010000) + 8(0b0001000) + 67(0b1000011) will be
represented by e0 and e1 with e = e0 + e1, e0 = 56(0b0111000) and e1 = 75(0b1001011).
We still have e0 + e1 = 131 = 3 mod 64. We then need to select the correct output. This
is done easily in normal representation by checking the m+ 1-bit of e, with e [m+ 1] = 1
meaning an overflow, so the correct output is a+ b. Instead, if e [m+ 1] = 0, then there is
no overflow and the correct output is a+ b− p. Here a+ b = 64 > p = 61, so we should
choose a+ b−p as our output (and not a+ b). How does one check this in CS form without
adding the carry and the save together?

The answer is we cannot, as the above example shows. Checking m+1 bits of an integer
in CS representation is not enough: the sign of the integer cannot be determined by just



12 Accelerating Isogeny Walks for VDF Evaluation

checking the MSB (Most Significant Bit). Carry propagation from the lower bits can change
the result of our test, as we see in our example: e = 131 = 56(0b0111000) + 75(0b1001011).
The fourth bit creates a carry that will propagate until it reaches the MSB and change
it from 1 to 0, making this integer positive. Hence, correctly guessing the sign requires
adding the carry and the save together, defeating the purpose of using CS representation.

3.2.2 CS modular reduction for addition and subtraction

We propose a method for performing modular reduction in CS representation, as outlined
in Alg. 1. For i ∈ N, this approach takes a (m + i)-bit integer in CS form and reduces
it modulo p to an m-bit integer in CS representation. First, we take the i + 1 most
significant bits of our inputs and add them together with a (i+ 1)-bit ripple-carry adder.
The (i+ 1)-bit output of the previous adder, M , then goes into a lookup table that stores
(M · 2m−1 (mod p)) for M ∈ [0 : 2i+1 − 1]. In the last step, we add M · 2m−1 and the
(m − 1) remaining bits from our input together via a carry-save adder. In this way, we
can guarantee that the output will be m-bit long. In fig. 2, two of the three inputs are
m− 1 bits such that, in the CSA, the operations on the m-bit will always be the addition
of three bits, with two of them set to 0. A full adder has two outputs: the carry and
the save. The save bit will be set by the m-bit of the third input (M · 2m−1), while the
carry bit is always set at 0. This ensures that both the outputs are m-bit long. Fig. 3
shows the architecture diagram of the proposed reduction technique. Using the same
example as Sec.3.2.1, we have e = e0 + e1 = 56(0b0111000) + 75(0b1001011) that we want
to reduce mod p = 61 to 6-bit CS form. First we generate M = 1(0b01) + 2(0b10) = 3, and
S = 3·25 mod 61 = 35. We then add in a CSA: 24(0b11000)+11(0b1011)+35(0b100011) =
22(0b10110) + 48(0b110000) = 70 = 9 mod 61.

Algorithm 1 Modular reduction in CS form
Input: a in CS form a = a0 + a1, where a0 and a1 are m + i-bit integers. i is a small

integer. p is an m-bit prime.
Output: b in CS form: b = b0 + b1 ≡ a mod p with b0, b1 m-bit long integers

1: M ← a0[m+ i− 1 : m− 1] + a1[m+ i− 1 : m− 1] ▷ Using an i-bit adder
2: S ← (M · 2m−1) mod p ▷ Using an LUT table
3: b0, b1 ← a0[m− 1 : 0] + a1[m− 1 : 0] + S ▷ Using a CSA
4: return b0, b1

Our approach can perform a reduction (mod p) as well as a reduction in the bit size of
the two carry-save shares simultaneously. This is very useful in the following two cases:
addition or subtraction, as we are dealing with m+ 1-bit (i = 2) integers in CS form. The
lookup table will be small: 2i+1 − 1 = 23 − 1 = 7 possible values. The second advantage is

Figure 2: The last CSA addition of our modular reduction
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Figure 3: Architecture diagram for a small reduction

that the adder for M will be small too, meaning a very small increase in the critical path.
In the case of i = 2, a 2-bit ripple-carry adder can be done using one full adder and a half
adder.

The other feature of this algorithm is that it allows to set the output size at m-bit long
after a Montgomery reduction. As p is m-bit long, we would want to keep working with
m-bit long integers for the two parts of the CS representation. The output of a square
(it also applies to multiplication) of an integer a in CS form will be a 2m+ 2-bit integer
again in CS form: a2 = (a0 + a1)2 = a2

0 + a2
1 + 2 · a0 · a1, as both a0 and a1 are m-bit

long, so a2
0, a2

1 will be 2m-bit long and 2 · a0 · a1 will be 2m+ 1. The addition of all three
is 2m+ 2-bit long. The Montgomery algorithm [MÖS22] only reduces a 2m+ 2-bit long
integer into a m+ 1-bit integer, our small reduction unit can further reduce it to an m-bit
integer modulo p. Indeed, our reduction unit is very efficient in hardware design as all
three of its components (ripple-carry adder, CSA adder and LUT) are very well suited for
hardware platforms.

Modular addition is done by combining a normal CSA addition and this new reduction
algorithm to reduce each output back into m bits modulo p. This means we don’t use full
modular arithmetic in this design, instead, we allow each share of an integer (c and s in
CS form) to take values in the range [0 : 2m − 1]. So, d = d0 + d1 is in range [0 : 2m+1 − 2].

3.3 Choice of curve and strategy
In the following part, we explain the choice of the elliptic curve form and the isogeny
computation strategy from an attacker’s perspective.

Choice of curve: We first present Table 1 outlining the various choices of elliptic
curves and the analysis cost for a 2-isogeny evaluation in terms of MUL, DIV and ADD
representing the number of multiplications, divisions and additions respectively. In this
work, we assume that one multiplication is equivalent to one squaring. The Table 1
considers three forms of elliptic curves, namely Edwards, Montgomery and Weierstrass. In
[Was08], the author describes the formula for isogeny evaluation in the case of a general
Weierstrass curve. The figures for Montgomery curves are taken from [JAC+22], while the
ones for Edwards are from [KYK+18, MS16] where the authors first use the birational
relation between twisted Edwards curves and Montgomery curves, and then apply the
isogeny evaluation formula for Montgomery curves. From Table 1, we conclude that
Montgomery curves have an advantage over the other curve forms due to the least amount
of multiplication and addition required for a 2-isogeny evaluation. Hence, we choose
Montgomery curves.

Choice of strategy: Implementations of isogeny walks have employed various compu-
tational strategies to improve the efficiency of computing large smooth-degree isogenies.
One widely used strategy, known as an “optimized strategy” (see Sec. B), is always used
in literature [JAC+22, SB23] for computing smooth-degree isogenies due to its lower
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Table 1: Operation count comparison

Curve shape Point doubling
MUL ADD DIV

Edwards-XZ, from [KYK+18, MS16] 3 6 1
Montgomery-XZ, from [JAC+22] 3 2 1
Weierstrass, from [Was08] 6 3 1

complexity of O(T · log(T )) in the case of a 2T -isogeny, when compared to other strategies.
However, in FMPS19 VDF setting, the isogeny is fixed during the setup phase. Fixing the
isogeny also fixes the isogeny walk, which determines the kernels of each small ℓ-isogeny
step along the walk. As a result, all the kernel points for the isogeny walk are available
before the VDF evaluation. These precomputed kernel points can be stored in an accelera-
tor, significantly reducing the amount of computation for isogeny evaluation. With this
approach, the computation becomes an iterative application of an ℓ-isogeny evaluation
on the input point P , using the stored kernel points. The complexity of this “strategy”
for an ℓT -isogeny is O(T ), making it much faster than the O(T · log(T )) complexity of
an optimized strategy. This “precomputation strategy” is only applicable in FMPS19’s
evaluation step or whenever the isogeny is predetermined in the setup phase.

3.4 Choice of isogeny degree

It is well known that a smooth-degree isogeny can be computed as a chain of smaller
degree isogenies, which we refer to as ‘base degree’ isogenies. We choose 4-isogenies as
the base degree for FMPS19’s evaluation step. Below, we explain the various factors that
influenced this choice.

Since FMPS19’s evaluation step involves computing a large known 2T -degree isogeny
with respect to a curve point P , our choice of the base isogeny degree is limited only to
powers of two. For computing smooth higher-degree isogenies, one common approach in
literature [FJP14, EKA22, CH17] is to decompose the large-degree isogeny into multiple
small-degree isogenies and evaluate them instead of a direct large-degree isogeny using
Vélu’s formula [Vél71]. This is because directly computing large degree isogenies (such as
8, 16 or higher) using Vélu’s formula [Vél71] tends to get more expensive with increasing
isogeny degree, for example, going from 4 to 16 and then to 64-isogenies results in an
increase of operations from 10 to 34 and then to 130 multiplications, respectively. Following
Vélu’s formula 5, there are two steps to compute the isogeny evaluation ϕ of a point P (x, y):
first, one must compute all the points in the kernel K of the isogeny, and then the second
step is computing the rational function,

ϕ(x) = x ·
∏

ω∈K∗

x · ω − 1
x− ω

, from [CH17]. (5)

Finding all the kernel points is computationally less demanding for small-degree isogenies
such as 2 or 4. For example, in evaluating a 2-isogeny on a generic elliptic curve, we only
need to compute one kernel element (using a few point-doubling operations) as the other
element is the point at infinity. However, in the case of larger isogenies, computing the
kernel becomes significantly costlier as the number of kernel points increases. In FMPS19
isogeny evaluation, the walk is fixed at the setup phase and hence the kernel points can
be pre-computed. The next step is evaluating the rational function in Eqn. 5, for which
the projective coordinate system (x = X/Z) is used to avoid expensive modular divisions.
The modular division between the numerator and denominator is not performed directly;
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instead, both terms are retained for use in later computations.

ϕ(x) = ϕ(X,Z) =
X ·

∏
ω∈K∗ X · ω − Z

Z ·
∏

ω∈K∗ X − ω · Z
. (6)

The equation above is generic and can evaluate any power-of-two degree isogeny. In the
following, we compare the costs of evaluating an ℓ-degree isogeny where ℓ ∈ {21, 22, 23, 24}.

The computation of numerator requires ℓ− 1 modular multiplications involving the
different points ω and an additional ℓ − 1 modular multiplications to compute the big
product, including the multiplication by X, resulting in a total of 2 · (ℓ− 1) multiplications.
A similar approach can be applied for the denominator, which also requires 2 · (ℓ − 1)
modular multiplications. Thus, one ℓ-isogeny evaluation requires 4 · (ℓ − 1) modular
multiplications, assuming the kernel is precomputed.

The number of multiplications can be optimized further by considering the fact that
the kernel of an isogeny is a group where each point P (x, y) has its inverse Q(x,−y) in
the group, excluding the point at infinity and the point of order two. Thus, for our cost
analysis, we need to consider only (ℓ− 2)/2 distinct points in the kernel. For ℓ = 2, the
cost (number of multiplications) remains unchanged. For ℓ = 2m with m > 1, the cost of
evaluating the numerator or denominator is = (ℓ− 2)/2 + ((ℓ− 2)/2− 1) + 1 + 1 + 2 = ℓ+ 1.
Thus, evaluating ϕ(x) or ℓ-degree isogeny requires 2 · ℓ+ 2 modular multiplications.

From an attacker perspective, the most important metric is not the total number of
operations but the minimum latency required to compute the isogeny evaluation. Based
on Eqn. 6 and the preceding analysis, the minimum latency can be calculated for each
base power-of-two isogeny degree. A key observation is that both the numerator and
the denominator can be computed in parallel due to the absence of data dependency
and the symmetry of their operations. For ℓ > 2, the computation begins by evaluating
all inner products of the rational function in Eqn. 6 between wi (w in the equation)
and X in parallel (excluding redundant elements in the kernel). The resulting products
can then be aggregated using a product tree, followed by a squaring operation. The
product between X and X · wj − Z is computed in parallel, where wj is the kernel point
of order 2. Finally, the result of the squaring operation is multiplied with the resultant
of the product, (X · (X · wj − Z)). The total latency for the evaluation is given by
lat = 1 + log2(ℓ/2) + 1 + 1 = 3 + log2(ℓ/2). The case of ℓ = 2 is trivial with lat = 2
multiplications.

Now, we will consider a positive integer s and a large degree 2s isogeny. Table 2
presents the cost of evaluating this isogeny in number of multiplications (we consider the
cost of one squaring to be equal to one multiplication) to calculate a 2s-isogeny using
different ℓ-isogenies.

Table 2: Number of modular multiplications ‘MUL’ in computing 2s-isogeny using ℓ ∈
{21, 22, 23, 24}-isogenies

Isogeny degree ℓ = 21 ℓ = 22 ℓ = 23 ℓ = 24

Number of isogeny evaluations s/2 s/4 s/6 s/8
Latency per evaluation 2 3 5 6

Latency in MUL in total s 0.75 · s 0.83 · s 0.75 · s

The final choice of 4-isogenies: From Table 2, both ℓ = 4 and ℓ = 16 appear to
be optimal choices, as they show the lowest overall latency. However, 4-isogenies also
provide a significant advantage in terms of area utilization compared to 16-isogenies. As
noted previously, the number of operations scales exponentially with the degree of isogeny.
This exponential growth makes higher-degree isogeny evaluation absurdly costly in our
setting. For this reason, we selected 4-isogenies over 16-isogenies, specifically since the
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latter requires 34 parallel multiplication cores, compared to only 10 for 4-isogenies. Thus,
given that both 4-isogenies and 16-isogenies have the same latency, we opted for 4-isogenies
as more practical. Furthermore, isogeny evaluations for degrees above ℓ = 16 are not
considered because, although higher-degree isogenies might offer a theoretical latency
advantage, our choice of 4-isogenies represents a realistically optimal balance between
efficiency and feasibility, even when considering an attacker with massive resources. Despite
using a base degree of 4-isogeny, synthesizing such a large design remains highly challenging
with current silicon technology. With a higher base degree isogeny, the area cost would
increase exponentially and this exponential increase may lead to multiple issues such as
unavailability of enough bandwidth for transferring all the kernel points to the accelerator,
which will in-turn cap the possible speedup.

Nevertheless, foreseeing a scenario where futuristic advancements in silicon technology
may allow attackers to utilize 64 or even higher base isogenies degrees, we demonstrate
our (technology-agnostic) critical path analysis that can be followed by the future attacker
to also estimate feasibility of these higher-degree isogenies later, in Sec. 5.

Other methods for evaluating isogenies: Recent works, such as [BFLS20, DMPR23]
have proposed more efficient methods for computing large-degree isogenies than Vélu’s
formula 5, but only on non-smooth degree isogeny of degree q. The work [BFLS20] improves
the evaluation complexity of the rational function given by eqn. 5 to Õ(√q) where the
notation Õ does not take into account the logarithmic factors in q > 0, by applying the
baby-step giant-step algorithm. Two key conclusions can be drawn from this work:

• In [BFLS20], the authors compare their square-root Vélu’s formula with the original
Vélu’s formula and conclude that directly using their formula for q < 100-isogenies
does not provide any speedup. Therefore, the original Vélu’s formula remains more
efficient for smaller base degrees.

• Precomputing kernel points does not lead to a significant speedup, as the algorithm’s
complexity is still Õ(√q).

Additionally, we explore the possibility that, can the square root Vélu’s formula be used
to reduce the cost of evaluating powers-of-two base degree isogenies such as (28 > 100) or
higher compared to our aforementioned analysis?

A direct approach using square-root Vélu [BFLS20] for a large degree 2T -isogeny results
in a complexity of Õ(

√
2T ) = Õ(2T/2) multiplications, which is significantly more expensive

than using 4-isogenies (see Table 2). Another approach would be to split the 2T -isogeny
into steps of q-isogeny with q = 2s > 100, and apply the square root Vélu’s [BFLS20]
formula to the q-isogenies. The complexity of q = 2s-isogeny is Õ(2s/2), and we will need
T/s evaluation steps to compute a 2T -isogeny. Therefore, the overall complexity will be in
Õ(T/s · 2s/2) modular multiplications. Let us further refine this cost analysis to compare
it with 4-isogenies. We can consider Õ(√q) = K · √q · (log q)L with K > 2 and L ≥ 0.
We apply this refined formula on the cost analysis of a 2T -isogeny using 2s base degree
isogenies, the cost becomes K · T/s · 2s/2 · (log 2s)L = K/s · 2s/2 · (s · log 2)L · T modular
multiplications. This is superior to the cost of using 4-isogenies as base degree isogenies.

Further, the authors of [DMPR23] use higher dimensional isogenies to compute non-
smooth degree isogenies. This concept of embedding one dimensional isogeny into higher
dimensional isogenies has resulted from the lack of an efficient representation of non-
smooth-degree isogenies. However, we do not use higher dimensional isogenies in the case
of FMPS19 as smooth one-dimensional isogenies can be efficiently represented as a chain
of smaller-degree isogenies.
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4 Hardware architecture of accelerator
In this work, we adopt an attacker’s perspective to evaluate the 2T -degree isogeny in
the least amount of time given specific fixed parameter sizes (p as a 1506-bit prime) and
assuming all the kernel points are precomputed as in FMPS19 [DFMPS19]. A hardware
accelerator is designed to achieve near-maximum computational parallelism to reduce
latency, assuming the attacker has unlimited resources. However, the large-scale design
of our parallel attack accelerator, FAVE, surpasses the synthesizing capabilities of the
EDA tools available in our lab. This does not imply that a well-resourced adversary would
be unable to realize FAVE. To estimate FAVE’s time and area requirements, we use a
secondary, scaled-down architecture called FITER, which is synthesizable with current
EDA tools. We describe the design strategy for arithmetic operations using carry-save
representation and then move on to FAVE and FITER’s design descriptions. The FAVE
hardware acceleration is for the evaluation of FMPS19’s VDF.

4.1 Design of arithmetic in CS representation

This section covers how we perform modular arithmetic in CS representation and how we
designed our modular subtraction. We cannot use multi-bit adders to perform additions in
CS representation (see Sec. 2.4), so instead, additions are done using one-bit full adders
via carry-save adders (CSA). The addition of two large bit numbers a and b in CS (which
is represented by four integers a0, a1, b0, b1 such as a = a0 + a1 and b = b0 + b1) is done
using two arrays of full adders, see fig. 1. This is very efficient in terms of timing since the
critical path of addition consists of only of two full adders. Accumulations can be done in
CS by a large adder tree circuit called Wallace tree [Wal64], or its more compact variant,
the Dadda tree [Dad65]. The Dadda tree minimizes the number of operands needed to
reduce an adder tree but has the same latency as the Wallace tree.

The multiplication, in CS representation, is split into two phases. First, we compute
the partial products using m2 logical-AND gates into a large adder tree. As our inputs
are in CS form, we need to multiply all the parts together, leading to four different adder
trees: c = a · b = a0 · b0 + a0 · b1 + a1 · b0 + a1 · b1. In the second phase, initially, we
reduce individual partial products using four Wallace or Dadda adder trees. A CSA tree
then combines all the reduced partial products in CS representation. The squaring in CS
representation is as in [MÖS22], by using (m+ 1) · (2m+ 3) logical AND gates.

Efficient modular subtraction is more complicated in CS representation. We decided
to apply the classic two’s complement method in the CS representation to compute the
subtraction since those two can be applied at the same time. To turn a CS integer into its
two’s complement we only have to change both the carry and the save. Another advantage
is that the addition by one (in the two’s complement) is not problematic at all as we do
not need any multi-bit adder to compute it. Instead, we can use a simple CSA for it. Let
a, b ∈ N in CS form, to compute c = a− b = a0 + a1− b0− b1 = a0 + a1 + b̄0 + 1 + b̄1 + 1 =
a0 + a1 + b̄0 + b̄1 + 2. The notations b̄0 and b̄1 represent bit-wise negation of b0 and b1.
All the additions here are computed using carry-save adders (CSA).

The main challenge in modular subtraction is managing the reduction. As mentioned
in Sec. 3.2.1, CS representation does not allow determining the sign of a result. When
a subtraction causes an overflow (i.e., b > a), we cannot directly apply the reduction
algorithm 1 as it cannot deal with the overflow. The solution here is to make sure there is
no overflow. We preemptively add 3p before the subtraction to avoid dealing with overflows
and negative numbers: 3p− b > 0, we can safely add with a and then compute a partial
reduction to have both output (c and s) as m bit integers. Thus, our modular subtraction
computes c = a− b mod p = a0 + a1 + b̄0 + b̄1 + 3 · p+ 2, and accumulates all integers
with CSAs.
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4.2 The attack accelerator: FAVE

FAVE’s design aims to achieve the maximum parallel processing possible for the VDF
evaluation step, which in this case is a 4k-degree isogeny evaluation. A very powerful
attacker with such parallel computation capability backed by immense resources will be
able to cheat if the parameters of the VDF are not large enough for an expected delay.
A ‘fast’ accelerator naturally demands that we unroll as many arithmetic operations as
possible within the sequential VDF evaluation algorithm. Most hardware implementations
of isogeny-based post-quantum cryptography in the literature [SB23, KAK+20] use a
serialized core that is only capable of one modular operation at a time. However, we
noticed that the higher-order operation for 4-isogeny evaluation (4-iso-e) requires tens
of modular additions, subtractions, multiplications, and squaring on Fp or Fp2 . This
provides us with the possibility of unrolling these operations. Thus, instead of having an
arithmetic module that computes modular arithmetic operations, we have one module
that computes higher-order elliptic curve arithmetic corresponding to 4-iso-e with unrolled
modular arithmetic. Using carry-save (CS) representation effectively mitigates critical
path issues due to unrolling. Going one step higher in the function hierarchy is not a
viable option due to the serial nature of the computation: the evaluation step requires
us to compute one 4-isogeny evaluation after the other using the output of the previous
evaluation and two new kernel points as inputs. Connecting multiple 4-isogeny evaluation
processors in a series does not decrease the VDF evaluation time, as any reduction in cycle
count is counterbalanced by a corresponding increase in the clock period.

REGISTER bank

Control Unit 4-iso-eInstructions

command

Figure 4: Architecture diagram of FAVE.

FAVE is an instruction set architecture (ISA) equipped with instructions for computing
isogeny evaluation, uploading and downloading data. The high-level block diagram of the
FAVE cryptoprocessor architecture is shown in fig. 4. It consists of three modules: one
register bank which serves as the memory section of the accelerator, one control unit, and
4-iso-e. We translate the large-degree isogeny computation into a sequence of instructions.
When an instruction is sent, the control unit translates that instruction into various control
signals and multiplexers.

We present in fig. 5 the computation flow diagram of the 4-iso-e module. It computes
the image of a point P (XP : ZP ) through a 4-isogeny, following eqn. 6. As explained in
Sec. 3.4, w1 represent the kernel of order 4, thus is squared to take into account the second
kernel point with the same value and w0 represent the kernel point of order 2. In this
module, all modular operands are represented in CS form and computed combinatorially
while trying to minimize the critical path. This design enables the module to execute one
4-isogeny evaluation in one cycle, and the critical path is approximately 3 multiplications.
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Figure 5: Computation flow during one 4-isogeny evaluation

4.3 Modeling FAVE using FITER
FAVE has the highest possible parallelism for 4-isogeny evaluation but demands a sub-
stantial area. Due to the limitations of the commercial EDA tools and the processing
capabilities of the server computers in our lab, we were unable to complete the synthesis
of the full FAVE design. To estimate FAVE’s area and time requirements, we modelled
it using a scaled-down version called FITER. The primary distinction between FITER
and FAVE is that FITER employs modular arithmetic operations as its fundamental
components (fig. 6) instead of computing an entire isogeny evaluation in one cycle like in
FAVE (fig. 4). This reduces the area usage of FITER by a factor of ≈ 10. We elaborate
on its design in the following paragraph. The modular arithmetic components remain the
same in FAVE and FITER.

The main idea behind isogeny VDF evaluation is a long and predefined sequence of
modular operations. This evaluation, given by [FJP14], involves following an isogeny
computing strategy and performing a sequence of elliptic curves arithmetic operations:
4-isogeny evaluation (as we choose ℓ = 4). All of these elliptic curve operations consist
of a sequence of modular additions, subtractions, multiplications, and squaring on Fp or
Fp2 depending on the setup. This configuration is very favorable for an instruction set
architecture (ISA) framework, which we have selected for the FITER design. We have
presented our architecture in fig. 6 that is split into three parts. The first part is the
memory section (REG bank) consisting of registers and multiplexers that store all inputs
and data during the protocol. We choose registers over SRAMs to keep clock cycles as
low as possible during memory access. The second section consists of all the modular
arithmetic units (adder, multiplier, subtraction and modular reduction). All of these
units use CS representation as described in Sec. 4.1. The last part is the control unit
that generates signals during the protocol to control the memory management and the
operations selections from the instruction it has received. The data selection is performed
at the end (right before the data is stored in the REG bank) using a multiplexer. This
processor uses a serialized approach for the arithmetic operations, as it executes only one
modular operation per clock cycle, thus taking multiple clock cycles to perform higher
elliptic curves arithmetic operations. In this design, an instruction refers to a modular
operation (addition, subtraction or multiplication) and is performed in one clock cycle.

4.4 Critical path analysis
Here, we estimate the delay δ of every arithmetic and elliptic curve function in our design,
we aim to present our cost analysis results in technology-independent delay metric. This
metric allows any VDF developer to estimate the potential maximum computation speed
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Figure 6: FITER cryptoprocessor. RED, MUL, MADD and MSUB blocks represent
units that can perform modular reduction, multiplication, modular addition and modular
subtraction in CS representation, respectively.

of the VDF while considering advancements in silicon technology, an example of which
we provide later in Sec. 5. We will denote τF A as the delay of a full adder, τHA as the
delay of a half adder, τAND as the delay of an AND gate, τXOR as the delay of an XOR
gate and τMUX as the delay of a multiplexer. We note that for s ∈ N, f(s) ≈ ⌊ ln s

ln 3/2⌋. We
present the estimation of the delay for the arithmetic operations:

• Integer addition (ADD): δadd ≈ 2 · τF A, see fig. 1.

• Integer subtraction (SUB): δsub ≈ τXOR + 3 · τF A. We perform subtraction
using the 2’s complements method. Which adds an extra XOR operation before
the addition. We need three CSA in succession to add six integers to add together,
leading to an extra delay of three full adders.

• Integer Multiplication (MUL): δmul ≈ τAND + (f(m) + 4) · τF A. The delay is
one AND-gate to compute the partial products. To reduce these partial products
into CS form, we use a large adder tree that has a delay of f(m) full adders and four
extra full adders.

• Integer squaring (SQR): δsqr ≈ τAND + (f(m) + 2) · τF A, from [MÖS22].

• New Reduction of i-bit: δnre ≈ (i + 1) · τF A + τHA + τMUX . The initial adder
used to compute M , increases the critical path i FA and one HA (i-bit adders). The
next step is the LUT table, which is equivalent to a multiplexer in terms of delay.

• Montgomery Reduction: δmre ≈ 3 · τAND + (f(m+ 3) + f(m) + 7) · τF A + τXOR +
τHA + τMUX . From the Montgomery algorithm in [MÖS22], we have calculated the
delay for it.

We now provide details of the estimated delays of various operations in term of full adders
for the two architectures. The delays of FITER’s building blocks comprising of modular
arithmetic (Sec. 4.3) are given below:

• Modular addition (MADD): δM. ADD ≈ 4 · τF A + τHA + τMUX . A modular
addition is composed of one addition (ADD) and one 2-bit new reduction.

• Modular subtraction (MSUB): δM. SUB ≈ 7 · τF A + τXOR + τHA + τMUX . A
modular subtraction is made of one subtraction and one reduction.

• Modular multiplication (MMUL): δM. MUL ≈ 4 · τAND + (f(m+ 3) + 2 · f(m) +
11) · τF A + τXOR + τHA + τMUX .
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Since FAVE’s design uses elliptic curves operations as building blocks (Sec. 4.2), the critical
path of isogeny evaluation, which is the only operation interesting to the attacker, is listed
below:

• 4-iso-e: δ4-iso-e ≈ 12 · τAND + (3 · f(m+ 3) + 6 · f(m) + 40) · τF A + 4 · τXOR + 4 ·
τHA + 4 · τMUX . The critical path, given in fig. 5, is one modular subtraction, three
multiplications and three Montgomery reductions.

5 Results
In this work, we set out to design an attack accelerator with near-maximum parallel
processing capabilities to evaluate a 2T isogeny in the scenario of a VDF. This led us to
design FAVE that achieves this feat, but requires massive amount of resources. Hence, we
introduced a second design FITER to help us estimate FAVE’s area and time requirements.
In this section we first provide a detailed analysis of the advantage of our design choice to
use CS representation for integer arithmetic. Then, we provide synthesis results for the
building blocks of FITER, the challenges we faced and the methods we adopted to overcome
these challenges. Once equipped with these results for FITER, we move on to estimate the
area and timing requirements of FAVE. Finally, we also discuss technology-independent
metrics in order to showcase the relevance of our analysis even in the fast-changing
technological landscape.
CS vs non-redundant representation: In non-redundant or standard representation,
a ripple-carry adder performs a 1506-bit addition using 1506 full adders with critical path
δ1506−add = 1506 · τF A. It is possible to use more sophisticated adder architectures like
carry-lookahead adder (CLA) or carry-select adder to reduce the critical path; however,
their critical path will still be longer than redundant CS representation. For example, a
1506-bit adder with 8-bit CLA has a critical path of ≈ τ8−CLA · 1506

8 while carry-save adder
has a critical path of only τF A. The addition with CS representation is ≈ 1500× faster than
ripple-carry adder-based addition. Multiplication implementations with non-redundant
representation follow a divide-and-conquer approach [ZZO+23] where small multipliers
generate partial products before adding them together. For high performance, the small
multiplications can be computed in parallel by using multiple small multipliers and the
additions of partial products can be performed using CSA and one 3012-bit addition. For an
8-bit small multiplier (the choice of 8-bit is from [ZZO+23]), the critical path of a 1506-bit
multiplier is δ1506−mul ≈ τ8-mul + (log1.5(1506/16)) · τF A + τ3012-add. For the multiplication,
the delay of the non-redundant 8-bit multiplier is hard to estimate due to different possible
design approaches; however, it will always be longer than the delay of partial product
multiplier in CS form, one AND-gate [MÖS22]. The depth of the CSA adder tree (in the
reduction of the partial products) is lower in non-redundant representation compared to
the CS form; thus, it has a lower critical path for adder tree implementation. However, the
large integer (3012-bit) addition at the end of the non-redundant representation negates
any advantages it had, making CS form significantly faster. The 1506-bit multiplier with
CS form can have a speedup of up to ≈ 3000× compared to a non-redundant multiplier
(note that the speedup value might be lower depending on how the design approaches).
Synthesis exploration: Synthesizing large designs using EDA tools is not a trivial
task. In this work, we used Cadence Genus 2019 and targeted a 28nm library for ASIC
synthesis. The relatively old but commonly available 28nm ASIC technology is a baseline
for estimating the area and time of VDF evaluation in more advanced technologies, such
as 3nm, using standard technology scaling principles. We worked on a CPU node equipped
with one AMD EPYC 9754 128-Cores Processor running at 2.25GHz with 512 GB RAM.
Even though we used a very powerful CPU, we faced several problems to synthesize for
large m (e.g., m = 1506) in ASIC. Specifically, the synthesis tool at first could not meet the
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Table 3: Area cost of the arithmetic modules.
Size Critical path (ns)/Area (mm2)
(m) Fp Add. Fp Sub. Fp Sqr. Fp Mult. Fp Red.
40 0.18/0.001 0.22/0.002 0.40/0.033 0.40/0.070 0.70/0.058
89 0.18/0.004 0.22/0.004 0.50/0.133 0.50/0.320 0.76/0.210

1506 0.66/0.0250 0.70/0.0130 1.3/42 1.1/58.6 0.77/44.1

heavy requirements of different elements in the design for large m and failed to complete
the synthesis.

The standard approach for synthesis is to synthesize the design using the default
configuration. By default, the tool tries to unify the different instances of the same module
and ungroup smaller modules (e.g., flattening the design) to achieve better area/timing
results for the synthesis. However, this approach complicates the synthesis operation and
increases the run time significantly and caused it to get stuck while showing no process
after a few days. The standard synthesis approach worked only for small m values while it
failed to generate a synthesized netlist for large m values.

We tried several approaches to find the optimal way to synthesize our design. We
followed a divide-and-conquer approach for synthesis. We first divided a target design into
smaller modules and generated a synthesized netlist for each module separately. Then,
we used the synthesized netlists of these modules to construct and synthesize the target
design. In order to improve the run time, we used read_netlist synthesis command
for reading already synthesized netlist design files for small modules. This enables us to
simplify design elaboration and mapping steps. This approach significantly improved the
run time and enabled the tool to finish the runs.

Besides, we used synthesis commands to minimize “ungrouping” and “unification”
of sub modules. Further, we also used “preserve” command to eliminate any extra
optimization effort to improve the run time. Using all of this, we were able to synthesize
the multiplication, squaring and reduction modules for the largest parameter set m = 1506
which we were previously failing to do so. Finally, we successfully synthesized the entire
FITER architecture.
Area and timing results for FITER: In this paragraph, we provide the implementation
results of the proposed designs and analyze them to derive useful conclusions. The proposed
arithmetic units are coded using Verilog RTL and they are fully parameterized, meaning
that the bit width of the datapath can be set before the implementation. All units are
implemented with a 28nm ASIC library using the Cadence Genus tool. Table 3 shows the
critical path delay and area of different bit sizes (m) reported by the Cadence Genus tool
for every arithmetic unit that is used in both FITER and FAVE. The tool reported that
the FITER design has an area of 99 mm2 and a frequency of 360 MHz for m = 1506.
The overall area of FITER in gate equivalent (GE) units is 71, 048, 509 GE. In FITER,
the area breakdown is 96% for logic and 0.5% for memory.

Area and timing estimation of FAVE using FITER: We now provide estimations
for the FAVE design using FITER as a reference. For the FAVE design, recall from
Sec. 4.4 that the critical path is defined by the 4-iso-e unit and is characterized by
the following: one modular subtractions, three multiplications, and three Montgomery
reductions. Following Sec. 4.4 and Table 3, we calculate the critical path of FAVE for
m = 1506 to be approximately 1 · 0.7 + 3 · 1.1 + 3 · 0.7 = 6.1 ns. We also need to added an
extra 1 ns to take into account the delay of the memory and routing, thus the delay is of 7.1
ns, which translates to a clock frequency of 1/((7.1) · 10−9) = 140 MHz. Following Sec. 4.4
and Table 3, the FAVE design uses four modular subtractions, eight multiplications, two
squaring and ten large reduction units. Thus, based on the the analysis above, the area
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for FAVE is estimated to be,

A = 4 · 0.0130 + 8 · 58.6 + 2 · 42 + 10 · 44.1 = 994 mm2.

Table 4 shows the speed-up of FAVE over FITER. The last column represent the metrics
for FAVE relative to FITER (FAVE/FITER). Overall for elliptic curves operations, the
FAVE architecture is 14 · 0.394 = 5.5× faster than FITER. These results translate into a
throughput of (1/7.1 · 106) = 140, 845 isogenies of degree 4 per milliseconds for FAVE and
(1/(2.8 · 14) · 106) = 25, 510 isogenies of degree 4 per milliseconds for FITER. Both designs
outperform the software implementation of [DFMPS19], which achieves 0.75 2-isogenies per
ms, which is a speedup of 68, 026× for FITER compared to the software implementation.

Table 4: Comparison between FAVE and FITER

Metrics
Design FAVE FITER FAVE/FITER

Critical path 7.1 ns 2.8 ns 0.394
Latency for ec operations 1 cc 14 cc 14

Bandwidth discussion: The accelerator needs 2 · 1506 = 3012 bits per cycle for the
two kernel points associated with each 4-isogeny, given m = 1506. This translates
to a bandwidth requirement of around 53 GB/s, which is well within the capacity of
current-generation HBM3E memory, capable of delivering up to 1.2 TB/s. Furthermore, a
resourceful adversary could potentially integrate multiple memory IPs to enable parallel
access, further mitigating any potential bandwidth limitations.
Technology-agnostic analysis and a use-case for VDF: Table 5 presents the critical
path delay for all the modules presented in Sec. 4 for a field prime, p, of size m = {89, 1506}
(m = 89 is a toy example here). Since we adopt CS representation, a change in the bit size
of p only affects the CS adder tree depth. Thus, as shown in Table 5, increasing the bit size
of p only adds full adders to the critical path of our design involving CS adder trees, and
the critical path of the remaining part of the design is not affected by the bit width of p.
We have noticed a logarithmic relationship between the number of full adders (FA) in the
critical path and the bit size of the prime. In Table 5, we highlight the critical path delay
in the number of full adders on critical path as the technology-agnostic parameter because
this can be used to determine the latency of the VDF over time even with improving
technology.

Table 5: Critical path delay of the different modules.
Module without FA m = 89 (FA) m = 1506 (FA)
MADD τHA + τMUX 4 · τF A 4 · τF A

MSUB τXOR + τHA + τMUX 7 · τF A 7 · τF A

MMUL 4 · τAND + τXOR + τHA + τMUX 32 · τF A 59 · τF A

4-iso-e 12 · τAND + 4 · τXOR + 4 · τHA + 4 · τMUX 130 · τF A 193 · τF A

Let us revisit the example where Alice wants to determine secure VDF parameters in
Sec. 1.1. Alice needs to determine the smallest safe parameter k (w.r.t 4k-isogeny) and
T (w.r.t 2T -isogeny) for a chosen prime, such that the VDF evaluation takes at least t
seconds. We will now show how to calculate k and T based on the results we have obtained
using τFA. The time t for the VDF evaluation is given by:

t = l · τFA · f(k) ⇔ f(k) = t

l · τFA
, (7)
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where l is the number of full adders used in a 4-isogeny evaluation, and f(k) the number of
4-isogeny evaluation in the VDF. Alice followed the FMPS19 VDF and chooses the same
1506-bit prime p. In her analysis, she assumes that the latest 3nm silicon technology will
remain optimal for a few more years, allowing her to estimate the delay of a full adder
τFA = 5 to 10 ps. From Table 5, she finds l ≈ 200 by approximating the other gate-level
elements as full adder equivalents. Alice wants to set the minimum delay for her VDF to be
1 minute, so t = 60 seconds. She can now estimate the security parameter T using T = 2 ·k
and calculates f(k) as f(k) = 60/(200×5×10−12) ≈ 60.0×109, assuming the lower bound
of the full adder delay. From Sec.2.2, we know that f(k) = k, so k ≈ 60.0× 109, and hence
T = 2 · k = (60.0 × 109) · 2 = 120.0 × 109. Alice can set the VDF evaluation step to a
2120×109-degree isogeny. In comparison, using 28nm silicon technology, where the delay
of a full adder typically ranges from 40 to 70 ps, depending on the library, optimization
techniques, and design constraints such as power and area trade-offs. In our accelerator
we found that the delay was 46 ps. Using the same estimation methodology as before, the
VDF parameter T in 28nm would be set to 13.0× 109.

6 Conclusion
Isogeny-based VDF constructions are becoming popular because of their well-studied
cryptographic properties. Apart from conceptual isogeny VDF constructions and their
unoptimized software implementations, no efficient implementation suitable enough for
setting realistic security parameters exists. The time required for a VDF evaluation is
crucial for setting security parameters. An attacker could cheat if they are able to compute
the VDF faster by using immense resources. This paper considered such an attacker
with unbounded resources and aimed to design an attack accelerator that utilizes massive
parallel computational capabilities for VDF evaluation for the isogeny-based VDF in
FMPS19 [DFMPS19]. We proposed two low-latency hardware implementations, FAVE and
FITER of isogeny-based VDFs for ASIC platforms. Both of our designs have been made
using CS representation to greatly increase computational speed for a VDF evaluation.
While FAVE is an extreme accelerator with near-maximum parallel processing capabilities,
FITER is a scaled-down, less parallel accelerator that is synthesizable using present-day
EDA tools. Using synthesis results from FITER, we estimated the area and time required
by the large and unrolled design of FAVE. We further provided comparison parameters
which are independent of changing technologies. We illustrated with an example that using
these results and estimates, it is possible to realistically calculate a lower bound for the
time required to evaluate a 2T -isogeny, thus realizing the goal of our work. We hope that
our work can be used in standardizing isogeny VDFs for real-world applications.
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ℓ-Isogeny Problem is a ‘hard’ problem that states the following, ‘given a prime p and two
supersingular elliptic curves E and E′ over Fp2 , find a path from E to E′ in the ℓ-isogeny
graph’.

A.1 Elliptic curve arithmetic
Computing isogenies requires elliptic curve arithmetic operations such as point doubling
and then the actual rational map corresponding to the ℓ-isogeny using Velu’s formula.
Arithmetic over affine coordinates (x, y) are usually traded with projective coordinates
(X,Y, Z). Efficient explicit formulae often work with the X and Z coordinates.

We discuss optimization techniques with respect to point doubling and algorithms for
different elliptic curves later in Sec. 3.3. Here we briefly mention the expressions for Velu’s
formula on two popularly used elliptic curves: Montgomery and Edwards. Recall that
any separable isogeny can be identified by its kernel. Given the kernel G, Velu’s formula
gives a method to compute the corresponding separable ℓ-isogeny. While discussing cost
estimations, we will denote multiplication by MUL and squaring by SQR.

There exist abundant discussions on efficient isogeny computations over Montgomery
curves, for example in [JAC+22]. Let (x4, y4) ∈ Em be a 4-torsion point with x4 ̸= ±1
that generates the kernel G = ⟨(x4, y4)⟩. Then the curve, Em′ : b′y2 = x3 + a′x2 + x
corresponding to the unique 4-isogeny, ϕ4 : Em → Em′ is such that (a′, b′) is defined by
the equation,

(a′, b′) =
(
4x4

4 − 2,−x4(x2
4 + 1) ·B/2

)
.

The 4-isogeny, ϕ4 : (xP , yP ) → (xϕ4(P ), yϕ4(P )) for a point P = (xP , yP ) /∈ G can be
described by the following two equations:

xϕ4(P ) = −(xPx
2
4 + xP − 2x4)xP (xPx4 − 1)2

(xP − x4)2(2xPx4 − x2
4 − 1)

yϕ4(P ) = yP · −2x2
4(xP x4−1)(x4

P (x2
4+1)−4x3

P (x3
4+x4)+2x2

P (x4
4+5x2

4)−4xP (x3
4+x4)+x2

4+1)
(xP −x4)3(2xP x4−x2

4−1)2 .
In projective XZ-coordinates, we take a point P = (X4 : Y4) of order 4 on EA/C .

First, we compute (A+
24, C24) ∼ (A′ + 2C ′ : 4C ′) for projective parameters A′, C ′ of the

image curve EA′/C′ and constants (K1,K2,K3) ∈ (Fp2)3 such that the 4-isogeny image
curve coefficients as well as the image Q′ of a point Q = (X : Z) can be computed as per
algorithms in [JAC+22]. Both of these computations require a total of 6 MUL + 6 SQR.

In the context of Edwards curves, [KYK+20] describes an optimized 4-isogeny com-
putation in projective Y Z-coordinates. Let (d : 1) ∼ (D : C) in eqn. (4). Then the
curve coefficients D′, C ′ of the image curve E′

ed under the 4-isogeny ϕ4 with respect to the
4-torsion point P = (Y4 : Z4) is given by:

D′ = 8Y4 · Z4 · (Y 2
4 + Z2

4 )
C ′ = (Y4 + Z4)4.

The evaluation of the 4-isogeny ϕ4 via the image (Y ′ : Z ′) of the point P = (Y : Z) on
Eed is given by the relations:

Y ′ = (Z2 · Y 2
4 + Y 2 · Z2

4 ) · Y · Z · (Y4 + Z4)2

Z ′ = (Z2 · Y 2
4 + Y 2 · Z2

4 )4 + 2Y 2 · Z2 · Y4 · Z4 · (Y 2
4 + Z2

4 ).

For faster computations during implementation, the affine coordinates (x, y) are often
replaced by projective coordinates, (X,Y, Z), Z ̸= 0. The forward mapping is given by
(x, y)→ (xZ, yZ,Z) Z ̸= 0 and the reverse mapping by (X,Y, Z)→ (X/Z, Y/Z).
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Figure 7: Computation structure for ϕ = ϕ5 ◦ ϕ4 ◦ ϕ3 ◦ ϕ2 ◦ ϕ1 ◦ ϕ0

B Strategies for computing isogenies

Ever since the SIDH protocol was first proposed, a lot of work has been done to optimize the
computation of smooth large-degree isogenies [FJP14, JAC+22] with different strategies.
Computing a large degree ℓk isogeny ϕ is very inefficient, instead we always split it into
multiple ℓ-isogenies: ϕ = ϕk−1 ◦ · · · ◦ ϕ2 ◦ ϕ1 ◦ ϕ0. An example is provided in fig. 7 for
k = 6 and ℓ = 4, there, computing the isogeny means starting from S0 to reach S5 (thus
having ϕ). To compute any of the ϕi for i ∈ [0 : 5], we must first find one point in the
kernel: [45−i] · Si. In order to get ϕ, we must compute a point in the kernel of all the
different ϕi for i ∈ [0 : 5], which means reaching all the points at the bottom of the graph
in fig. 7. There are two main operations in isogeny “arithmetic”: point quadrupling (or two
point doubling) and 4-isogenies with ℓ = 4. The different strategies refer to the different
sequences of point doubling and 4-isogenies used to compute ϕ. There are strategies that
are more efficient than others, we will present three of them.

The “Basic” strategy: this strategy is straightforward. For a 46-isogeny of a point S0
of order 46, first we start from S0 by computing point doubling (DBL) operations until
we reach a point of order 4, which is [45] · S0. We then use Vélu’s formula for a 4 degree
isogeny on the point of order of 4 to get the isogeny ϕ0 and the image of S0 through the
isogeny: S1 = ϕ0(S0). Then, we repeat this process on S1 but this time we only compute
[44] · S1 here as S1 is now of order 45. We will repeat this process until we reach S5, which
is the image of S0 through a 46-isogeny. fig. 8(a) shows the path to take for this strategy
in the case of a 46-isogeny.

The Full Evaluation strategy: we will mention one where we switch point doubling for
4-isogeny evaluation, 4-iso-e. First, we start by computing R1 = [4] · S0 using two DBL.
We repeat this process until we reach R5 = [4] ·R4 = [45] ·S0. We then proceed to compute
a 4-isogeny using R4 and compute the image of all the elements of the sequence of point
(Ri)i∈[0,4] through this isogeny ϕ0 (with R0 = S0). We repeat this process again by using
a point in the kernel that we already have computed: ϕ0(R4) to generate the next isogeny
ϕ1. The reason is that ϕ0(R4) is a point of order of 4: R4 = [44] · S0 has an order of 8,
so ϕ(R4) has an order of 8− 4 = 4. We repeat this process until we reach the point S5.
This strategy trades two DBL operations for a 4-iso-e compared to the Basic strategy. It
also has another significant advantage: it can be heavily parallelized. All of the isogeny
evaluations through the same isogeny ϕi can be computed in parallel (fig. 8(b)).

The Optimized strategy: first introduced by [FJP14, JAC+22], this strategy (fig. 8(c))



David Jacquemin, Anisha Mukherjee, Ahmet Can Mert, Sujoy Sinha Roy 31

is done by finding an optimum computation strategy. Those strategies, as shown in the
right figure of fig 8, are well-balanced strategies because they tend to have a similar cost of
DBL and 4-iso-e. Those strategies also avoid going through some of the internal points (eg.
ϕ0(R1)) in the isogeny tree which lowers the complexity: every node not reached in the
graph is one less DBL or 4-iso-e. First, a linear representation of the strategy is generated
(usually hard-coded in the implementation). In fig. 8, the representation of an optimum
strategy used is [3, 1, 1, 1, 1]. We first compute T1 = [43] · S0, T2 = [41] · T1, T3 = [41] · T2.
The order of T3 is 4, so we use this point to compute the first isogeny ϕ0. We then evaluate
all the point in (Ti)i∈[0,2] through ϕ0. Like in the Full Evaluation strategy, ϕ0(T2) is
already of order 4, meaning we can already compute ϕ1. This step is repeated to get ϕ2
and to compute S3. Then we calculate T4 = [4] ·S3 and T5 = [4] · T4, and finish computing
ϕ by getting ϕ3 from T4 and ϕ4 from ϕ3(T5). We are able to reach S5 using 14 DBL and 9
4-iso-e, which is lower than with the other strategy: compared to 30 DBL and 5 4-iso-e for
the Basic one; 10 DBL and 15 4-iso-e for the second strategy.

TextText

(a) (b) (c)

Figure 8: (a) “Basic”, (b) Full evaluation and, (c) Optimized isogeny strategies
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