
Optimization Space Learning: A Lightweight, Noniterative
Technique for Compiler Autotuning

Tamim Burgstaller

tamim.burgstaller@ist.tugraz.at

Graz University of Technology

Graz, Austria

Damian Garber

dgarber@ist.tugraz.at

Graz University of Technology

Graz, Austria

Viet-Man Le

vietman.le@ist.tugraz.at

Graz University of Technology

Graz, Austria

Alexander Felfernig

alexander.felfernig@ist.tugraz.at

Graz University of Technology

Graz, Austria

ABSTRACT
Compilers are highly configurable systems. One can influence the

performance of a compiled program by activating and deactivating

selected compiler optimizations. However, automatically finding

well-performing configurations is a challenging task. We consider

expensive iteration, paired with recompilation of the program to

optimize, as one of the main shortcomings of state-of-the-art ap-

proaches. Therefore, we propose Optimization Space Learning, a

lightweight and noniterative technique. It exploits concepts known

from configuration space learning and recommender systems to

discover well-performing compiler configurations. This reduces the

overhead induced by the approach significantly, compared to exist-

ing approaches. The process of finding a well-performing configu-

ration is 800k times faster than with the state-of-the-art techniques.

CCS CONCEPTS
• Software and its engineering → Compilers; • Computing
methodologies → Discrete space search; Heuristic function con-
struction; Instance-based learning.

KEYWORDS
Configuration, Configuration Space Learning, Compiler, Perfor-

mance Optimization, Collaborative Filtering, Compiler Autotuning

ACM Reference Format:
Tamim Burgstaller, Damian Garber, Viet-Man Le, and Alexander Felfernig.

2024. Optimization Space Learning: A Lightweight, Noniterative Technique

for Compiler Autotuning. In 28th ACM International Systems and Software
Product Line Conference (SPLC ’24), September 02–06, 2024, Dommeldange,
Luxembourg. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/

3646548.3672588

1 INTRODUCTION
Modern compilers are among themost sophisticated, but also highly

variable software systems. They are capable of applying a variety of

This work is licensed under a Creative Commons Attribution International

4.0 License.

SPLC ’24, September 02–06, 2024, Dommeldange, Luxembourg
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0593-9/24/09

https://doi.org/10.1145/3646548.3672588

optimizations to a program, in different combinations. A common

compiler, such as GCC
1
, may have more than 200 optimization

options, which can affect the compilation process and the resulting

executable in various ways. GCC offers a set of flags for default

combinations that work well on a large set of different programs.

However, as Gong and Chen [17] state, default options often lead to

suboptimal and sometimes even to the worst performance, thus out-

lining the need for program-specific combinations. Automatically

finding such a combination is commonly referred to as autotuning,

whereas the particular problem of selecting optimization options

to be applied is called the phase selection problem [24].

The unconstrained nature of the combinations of GCC’s opti-

mizations options leads to more than 2
200

(≈ 10
60
) distinct combina-

tions, which makes exhaustive exploration infeasible. Furthermore,

interactions between optimizations can influence their effectiveness.

Therefore, machine learning approaches have been developed as

solutions to the phase selection problem [6]. These can be split into

two groups: Supervised and unsupervised learning approaches. The

former suffer from several problems that canmake them unpractical:

Their effectiveness depends heavily on the quality of the training

data used, and collecting large amounts of training data can be very

costly in practice [11]. The latter are therefore more commonly used

[6], particularly in state-of-the-art approaches [7, 11, 12, 46]. Many

of the unsupervised approaches apply variants of iterative compila-

tion, as proposed by Bodin et al. [10]. In general, this means that

they compile the program with a number of different combinations

in each iteration and keep the best-performing ones. However, this

kind of iteration is runtime-expensive, as it requires compiling the

program more than once. Finding suitable optimization options for

a program can take a long time, sometimes many hours, especially

if the program has long compile times, like large projects often do.

To counteract all of the issues mentioned above, we propose

the novel approach of Optimization Space Learning (OSL), based
on the work of Garber et al. [15] on constraint solvers. It relies

on collaborative filtering [13], which requires a training set of pre-

measured data. For OSL, this training set consist of programs that

have been measured for their performance after being compiled

with a number of combinations of optimization options. Given a

program source code, our approach compares the program with

the programs in the training set to find the most similar one, then

recommends the combination under which that similar program

1
https://gcc.gnu.org/

36

https://orcid.org/0009-0007-4522-8497
https://orcid.org/0009-0005-0993-0911
https://orcid.org/0000-0001-5778-975X
https://orcid.org/0000-0003-0108-3146
https://doi.org/10.1145/3646548.3672588
https://doi.org/10.1145/3646548.3672588
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3646548.3672588
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3646548.3672588&domain=pdf&date_stamp=2024-09-02

SPLC ’24, September 02–06, 2024, Dommeldange, Luxembourg Burgstaller et al.

performed best. The details of the algorithm, as well as additional

methods to improve the recommendation, are the main contribution

of this paper.

As collaborative filtering [13] is a supervised learning technique,

it relies on training data. OSL needs two dimensions of training

data: First, a set of programs, and second, a set of combinations of

optimization options. Each program is compiled with each combina-

tion and its performance is measured to create the matrix we refer

to as training data. This process is expensive and time-consuming,

therefore, the number of programs and combinations should be

minimized. This requires intelligent choice of both to make OSL

performwell: We need programs and combinations of configuration

options with low redundancy. For the programs, we achieve this by

using a common benchmark. For the optimization options, we syn-

thesize data using heuristics from the field of configuration space

learning [3] that allow us to cover many different combinations of

options in very few items. These techniques allow us to counteract

the issues of supervised learning approaches mentioned above.

The remainder of this paper is structured as follows. In Section

2, we give the necessary background information on compiler au-

totuning, its state of the art and current shortcomings, as well as

on collaborative filtering and configuration space learning. The

main contribution, the OSL algorithm, is described in Section 3,

both in its baseline version and with various ideas to improve its

results. To provide OSL with the required dataset, we apply data

synthesis, which is described in Section 4. In Section 5, we evaluate

OSL, compare it to existing algorithms, point out its strengths and

weaknesses, and show that it is a capable competitor to state-of-the

art approaches. Finally, in Sections 7 and 8, we discuss future work

for OSL and related work to the contents of this paper.

2 BACKGROUND
This section provides background knowledge needed to fully un-

derstand the later sections of the paper. First, an introduction to

compiler autotuning is given. Afterwards, the topic of configuration

spaces is explained. The section concludes with a brief overview of

collaborative filtering and nearest neighbor-approaches.

2.1 Compiler Autotuning
Compilers are highly variable software systems. A common com-

piler, such as the aforementioned GCC, offers a large number of

optimization options
2
. Each of these options enables or disables

a certain optimization that can be performed on the source code.

In general, compiler autotuning is about automatically handling

these optimization options. The goal is to provide a combination

of optimization options such that the compiled program’s perfor-

mance is optimized with respect to a certain nonfunctional property,

usually runtime. In the remainder of this paper, we will refer to a

combination of optimization options as a configuration.
According to Ashouri et al. [6], the field of compiler autotuning

handles two major problems: The phase selection problem [24] and

the phase ordering problem [41], both of which have the aim of

producing well-performing programs. The former figures out which

optimizations to apply, the latter identifies the order in which to

2
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

apply optimizations. Within the scope of this work, we will focus

solely on the phase selection problem.

2.1.1 State of the Art. Anaive approach to solve the phase selection

problemwould be to exhaustively try out all possible configurations

and determine which one performs best. This is infeasible due to

the large number of distinct configurations. To solve this issue, a

variety of machine learning approaches have been developed in the

past, many of which are described in an overview by Ashouri et al.

[6]. A reoccurring pattern in most of these approaches is the use

of iteration. Bodin et al. [10] were amongst the earliest to propose

iterative compilation for compiler autotuning. Iterative compilation

can be described as a kind of evolutionary search technique. A con-

figuration of optimization options is chosen as a starting point, and

the program to optimize is compiled on the basis of these options.

Based on the performance of the program, the configuration is

refined. This procedure is then repeated until the result is satisfac-

tory or a termination condition is reached. A myriad of approaches

have been developed over the years that apply this general pattern

[12, 16, 22, 35, 40], which will be discussed in more detail in Sec-

tion 8. A more recent approach to search redirection is COBAYN
by Ashouri et al. [7], which makes use of Bayesian Networks to

reduce the search space and focus on the most promising region.

The current state-of-the-art technique is BOCA, proposed by Chen

et al. [11]. This technique increases the efficiency of compiler au-

totuning by using Bayesian Optimization to determine impactful

optimizations and focus the search on those. The latest emerging

approach is multiple phase learning, proposed by Zhu et al. [46].

Their tool, CompTuner, builds a prediction model for the runtime of

a program with regard to the optimization configuration first, and

then uses this information in the search process. The search itself

is performed using a particle swarm optimization algorithm [25].

The performance improvement comes from not having to compile

and run a program over and over again within the search process,

as the prediction model is used to predict the outcome of this.

2.1.2 Shortcomings in the State of the Art. First and foremost, all of

the aforementioned compiler autotuning techniques deliver good

results in terms of program performance improvement, thus achiev-

ing the major goal of compiler autotuning; more detailed informa-

tion on this is given in Section 5. However, there is a drawback, as

the application of iteration is expensive. This is a major issue for

approaches such as Cole by Hoste and Eeckhout [22]. They state

that on a single machine, their algorithm would run for a full 50

days until it has built a Pareto frontier, which is central to their

approach. The problem is even worse for iterative compilation, as

the program in question has to be compiled, and possibly also run,

once in each iteration - or even several times, depending on the con-

crete approach used. To counteract this issue, supervised learning

methods have been applied [6]. These methods depend on training

data, often in large amounts, which is impractical to collect when

each data point requires the program to be compiled one or several

times. Therefore, supervised learning does not naturally work well

for compiler autotuning.

Two concrete examples of techniques that deal with these issues

are BOCA [11] and CompTuner [46]. Zhu et al. [46] evaluated both

approaches and provide concrete data on the time it takes to find

a configuration for programs in their used benchmark (programs

37

Optimization Space Learning: A Lightweight, Noniterative Technique for Compiler Autotuning SPLC ’24, September 02–06, 2024, Dommeldange, Luxembourg

with 200 - 27, 000 lines of code). Using the compiler GCC, they state

that for BOCA, it takes between 1, 900 and 5, 000 seconds, while

CompTuner takes between 2, 100 and 5, 600 seconds to compute a

desirable configuration. These times are surely acceptable when

compiling a project once, e.g., for a software release. Those will

also most likely be the cases where a customized configuration is

desired. However, most of the time, the compilation process itself

will take just a few seconds, and therefore these techniques are

not reasonably applicable. This applies in particular if one was to

develop a plugin for a compiler, such as GCC, to enable autotuning

directly. Here, many compilation processes would be prolonged to

many times their original length, which is highly inconvenient and

undesirable for the user. Hellsten et al. [21] even describe being

able to use an autotuner during development as the “holy grail” of

the research area.

These issues show that there is a need for a lightweight, non-

iterative approach to compiler autotuning. Our proposed solution

is Optimization Space Learning (OSL), a technique that fulfills these
properties. We describe this technique in detail in Section 3.

2.2 Configuration Spaces
The learning of configuration spaces concerns itself with the issue

of learning the structure and rules of a given configurable system

in order to either propose a valid configuration or perform an

optimization task of some kind (w.r.t. a non-functional property).

The task of finding a representative subset of all possible system

parameter settings is a major task of configuration space learning.
The phase selection problem requires choosing a set of options from

all the available ones [24]. In the context of compiler optimization,

this means to enable or disable each option separately. Therefore,

we view the phase selection problem as a configuration task, based

on the findings of existing work [3, 9, 15].

Definition 2.1 (Configuration Task). A configuration task consists

of three sets (𝑉 , 𝐷,𝐶). The set 𝑉 = {𝑣1, ..., 𝑣𝑛} contains 𝑛 variables,

while in 𝐷 = {𝑑1, ..., 𝑑𝑛}, each element 𝑑𝑖 contains the domain of

the variable 𝑣𝑖 (i.e., the values that may be assigned to 𝑣𝑖). Finally,

the set 𝐶 = {𝑐1, ..., 𝑐𝑚} consists of𝑚 constraints over the variables

in𝑉 . A valid configuration over (𝑉 , 𝐷,𝐶) assigns exactly one value

from the domain 𝑑𝑖 to each variable 𝑣𝑖 in 𝑉 , such that none of the

constraints in 𝐶 is violated.

For the phase selection problem, each optimization option is

represented as a variable in 𝑉 . A boolean domain in 𝐷 represents

whether it is enabled or disabled. The set 𝐶 allows us to define

which optimizations must or must not be applied together. Tech-

nically, any optimization option can be combined with any other,

therefore the set𝐶 is empty by default. However, the application of

an optimization to a program may affect the effectiveness of con-

secutively applied optimizations. Thus,𝐶 could also be used to rule

out bad combinations. These can be identified, for instance, using

the method proposed by Ben Asher et al. [8] to find conflicting

pairs in compiler optimizations.

Definition 2.2 (Configuration Space). Each configuration task is

associated with a configuration space. The configuration space 𝑆 of

a configuration task (𝑉 , 𝐷,𝐶) consists of all of its valid configura-

tions.

Alves Pereira et al. [3] describe a pattern often used for con-

figuration space learning: Sampling, Measuring, Learning. First,

the configuration space is sampled, i.e., a reduced set of configu-

rations is chosen. Then, this set is measured with regard to the

non-functional property of choice. Finally, the gathered informa-

tion is used to learn a model, which should be capable of predicting

the performance of arbitrary configurations. Learning a prediction

model from collected data is called machine learning (ML), and

is a huge research field of its own. In this work, we will only use

collaborative filtering [13], which was originally used in recom-

mender systems and has been found to work well with configurable

systems [4, 14]. It will be explained later in this section. On the

other hand, measuring the performance of a configuration is very

specific to a concrete experiment. It should be mentioned that this

step can be costly, depending on the number of data samples to be

measured. To address this issue, data synthesis can be applied in

order to receive a reduced dataset, whilst losing as little information

as possible. Our concrete approach to sampling and data collection

is explained in Section 5.

2.3 Collaborative Filtering
Collaborative filtering recommendation, as described by Ekstrand

et al. [13], is based on the idea that similar targets will be affected

equally positively or negatively by the same recommended item.

Therefore, it is applicable in any domain which can define similar-

ity in any way. One possibility to define similarity is by using a

distance metric, where a small distance corresponds to high sim-

ilarity. Jain et al. [23] describe Euclidean Distance as a generally

well-performing distance metric for collaborative filtering. Formula

1 describes Euclidean Distance formally, where 𝑥 and 𝑦 are two

𝑛-dimensional vectors, consisting of the components 𝑥1 to 𝑥𝑛 and

𝑦1 to 𝑦𝑛 .

𝐷𝑖𝑠 (𝑥,𝑦) =
𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑥𝑖 |2 (1)

Our definition of similarity, also taken from Jain et al. [23], is de-

scribed in Formula 2. Effectively, this means that a smaller distance

corresponds to a higher similarity.

𝑆𝑖𝑚(𝑥,𝑦) = 1

1 + 𝐷𝑖𝑠 (𝑥,𝑦) (2)

Within the context of compiler autotuning, we use collaborative

filtering to assess the similarity of programs. For this, a program

needs to be broken down into a vector of metrics. On these vectors,

Formula 1 and consequently, Formula 2 can be applied to compute

the similarity of two programs.

We illustrate this using an example in Table 1. The example con-

sists of Program 0 and three other programs, which are in this case

represented as 2-dimensional vectors consisting of their “Halstead”

and “McCabe” metrics. The goal is to find the most similar program

to Program 0. The given vectors are plugged into Formula 1 for the

distance computation and Formula 2 for the similarity computation.

In the example, the highest similarity is 16.7 % between Program

0 and Program 2. Thus, Program 2 is the most similar program to

Program 0. In Section 5, we will give more concrete definitions for

the use of these formulas in the context of compiler autotuning.

38

SPLC ’24, September 02–06, 2024, Dommeldange, Luxembourg Burgstaller et al.

Table 1: Computation of the similarity of programs repre-
sented as vectors of their “Halstead” and “McCabe” metrics.
Comparing Program 0 to three other programs, we find that
Program 2 is the most similar one to it.

Halstead McCabe
Program 0 (𝑃0) 110 10

Program 1 (𝑃1) 111 7

Program 3 (𝑃2) 108 9

Program 2 (𝑃3) 104 13

𝑥,𝑦 𝐷𝑖𝑠 (𝑥,𝑦) 𝑆𝑖𝑚(𝑥,𝑦)
𝑃0, 𝑃1 10 0.091 (9.1 %)

𝑃0, 𝑃2 5 0.167 (16.7 %)

𝑃0, 𝑃3 45 0.022 (2.2 %)

3 OPTIMIZATION SPACE LEARNING
ALGORITHM

The Optimization Space Learning algorithm (OSL) applies near-

est neighbor-based collaborative filtering [13] on synthesized data

[2, 29], which has been obtained using heuristics known from con-

figuration space learning [3, 15]. The existence of a set of programs,

such as a benchmark, to train and test the algorithm on is a precon-

dition, as well as a set of configurations. Each program is compiled

with each configuration, then its performance is measured. This

forms a matrix of performance values. We refer to this as the train-

ing set, and will revisit the origins of the programs and, in particular,

the configurations in Section 4.

3.1 Baseline Algorithm
In this context, the task of collaborative filtering is to discover

programs in the training data that are similar to the target pro-

gram, analyze their performance under the configurations, and

recommend a configuration for the target program based on this

information. For this to work, we rely on the training set to contain

information about the performance of a program-configuration

combinations with respect to the desired optimization targets, e.g.,

program runtime. In search of a good GCC configuration, the al-

gorithm first establishes the similarity of the target to its training

data inputs. The nearest neighbor is found using a suitable similar-

ity metric. Once the nearest neighbor is found, its training results

under all sampled configurations are analyzed. The algorithm then

recommends the best-performing configuration with respect to the

optimization target. It should be mentioned that this is the simplest,

most general version of the OSL algorithm. Further ideas will be

incorporated later in this section.

Figure 1 depicts how OSL selects a configuration for a target pro-

gram.𝐶𝑖 are the synthesized configurations. Each of the benchmark

programs has had its runtime measured under each configuration

throughout the training phase. Benchmark program 2 is the nearest

neighbor of the target by the similarity metric. Therefore, OSL rec-

ommends compiling the target program with the best-performing

configuration of benchmark program 2, which in this case happens

to be 𝐶3.

Table 2: Aggregation of three configurations using an option-
wise majority vote, where 𝑜𝑝𝑡𝑖 are optimization options, 𝑐𝑜𝑛𝑓𝑖
is a configuration, and 𝑐𝑜𝑛𝑓𝑎𝑔𝑔 is the resulting aggregated
configuration.

𝑜𝑝𝑡1 𝑜𝑝𝑡2 𝑜𝑝𝑡3 𝑜𝑝𝑡4 𝑜𝑝𝑡5

𝑐𝑜𝑛𝑓1 1 1 0 1 0

𝑐𝑜𝑛𝑓2 0 1 0 0 1

𝑐𝑜𝑛𝑓3 1 0 1 0 0

𝑐𝑜𝑛𝑓𝑎𝑔𝑔 1 1 0 0 0

3.2 Algorithm Improvement Strategies
Various strategies can be considered to improve the quality of the

recommended configurations, two of which we present in the fol-

lowing. One of them aims to avoid fixation of the model towards

highly specific properties of a single program, the other one en-

sures that all features of a program are equally important to the

recommendation.

3.2.1 Aggregation of Configurations. Aggregation methods can be

used to avoid overfitting on the nearest neighbor’s properties. This

can be applied both to the recommended configuration, by aggrega-

tion of the top configurations of the nearest neighbor program, and

to the nearest neighbor itself, by using several nearest neighbors in-

stead. We refer to these parameters as 𝑎 for the 𝑎 top configurations

and 𝑘 for the 𝑘-nearest neighbors. A straightforward method for the

aggregation of configurations is the option-wise majority vote. This
means that for each optimization option, the final value is which

appears most often for that option in the aggregated configurations.

This kind of majority voting is also exemplified in Table 2.

3.2.2 Normalization and Weighting. Another approach is data nor-
malization and weighting. The problem to approach here is that

when a sample contains features of different scales, then features

with commonly higher values will affect the distance more than fea-

tures with commonly low values. An example of this would be the

lines of code of a program, compared to the number of branching

points; the former will return larger values than the latter, regard-

less of the actual context and their related importance. An approach

for data normalization would be min-max feature scaling, which
maps every feature to a value between 0 and 1, regardless of its

original values. This method defines the normalized value 𝑥 ′ of a
feature 𝑥 as

𝑥 ′ =
𝑥 −𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥 (𝑥) −𝑚𝑖𝑛(𝑥) (3)

where𝑚𝑎𝑥 (𝑥) and𝑚𝑖𝑛(𝑥) are the maximum and minimum for that

feature in the dataset. In addition, features can also be weighted by

their importance for distinguishing nearest neighbors from other

configurations. However, nearest neighbor collaborative filtering

does not provide an implicit measure of feature importance. To

counteract this issue, we measure the distance of each feature of

each sample to the same feature of its nearest neighbors and take

the ratio to the same measurement with random data points. The

smaller this ratio gets, the more important a feature is. We assign

weights to features using a linear scale, starting from 1.0 for themost

important feature. Smaller weights correspond to less important

features. The weighted feature value 𝑥𝑤 for a feature 𝑥 with a

39

Optimization Space Learning: A Lightweight, Noniterative Technique for Compiler Autotuning SPLC ’24, September 02–06, 2024, Dommeldange, Luxembourg

Figure 1: The baseline version of OSL, where 𝐶𝑖 denotes a configuration. The configuration for the target program is the
best-performing configuration of the most similar program in the benchmark.

weight𝑤 , 0 < 𝑤 ≤ 1, is computed by the formula

𝑥𝑤 = 𝑥 ∗𝑤 (4)

thus scaling the values of less important features down.

4 TRAINING DATA SYNTHESIS
Our focus is to keep the training output as small as possible, while

maintaining high quality in terms of compiler performance. The

need for a small set is given by the intention to keep this approach

as lightweight as possible, as collecting and measuring each sample

is a costly procedure [43].

For the programs used in the training set, a benchmark is a suit-

able choice. It incorporates all the requirements in its definition: It

is a small set of programs which aim to represent as many aspects

of the programming language or environment as possible. Concern-

ing the configurations to compile programs, the solution is slightly

less straightforward. We apply data synthesis to generate a set of

configurations that fits our needs, i.e., covers much of the configu-

ration space in very few configurations and minimizes redundancy.

In configuration space learning, the synthesis would be performed

by sampling the configuration space, i.e., taking a small subset of

all possible configurations. Sampling heuristics, as described by

Alves Pereira et al. [3] and Garber et al. [15], are one way to achieve

this. In the following, we describe sampling heuristics used in our

evaluation settings.

4.1 Random Sampling
In unconstrained settings, random sampling is a reasonable choice

for data synthesis. It provides a fast and easy way to reduce the

search space. More sophisticated random sampling approaches can

even give statistical guarantees that at least one configuration of a

specific quality is contained in a sample, given it is sufficiently large

- see Oh et al. [32]. However, there is a caveat to all this, which is the

precondition that the randomization works uniformly. This leads

to a problem for constrained settings, as common randomization

methods would not lead to uniform results by default. This problem

has been addressed by, among others, Plazar et al. [36]. However, it

is not of specific interest for the unconstrained setting of compiler

autotuning. Issues arise in other aspects of the data synthesis: A ran-

dom approach would need a higher number of samples to achieve

the same quality of representation as a well-constructed heuristic,

which could lead to scalability issues [29]. Nevertheless, random

sampling is not a bad choice, in particular for first experiments.

4.2 Heuristic-based Sampling
In the context of compiler autotuning, the aim is to learn the struc-

ture of a configuration space. Therefore, heuristic sampling might

be beneficial by providing a more balanced representation of the en-

tire configuration space. Heuristics that have such properties have

been studied by Alves Pereira et al. [3] and Garber et al. [15]. In

particular the latter state that the Feature Coverage Heuristic (FCH)
yields promising results on small, constrained configuration spaces,

despite some scalability issues with larger ones. The general idea

of the 𝑡-wise FCH is to cover every combination of 𝑡 options in at

least one sampled configuration, while also using as few samples

as possible to achieve this 𝑡-wise coverage. For example, with 𝑡 = 2,

the heuristic would guarantee that every possible pair of optimiza-

tion options appears in at least one sample. These t-wise sampling
approaches have also been researched in the field of combinatorial

testing, for instance, by Oh et al. [33]. Moreover, tools from this

field, such as ACTS [45], can generate these covering arrays also for
configuration space learning purposes. To do so, it applies the IPOG

algorithm [26]. A particularly interesting property of this heuristic

is that it attempts to represent the correlation between the options.

This is important, as Ben Asher et al. [8] show that conflicting

pairs of optimization options are significant to the performance

of a configuration in compiler autotuning. Therefore, we consider

FCH as a good choice for a compiler autotuning setting.

40

SPLC ’24, September 02–06, 2024, Dommeldange, Luxembourg Burgstaller et al.

5 EVALUATION
We evaluate the performance of OSL with the GCC compiler and a

benchmark of C programs [37]. Moreover, we also compare its re-

sults to the current state-of-the-art compiler autotuning techniques.

As an optimization target, we decided to go for program runtime,

as this is a common choice in this research area [6], although OSL

would also support any other measurable optimization target.

5.1 Experimental Setup and Prerequisites
The evaluation of OSL is against the -O3 default optimization con-

figuration of GCC. The -O3 flag activates almost all optimizations

available in the compiler
3
. We evaluate OSL using GCC version

11.4.0 on a Xubuntu-22.04 machine with an Intel i7 processor. No

multithreading or multiprocessing was applied. The implementa-

tion of OSL is written in Python and makes use of the NumPy [20]

and scikit-learn [34] libraries. For our measurements, we used perf-

stat
4
. As the training set, we used the PolyBench/C Benchmark [37],

which contains 30 programs written in C and is further referred to

as PolyBench. This benchmark has also been used by many others,

including Chen et al. [11] and Zhu et al. [46], against whom we

compare our results. In order to measure the similarity of two pro-

grams, we use source code metrics, such as McCabe’s Cyclomatic

Complexity [28], Halstead Complexity [19], or simple counts like

the number of times a certain keyword occurs. We use a total of

66 different metrics in our evaluation. To obtain these metrics, we

use the CQMetrics tool by Spinellis et al. [38]. For the complete

list of the available metrics, we refer to their documentation
5
. In

this evaluation, only the first 66 of the available metrics in the list

were used. These are the ones we consider source code metrics, as

opposed to code style metrics. We consider the former to be a more

sensible choice than the latter, as we are working with benchmark

source code. The tool generates a vector of metrics from each pro-

gram’s source code, which can then be further processed. We use

Euclidean Distance to define the distance between two vectors. The

corresponding formulas for distance and similarity are Formula 1

and 2, respectively.

We apply Leave-one-out cross-validation [44], i.e., we test each of

the programs in PolyBench on a model trained with the remaining

29. This way, we evaluate various settings of OSL. For sampling the

configuration space, we evaluated FCH with 2-, 3-, and 4-wise cov-

erage. The number of configurations sampled with each heuristic

is described in Table 3; this number is determined by the ACTS tool

[45] which was used for generating these configurations. Further-

more, we evaluated both the baseline technique and the algorithm

improvements presented in section 3. We tested different values

for 𝑘-nearest neighbors and aggregation of the 𝑎 best-performing

configurations to obtain the recommended configuration.

Tomeasure our algorithm’s performance, we compute the speedup
compared to the GCC default -O3. The speedup is the ratio of the

performance with the default to the performance with our algo-

rithm. The corresponding formula is

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑡𝐺𝐶𝐶

𝑡𝑂𝑆𝐿
(5)

3
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

4
https://perf.wiki.kernel.org/index.php/Main_Page

5
https://github.com/dspinellis/cqmetrics/blob/master/metrics.md

Table 3: Number of configurations sampled with different
sampling heuristics. The last column denotes the time it took
tomeasure the performance of all programs of the PolyBench
benchmark with these configurations.

Heuristic #configurations training time

FCH, 2-wise 20 201 min

FCH, 3-wise 89 848 min

FCH, 4-wise 319 3,023 min

Table 4: The performance of OSL without and with the de-
scribed improvement strategies. The speedups are in com-
parison with GCC, and computed using Formula 5.

Strategy #Speedups Average Median

Baseline 12/30 0.944 0.968

Normalization 11/30 0.983 0.982

Normalization and Weights 15/30 0.994 0.998

where 𝑡𝐺𝐶𝐶 is the performance using the -O3 default and 𝑡𝑂𝑆𝐿 is

the performance with OSL. In the case of this particular evaluation,

the 𝑡 variables are measured program runtimes.

5.2 Results
First, we need a data synthesis heuristic to base our evaluation

on. After testing FCH 2-, 3-, and 4-wise, we find that the data

synthesized using the 3-wise version of the heuristic gives the best

results. Additionally, parameters for𝑘 and𝑎 are needed; after testing

all combinations of 𝑘 ∈ 1, 3, 5 and 𝑎 ∈ 1, 3, 5, 10, we discovered that

the parametrization 𝑘 = 5 and 𝑎 = 5 delivers good results with the

synthesized data. This is the basic setting for all results presented

in this section.

To start with, we verify that the algorithm improvements de-

scribed in Section 3. The results are shown in Table 4. Indeed,

normalizing and weighting the features helped to improve the aver-

age speedup by 5%. Moreover, it increased the number of programs

from the benchmark that were sped up from 12 to 15. As normaliz-

ing and weighting the features of the synthesized data improved

the performance, this will be the version of OSL that we will use

for the remainder of this section.

As stated above, this setting of OSL managed to speed up 15 out

of 30 programs from PolyBench, with an average speedup of 0.994.

From these 15 programs, 12 had a speedup of less than 1.0 - 1.1, 2

were sped up by a factor of 1.1 - 1.2, and one program, namely floyd-
warshall, was sped up by a factor of 1.42. These findings are also

depicted in the histogram in Figure 2. Another interesting number

is the time the algorithm takes to compute the configurations that

lead to the speedups mentioned above. On average, this takes 0.0044

seconds for each program.

The results clearly show that OSL is a technique capable of

finding configurations that outperform GCC’s -O3 configuration
significantly. It is also clearly visible that this works on a wide

variety of different programs. Finally, the average speedup of 0.994

shows that the risk of receiving a particularly bad configuration

41

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://perf.wiki.kernel.org/index.php/Main_Page
https://github.com/dspinellis/cqmetrics/blob/master/metrics.md

Optimization Space Learning: A Lightweight, Noniterative Technique for Compiler Autotuning SPLC ’24, September 02–06, 2024, Dommeldange, Luxembourg

Figure 2: Histogram of the speedups achieved with OSL; the
speedup factor is on the x-axis, the number of programs on
the y-axis.

Table 5: The list of programs from PolyBench that was used
for the comparison with other approaches.

ID Program #SLOC Description

P1 correlation 248 Correlation computation

P2 covariance 218 Covariance computation

P3 symm 231 Symmetric matrix-multiply

P4 2mm 252 2 matrix multiplications

P5 3mm 267 3 matrix multiplications

P6 cholesky 212 Cholesky decomposition

P7 lu 210 LU decomposition

P8 nussinov 569 DP for sequence alignment

P9 heat-3d 211 Heat equation (3D data dom.)

P10 jacobi-2d 200 2-D Jacobi stencil comp.

from OSL is reasonably small, as the algorithm can keep up with

-O3 on average.

5.3 Comparison to other Approaches
In line with the evaluations performed by Chen et al. [11] for BOCA

and by Zhu et al. [46] for CompTuner, we will only test the 10

programs listed in Table 5. They state that it has been demonstrated

by Chen et al. [12] that despite tuning, the execution time of the

remaining programs cannot be noticeably affected by compiler

optimizations.

We compare the performance of OSL to existing approaches.

For this purpose, we use a table by Zhu et al. [46], adapt it and

extend it with the entries for OSL; this is Table 6. In that table, the

speedup factor of the program runtime is denoted, or a “-” if no

speedup was achieved. Furthermore, the values in brackets next

to the speedup denote the time (in seconds) the algorithm needed

to compute the configuration which achieves this speedup. The

tested version of OSL was the same as above, using FCH 3-wise

for configuration space learning and had the parameters 𝑘 = 5

and 𝑎 = 5 for aggregation, as we found it to perform well on the

given task. The compared techniques are CompTuner [46], BOCA

and TPE [11], random iterative compilation (RIO) [12], genetic

algorithms (GA) [16], OpenTuner [5], and COBAYN [7]. In Table 6,

it is visible that OSL is not the best approach in terms of speedup.

BOCA and especially CompTuner are often capable of discovering

better configurations. However, OSL achieves a speedup on 5 out

of 10 programs, which only comes short to CompTuner and BOCA

and is better than all remaining approaches, except for COBAYN,

which also speeds up 5 programs. Also, it achieves the best speedup

of all compared approaches on the program P9 by a significant

margin.

Therefore, we can confidently state that the overall performance

of OSL in terms of speedup is reasonable. However, the crucial

advantage of OSL over all existing approaches is the time it takes

to find such a well-performing configuration. Whenever it finds

one, it is the fastest technique to do so; on average, it takes OSL a

mere 0.0044 seconds. For BOCA, the average time is 3,571 seconds,

and for CompTuner, it is 3,555 seconds. Thus, OSL is 811,590 times

faster than BOCA and 807,954 times faster than CompTuner. This

is a significant improvement compared to the existing approaches

and thus, addresses the main shortcoming mentioned in Section 2.

Most importantly, it demonstrates that OSL is indeed a lightweight

and fast technique.

6 THREATS TO VALIDITY
The results of OSL in terms of program speedup are not outstand-

ing, although reasonable. Other existing approaches, such as Comp-

Tuner and BOCA, achieve better speedups, as shown in Table 6.

In particular, the former is capabale of speeding up every single

one of the 10 programs used for the comparison, while OSL fails to

do so for 5 of them. This is an expected result, since OSL manages

to improve the performance of exactly half of the programs in the

benchmark, and the average and median speedup are almost exactly

1.0. Both of these are shown in Table 4. In the same context, looking

at Figure 2, it is visible that there are more programs that have

been improved by less than 10 percent than programs whose per-

formance has degraded by that margin. In terms of strong outliers

However, it must not be missed that these matching results are also

an indicator of soundness for the evaluation.

We regard system-specific behaviour as another threat to the

validity of our results. Despite using a device with a common hard-

ware architecture and operating system, the exact behaviour of a

program at runtime still heavily depends on the underlying system.

On this note, we also did not take any hardware-specific optimiza-

tions into account. GCC is capable of optimizing code machine-

dependently for almost 60 different architectures
6
. Taking these

options into account could massively change the outcome of an

evaluation.

Furthermore, our approach depends on the training data, espe-

cially on the chosen programs. In our case, this was the PolyBench

benchmark, but with a different benchmark or another set of pro-

grams, the results could change. A particular threat in this context

would be that the programs of the training set are very similar to

each other in terms of which compiler optimizations lead to good

performance. This would benefit OSL due to the nearest neighbor

approach it applies. In addition, the size of the benchmark could

also have an effect on the resulting speedups. However, this comes

6
https://gcc.gnu.org/onlinedocs/gcc/Submodel-Options.html

42

https://gcc.gnu.org/onlinedocs/gcc/Submodel-Options.html

SPLC ’24, September 02–06, 2024, Dommeldange, Luxembourg Burgstaller et al.

Table 6: Speedup of the programs in Table 5 compared to -O3 on GCC, and the time it took to compute a configuration that
achieves such a speedup. The upper half of the table contains the speedup of runtime of the compiled program in comparison
with GCC. The lower half contains the time it took each technique to compute a configuration which achieves that speedup.
The best speedup achieved and the smallest time to achieve a speedup are marked in bold font, while “-” denotes that no
speedup was achieved.

Technique ID Speedup ID Speedup ID Speedup ID Speedup ID Speedup

OSL 1.000 1.043 - - -

CompTuner 1.077 1.080 1.042 1.071 1.041

BOCA - - 1.075 1.071 1.046
TPE P1 - P2 - P3 1.046 P4 1.072 P5 -

RIO - - 1.042 - -

GA - - - - 1.041

OpenTuner - - - 1.075 -

COBAYN - 1.080 1.068 1.079 -

OSL 1.010 1.016 - 1.109 -

CompTuner 1.013 1.073 1.029 1.025 1.055
BOCA 1.014 - 1.030 1.028 1.055
TPE P6 - P7 - P8 - P9 1.027 P10 -

RIO 1.016 - 1.029 - -

GA 1.013 - - 1.025 -

OpenTuner - 1.075 1.033 - -

COBAYN 1.064 - - 1.028 -

Technique ID Time [s] ID Time [s] ID Time [s] ID Time [s] ID Time [s]

OSL 0.0043 0.0039 - - -

CompTuner 3107.00 4067.00 2573.00 3720.00 2976.00
BOCA - - 1923.00 3726.00 3639.00

TPE P1 - P2 - P3 3775.00 P4 3112.00 P5 -

RIO - - 4172.00 - -

GA - - - - 3160.00

OpenTuner - - - 4691.00 -

COBAYN - 4727.00 1092.00 3102.00 -

OSL 0.0039 0.0048 - 0.0040 -

CompTuner 4726.00 5549.00 3661.00 2976.00 2192.00
BOCA 4971.00 - 4082.00 3420.00 3026.00

TPE P6 - P7 - P8 - P9 1.027 (2637) P10 -

RIO 3018.00 - 3264.00 - -

GA 3862.00 - - 3684.00 -

OpenTuner - 6792.00 4970.00 - -

COBAYN 3109.00 - - 4116.00 -

at the cost of higher training times than there already are. At some

point, the benchmark could be too large to be a feasible training

set for the algorithm.

7 FUTUREWORK
First and foremost, the results of OSL in terms of program speedup

need to be improved. We achieve very good algorithm runtime and

reasonable results. However, the state-of-the-art approaches can

achieve even better results. The gap between these approaches and

OSL needs to be closed. This could be done, for example, by using

a different, possible larger benchmark as the training set.

Another interesting option is to allow for multi-target optimiza-

tion, as, for instance, Cole [22] does. This does not require complex

changes in the algorithm. Instead, it is sufficient to collect the

required data in the training phase and search for the best perfor-

mance in a multi-dimensional space, which is not fundamentally

different from finding it in a one-dimensional space. It is required

that the length of a vector in this multi-dimensional space is defined.

By using nontrivial definitions there, it is also possible to assign

different weights to the targets. This way, it is feasible to optimize

a program to achieve good performance in multiple fields, such as

runtime and energy consumption.

Furthermore, the similarity metrics and distance function could

also be altered in order to achieve better results. The CQMetrics tool

already provides a variety of different metrics. These metrics should

be evaluated one by one, to find out which metrics are significant

for program similarity in the context of compiler autotuning. A

lot of research has already been done in this area, as the overview

43

Optimization Space Learning: A Lightweight, Noniterative Technique for Compiler Autotuning SPLC ’24, September 02–06, 2024, Dommeldange, Luxembourg

by Walenstein et al. [42] shows. This includes machine learning

approaches, such as graph neural networks proposed by Nair et al.

[31]. Including these techniques into our approach could lead to

significant performance improvements.

Alternatively to this idea, other recommender andmachine learn-

ing techniques can be investigated. An improvement for the data

set could be achieved through matrix factorization. This would help

to increase the size of the training data set, and thus, improve the

performance of collaborative filtering, without significantly increas-

ing the effort to retrieve it. A more radical change would be the use

of an entirely different machine learning approach. Examples of

these would be Neural Networks or Support Vector Machines.

In addition, it is a goal to eliminate the need for a real benchmark,

as this is a reliance on real-world data and therefore a threat to

the generality of our approach. A possible solution is to synthesize

these programs, similar to the configurations. There exists some

prior work, such as by Gulwani [18], to base this research on. How-

ever, a slight diversion from those methods will be required, as their

main focus is on turning user requirements into programs. Instead,

the task of program synthesis can be seen as a kind of configuration

task either, thus enabling the application of known methods and

heuristics. One could then treat a generated program as a configu-

ration in the configuration space of the programming language. A

similar, yet different idea would be using techniques known from

the field of automata learning, for instance as implemented in the

AALpy library [30]. This library provides implementations of var-

ious heuristics, including coverage heuristics, as oracles for state

machines. Translating the essence of a programming language into

such an automaton would allow to make use of these heuristics to

generate programs. In conclusion, implementing such an approach

could lead to a leap in terms of the performance of OSL, and at the

same time improve its generality.

Finally, we think OSL should be applied in a compiler, which is

feasible because of its short runtime. This could be an entirely new

compiler for a language, or an existing one like GCC, in the form

of a plugin.

8 RELATEDWORK
Compiler autotuning has been widely researched over the course

of the past two decades. Bodin et al. [10] were amongst the earliest

to propose iterative compilation for compiler autotuning. Another

early approach wasOptimization Space Exploration (OSE), presented
by Triantafyllis et al. [40]. An effective, but expensive approach is

Random Iterative Optimization, as proposed by Chen et al. [12],

which combines random search with iterative compilation. Hoste

and Eeckhout developed a technique called Cole, which could han-

dle multi-target optimizations (e.g., for runtime and compile time)

through the iterative creation of a Pareto frontier [22] based on the

SPEA2 algorithm [47], which works similar to a Genetic Algorithm.

Genetic Algorithms themselves have also been applied, for instance

by Garciarena and Santana [16]. In this context, they learn and

exploit interactions between optimization options. This knowledge

is then used to direct the search, using estimation of distribution

algorithms, in order to improve the results. The irace package for
automatic algorithm configuration [27] uses iterated racing, which

is based on a similar idea, and this has also been applied to compiler

autotuning by Pérez Cáceres et al. [35]. A different approach was

proposed by Ashouri et al., namely COBAYN, which makes use of

Bayesian Networks [7]. Among the most modern, state-of-the-art

techniques is BOCA by Chen et al. [11]. It implements Bayesian

Optimization together with Random Forests. The latest develop-

ment is multiple-phase learning, which was proposed by Zhu et

al. [46]. For reasons of brevity, we left out many other works that

would have fit in this section. However, many of those have been

described in an overview by Ashouri et al. [6], to which we refer

for further information on the advances in the field of compiler

autotuning.

There exists additional work on autotuning in general. BaCO

by Hellsten et al. [21] is an example of a compiler optimization

framework in a slightly different setting. Their focus is on porta-

bility between different hardware (CPU, GPU, and FPGA) instead

of program optimization alone. In addition to all these, compiler

optimizations themselves have been extensively studied. A recent

example is a study of the function inlining optimization by Theodor-

idis et al. [39].

Regarding the research field of configuration spaces, our main

interest lies in synthesis methods, such as the ones described by

Alves Pereira et al. [2], or the more sophisticated approach by Oh et

al. [32]. However, due to the unconstrained nature of this particular

case and the relatively small configuration space (compared to

colossal spaces described by Acher et al. [1]), our focus lies on

coverage-based approaches. In particular, we are interested in 𝑡-

wise sampling approaches, like provided by Oh et al. [33]. Within

the scope of this work, we used the ACTS tool, as presented by Yu

et al. [45], to compute 2- and 3-way coverage of the optimization

space. Sampling heuristics linked with feature coverage have been

proposed by Alves Pereira et al. [3] and Garber et al. [15].

9 CONCLUSION
In this paper, we presented Optimization Space Learning (OSL), a

lightweight and non-iterative technique for compiler autotuning.

OSL is based on two well-known techniques: Configuration Space

Learning and Collaborative Filtering. The former helps to reduce

the search space, while the latter is used to find a well-performing

configuration for a new program. We show that OSL is capable

of finding a configuration that outperforms the GCC default -O3,
and achieves this in orders of magnitude faster than comparable

existing techniques. Although some of the other approaches can

find configurations with a higher speedup in some cases, the perfor-

mance of OSL can be considered reasonable. Therefore, it is a good

alternative to existing approaches, particularly in settings where

small algorithm runtimes are required, such as a compiler plugin.

OPEN SCIENCE
The dataset and the Python scripts we used to evaluate our ap-

proach can be obtained from https://github.com/AIG-ist-tugraz/

OptimizationSpaceLearning.

ACKNOWLEDGMENTS
The work presented in this paper has been conducted within the

scope of the OpenSpace project funded by the Austrian research

promotion agency (FO999891127).

44

https://github.com/AIG-ist-tugraz/OptimizationSpaceLearning
https://github.com/AIG-ist-tugraz/OptimizationSpaceLearning

SPLC ’24, September 02–06, 2024, Dommeldange, Luxembourg Burgstaller et al.

REFERENCES
[1] Mathieu Acher, Hugo Martin, Juliana Alves Pereira, Arnaud Blouin, Jean-Marc

Jézéquel, Djamel Eddine Khelladi, Luc Lesoil, and Olivier Barais. 2019. Learn-
ing very large configuration spaces: What matters for Linux kernel sizes. Ph. D.
Dissertation. Inria Rennes-Bretagne Atlantique.

[2] Juliana Alves Pereira, Mathieu Acher, Hugo Martin, and Jean-Marc Jézéquel.

2020. Sampling effect on performance prediction of configurable systems: A case

study. In Proceedings of the ACM/SPEC International Conference on Performance
Engineering. 277–288.

[3] Juliana Alves Pereira, Mathieu Acher, Hugo Martin, Jean-Marc Jézéquel, Goetz

Botterweck, and Anthony Ventresque. 2021. Learning software configuration

spaces: A systematic literature review. Journal of Systems and Software 182 (2021),
111044.

[4] Juliana Alves Pereira, Pawel Matuszyk, Sebastian Krieter, Myra Spiliopoulou,

and Gunter Saake. 2016. A feature-based personalized recommender system for

product-line configuration. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Generative Programming: Concepts and Experiences. 120–131.

[5] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley,

Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe. 2014. Opentuner:

An extensible framework for program autotuning. In Proceedings of the 23rd
international conference on Parallel architectures and compilation. 303–316.

[6] Amir H Ashouri, William Killian, John Cavazos, Gianluca Palermo, and Cristina

Silvano. 2018. A survey on compiler autotuning using machine learning. ACM
Computing Surveys (CSUR) 51, 5 (2018), 1–42.

[7] Amir Hossein Ashouri, Giovanni Mariani, Gianluca Palermo, Eunjung Park, John

Cavazos, and Cristina Silvano. 2016. Cobayn: Compiler autotuning framework us-

ing bayesian networks. ACM Transactions on Architecture and Code Optimization
(TACO) 13, 2 (2016), 1–25.

[8] Yosi Ben Asher, Gadi Haber, and Esti Stein. 2017. A Study of Conflicting Pairs of

Compiler Optimizations. 52–58. https://doi.org/10.1109/MCSoC.2017.31

[9] David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. 2005. Automated

reasoning on feature models. In International Conference on Advanced Information
Systems Engineering. Springer, 491–503.

[10] François Bodin, Toru Kisuki, Peter Knijnenburg, Mike O’Boyle, and Erven Rohou.

1998. Iterative compilation in a non-linear optimisation space. InWorkshop on
profile and feedback-directed compilation.

[11] Junjie Chen, Ningxin Xu, Peiqi Chen, and Hongyu Zhang. 2021. Efficient com-

piler autotuning via bayesian optimization. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 1198–1209.

[12] Yang Chen, Shuangde Fang, Yuanjie Huang, Lieven Eeckhout, Grigori Fursin,

Olivier Temam, and Chengyong Wu. 2012. Deconstructing iterative optimization.

ACM Transactions on Architecture and Code Optimization (TACO) 9, 3 (2012),

1–30.

[13] Michael D Ekstrand, John T Riedl, Joseph A Konstan, et al. 2011. Collaborative

filtering recommender systems. Foundations and Trends® in Human–Computer
Interaction 4, 2 (2011), 81–173.

[14] Andreas Falkner, Alexander Felfernig, and Albert Haag. 2011. Recommendation

technologies for configurable products. Ai Magazine 32, 3 (2011), 99–108.
[15] Damian Garber, Tamim Burgstaller, Alexander Felfernig, Viet-Man Le, Sebastian

Lubos, Trang Tran, and Seda Polat-Erdeniz. 2023. Collaborative Recommendation

of Search Heuristics For Constraint Solvers. In ConfWS’23: 25th International
Workshop on Configuration, Sep 6–7, 2023, Málaga, Spain.

[16] Unai Garciarena and Roberto Santana. 2016. Evolutionary optimization of com-

piler flag selection by learning and exploiting flags interactions. In Proceedings
of the 2016 on Genetic and Evolutionary Computation Conference Companion.
1159–1166.

[17] Jingzhi Gong and Tao Chen. 2024. Deep Configuration Performance Learning: A

Systematic Survey and Taxonomy. arXiv preprint arXiv:2403.03322 (2024).
[18] Sumit Gulwani. 2010. Dimensions in program synthesis. In Proceedings of the 12th

international ACM SIGPLAN symposium on Principles and practice of declarative
programming. 13–24.

[19] Maurice H Halstead. 1977. Elements of Software Science (Operating and program-
ming systems series). Elsevier Science Inc.

[20] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,

Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,

Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van

Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe,

Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren

Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020.

Array programming with NumPy. Nature 585, 7825 (Sept. 2020), 357–362. https:

//doi.org/10.1038/s41586-020-2649-2

[21] Erik Orm Hellsten, Artur Souza, Johannes Lenfers, Rubens Lacouture, Olivia Hsu,

Adel Ejjeh, Fredrik Kjolstad, Michel Steuwer, Kunle Olukotun, and Luigi Nardi.

2023. Baco: A fast and portable Bayesian compiler optimization framework. In

Proceedings of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 4. 19–42.

[22] Kenneth Hoste and Lieven Eeckhout. 2008. Cole: compiler optimization level

exploration. In Proceedings of the 6th annual IEEE/ACM international symposium
on Code generation and optimization. 165–174.

[23] Gourav Jain, Tripti Mahara, and Kuldeep Narayan Tripathi. 2020. A survey of

similarity measures for collaborative filtering-based recommender system. In

Soft Computing: Theories and Applications: Proceedings of SoCTA 2018. Springer,
343–352.

[24] Michael R Jantz and Prasad A Kulkarni. 2013. Performance potential of optimiza-

tion phase selection during dynamic JIT compilation. In Proceedings of the 9th
ACM SIGPLAN/SIGOPS international conference on Virtual execution environments.
131–142.

[25] James Kennedy and Russell Eberhart. 1995. Particle swarm optimization. In

Proceedings of ICNN’95-international conference on neural networks, Vol. 4. IEEE,
1942–1948.

[26] Yu Lei, Raghu Kacker, D Richard Kuhn, Vadim Okun, and James Lawrence. 2007.

IPOG: A general strategy for t-way software testing. In 14th Annual IEEE Interna-
tional Conference and Workshops on the Engineering of Computer-Based Systems
(ECBS’07). IEEE, 549–556.

[27] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Birat-

tari, and Thomas Stützle. 2016. The irace package: Iterated racing for automatic

algorithm configuration. Operations Research Perspectives 3 (2016), 43–58.
[28] Thomas J McCabe. 1976. A complexity measure. IEEE Transactions on software

Engineering 4 (1976), 308–320.

[29] Kuldeep S Meel. 2022. Counting, Sampling, and Synthesis: The Quest for Scala-

bility.. In IJCAI. 5816–5820.
[30] Edi Muškardin, Bernhard Aichernig, Ingo Pill, Andrea Pferscher, and Martin

Tappler. 2022. AALpy: an active automata learning library. Innovations in Systems
and Software Engineering 18 (03 2022), 1–10. https://doi.org/10.1007/s11334-022-

00449-3

[31] Aravind Nair, Avijit Roy, and Karl Meinke. 2020. funcgnn: A graph neural network

approach to program similarity. In Proceedings of the 14th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM). 1–11.

[32] Jeho Oh, Don Batory, and Rubén Heradio. 2023. Finding near-optimal configura-

tions in colossal spaces with statistical guarantees. ACM Transactions on Software
Engineering and Methodology 33, 1 (2023), 1–36.

[33] Jeho Oh, Paul Gazzillo, and Don Batory. 2019. T-Wise Coverage by Uniform

Sampling. In Proceedings of the 23rd International Systems and Software Product
Line Conference - Volume A (Paris, France) (SPLC ’19). Association for Computing

Machinery, New York, NY, USA, 84–87. https://doi.org/10.1145/3336294.3342359

[34] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-

napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine

Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[35] Leslie Pérez Cáceres, Federico Pagnozzi, Alberto Franzin, and Thomas Stützle.

2018. Automatic configuration of GCC using irace. In Artificial Evolution: 13th
International Conference, Évolution Artificielle, EA 2017, Paris, France, October
25–27, 2017, Revised Selected Papers 13. Springer, 202–216.

[36] Quentin Plazar, Mathieu Acher, Gilles Perrouin, Xavier Devroey, and Maxime

Cordy. 2019. Uniform sampling of sat solutions for configurable systems: Are

we there yet?. In 2019 12th IEEE Conference on Software Testing, Validation and
Verification (ICST). IEEE, 240–251.

[37] Louis-Noel Pouchet. 2012. Polybench: The polyhedral benchmark suite. http:

//www.cs.ucla.edu/~pouchet/software/polybench/. Accessed: 2024.

[38] Diomidis Spinellis, Panos Louridas, and Maria Kechagia. 2016. The Evolution of

C Programming Practices: A Study of the Unix Operating System 1973–2015. In

ICSE ’16: Proceedings of the 38th International Conference on Software Engineering
(Austin, TX, USA), Willem Visser and Laurie Williams (Eds.). Association for

Computing Machinery, New York, 748–759. https://doi.org/10.1145/2884781.

2884799

[39] Theodoros Theodoridis, Tobias Grosser, and Zhendong Su. 2022. Understanding

and exploiting optimal function inlining. In Proceedings of the 27th ACM Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems. 977–989.

[40] Spyridon Triantafyllis, Manish Vachharajani, Neil Vachharajani, and David I Au-

gust. 2003. Compiler optimization-space exploration. In International Symposium
on Code Generation and Optimization, 2003. CGO 2003. IEEE, 204–215.

[41] Steven R. Vegdahl. 1982. Phase Coupling and Constant Generation in an Op-

timizing Microcode Compiler. SIGMICRO Newsl. 13, 4 (oct 1982), 125–133.

https://doi.org/10.1145/1014194.800942

[42] Andrew Walenstein, Mohammad El-Ramly, James R Cordy, William S Evans,

Kiarash Mahdavi, Markus Pizka, Ganesan Ramalingam, and Jürgen Wolff von Gu-

denberg. 2007. Similarity in programs. In Dagstuhl Seminar Proceedings. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik.

[43] YaqingWang, Quanming Yao, James T Kwok, and Lionel M Ni. 2020. Generalizing

from a few examples: A survey on few-shot learning. ACM computing surveys
(csur) 53, 3 (2020), 1–34.

45

https://doi.org/10.1109/MCSoC.2017.31
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1007/s11334-022-00449-3
https://doi.org/10.1007/s11334-022-00449-3
https://doi.org/10.1145/3336294.3342359
http://www.cs.ucla.edu/~pouchet/software/polybench/
http://www.cs.ucla.edu/~pouchet/software/polybench/
https://doi.org/10.1145/2884781.2884799
https://doi.org/10.1145/2884781.2884799
https://doi.org/10.1145/1014194.800942

Optimization Space Learning: A Lightweight, Noniterative Technique for Compiler Autotuning SPLC ’24, September 02–06, 2024, Dommeldange, Luxembourg

[44] Tzu-Tsung Wong. 2015. Performance evaluation of classification algorithms

by k-fold and leave-one-out cross validation. Pattern recognition 48, 9 (2015),

2839–2846.

[45] L. Yu, Y. Lei, R. Kacker, and D. Kuhn. 2013. Acts: A combinatorial test generation

tool. In 6th IEEE International Conference on Software Testing, Verification and
Validation. IEEE, Luxembourg, 370–375.

[46] Mingxuan Zhu, Dan Hao, and Junjie Chen. 2024. Compiler Autotuning through

Multiple Phase Learning. ACM Trans. Softw. Eng. Methodol. (jan 2024). https:

//doi.org/10.1145/3640330 Just Accepted.

[47] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. 2001. SPEA2: Improving the

strength Pareto evolutionary algorithm. TIK report 103 (2001).

46

https://doi.org/10.1145/3640330
https://doi.org/10.1145/3640330

	Abstract
	1 Introduction
	2 Background
	2.1 Compiler Autotuning
	2.2 Configuration Spaces
	2.3 Collaborative Filtering

	3 Optimization Space Learning Algorithm
	3.1 Baseline Algorithm
	3.2 Algorithm Improvement Strategies

	4 Training Data Synthesis
	4.1 Random Sampling
	4.2 Heuristic-based Sampling

	5 Evaluation
	5.1 Experimental Setup and Prerequisites
	5.2 Results
	5.3 Comparison to other Approaches

	6 Threats to Validity
	7 Future Work
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

