
On Threat Model Repair

Roderick Bloem1, Sebastian Chlup2, Dejan Ničković2(B),
and Christoph Schmittner2

1 Graz University of Technology, Graz, Austria
2 AIT Austrian Institute of Technology,Seibersdorf, Austria

dejan.nickovic@ait.ac.at

Abstract. Security by construction is an approach to system develop-
ment where security considerations are integrated into the design pro-
cess from the very beginning. Threat modeling helps identify poten-
tial threats and vulnerabilities early in the system development process,
assess the risk associated with each threat, and design appropriate mit-
igation actions. In this paper, we study threat model repair, a method
to automatically suggest structural changes to the design that mitigate
threats discovered by the analysis. This helps find a secure design early
in the process by allowing a user to quickly iterate over different design
variants.

1 Introduction

With the advent of the Internet of Things (IoT), communication-based tech-
nologies have penetrated many new industrial domains. The Vehicle-to-X (V2X)
paradigm in the automotive sector, intelligent energy distribution systems in the
smart grids, and the distribution of manufacturing supply chains are just a few
examples of modern applications where communication plays a key role. This
tremendous increase in connectivity comes at a price of expanded cybersecurity
threats. Hence, there is an imminent need to take security-related decisions into
account when developing new applications from the earliest stages of design.
This urgency has been widely recognized by the researchers and the practition-
ers. It has led to initiatives such as the upcoming ISO/SAE 21434 standard that
calls for a more principled security assessment of designs.

Security by construction is a methodology that brings security considera-
tions to the forefront of the system development process. There are multiple
complementary facets to this holistic approach to security. In the early stages of
the system design, security requirements are identified and documented and the
system architecture is modeled to minimize attack surfaces. In parallel, threat
modeling is used to identify potential threats and their associated risks. Sys-
tem development is accompanied by the assessments of the code, using static
and dynamic verification and analysis tools to detect potential security issues.
Security testing, which includes fuzz testing and penetration testing, becomes
an integral part of the continuous integration and deployment (CI/CD) pipeline.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
T. Margaria and B. Steffen (Eds.): ISoLA 2024, LNCS 15222, pp. 302–310, 2025.
https://doi.org/10.1007/978-3-031-75387-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-75387-9_18&domain=pdf
https://doi.org/10.1007/978-3-031-75387-9_18


On Threat Model Repair 303

Threat modeling and analysis are important pieces of the security by con-
struction methodology, especially in the earliest phases of the development pro-
cess. Threat modeling consists in collecting and formalizing rules that describe
potential threats and vulnerabilities originating from documented threats, stan-
dards, and domain expert knowledge. We can use threat analysis to detect secu-
rity issues in the system architecture with respect to the modeled threats. Today,
there is a landscape of methods and tools that provide threat modeling and anal-
ysis capabilities. Microsoft Threat Modelling Tool (MTMT) [McR14] has been
developed as a visual system structure modeling tool as part of their Security
Development Lifecycle. THREATGET [SSK19,CT21] is another threat model-
ing, analysis and risk management tool that has been mainly used in the auto-
motive domain.

A designer can use vulnerabilities that were identified with threat analysis to
update the system architecture in a way that addresses and mitigates the found
threats. We have introduced threat model repair as a technique to automatically
suggest possible changes to the system model to resolve and remove detected
threats. The designer can take these suggestions to update the actual design
according to their preferences. In a previous paper [TEK+23], we formalized the
problem for the case that the repair is limited to the security attributes associ-
ated to the system architecture components and communication links. A possible
suggestion would then be to change a communication link from unencrypted to
encrypted.

Changes to attributes values severely limit the type of repairs that we can
suggest, thus missing useful ways to change the design. For instance, suppose we
have a security domain protected by a firewall. Suppose that there is a security
threat that consists of many components inside the security domain all commu-
nicating to an outside component X over an unencrypted connection. A possible
solution to this problem, which can be realized by changing attributes, is to
redesign all communication links to be encrypted. However, it may be much
cheaper to move component X into the protected domain, obviating the need
for encryption hardware at all components. This, however, is a structural change
that is not in the scope of our previous method.

In this paper, we present a procedure for threat model repair that uses opti-
mization modulo theories to propose changes in the system architecture that
remove potential threats. We consider more general system repairs that include
the addition of components or restructuring of the system architecture. We also
discuss how to avoid trivial changes to the architecture that achieve security by
sacrificing functionality.

2 System and Threat Models

Threat analysis and repair is typically performed on a system model. System
architectures can be modeled at different levels of abstraction and we adopt the
model used by the THREATGET tool. We will recapitulate the formalization
and refer to [TEK+23] for details. A system model S consists of:



304 R. Bloem et al.

– a set E of elements: an element e ∈ E is a typed logical or physical component.
Software and databases are two examples of logical components, while sensors,
actuators, ECUs and firewalls are physical components.

– a set C ⊆ E × E of connectors: a connector c ∈ C is communication link
between a source and a target elements that has a type such as wired or
wireless. We refer to elements and connectors jointly as components.

– a set A of security assets with an associated relation holds: an asset a ∈ A
describes components that need to be protected from malicious access. Every
element and connector hold multiple assets. Similarly, each asset can be held
by multiple elements and connectors.

– a set B ⊆ 2E of security boundaries: a boundary b ∈ B describes a separation
between logically, physically, or legally separated system elements.

– a set Δ of attributes. Every attribute has an associated domain and a relation
v that associates an attribute value to a component. An attribute δ ∈ Δ is
a property that is associated to system elements, connectors and/or assets.
Attributes assume a value from their associated domain. We denote by v(x, δ)
the value of the attribute δ associated to the component x. Finally, we assign
a cost of changing v(x, δ) to another attribute value v′(x, δ). The cost of
leaving a value unchanged is zero; all pther costs are strictly positive.

Example 1. We use a simplified remote locking and unlocking mechanism in a
car, depicted in Fig. 1, to illustrate the system model. It consists of a key fob
that communicates in a wireless fashion with the car’s lock/unlock system.

Fig. 1. Example modeled in THREATGET

This system is connected to an ECU (Electronic Control Unit) (ECU2 in
Fig. 1) that implements the actual locking and unlocking functionality. After
processing the signal, the user gets feedback (e.g., a flashing light). The ECU
realizing the lock/unlock feature is connected (via a CAN bus) to an ECU that
controls the Infotainment System. The Infotainment System interacts with the
driver via a USB port. Components (elements) and connectors in the model have
attributes associated to them, and these attributes have values. For instance, the
connector between the Key Fob and the Lock/Unlock system has an Encryp-
tion attribute set to false, meaning that no encryption is used to communicate
between these two elements. The model has a total of 6 elements and 8 connec-
tors, without any assets or security boundaries.

Threats are modelled as rules, where we use t to denote a threat rule and we
group multiple threat rules into a set T , which we call the threat database. We



On Threat Model Repair 305

adopt threat logic, a simplified variant of a predicate logic, inspired by THREAT-
GET’s own language to express threats. The predicates in the threat logic are
defined over variables and constants that refer to the different components of
the system model.

Example 2. Consider a threat rule that describes a vulnerability consisting of a
path in the system model from a USB interface to a cloud such that the cloud
does not use encryption. This rule is formalized as follows. Note the quantifica-
tion over elements and connectors, the use of source and target to describe the
source and the target of a connector, the use of type for the type of the element,
and the use of encryption to describe the encryption attribute of the element e2

with value None:

∃e1, e2, c.(source(c) = e1 ∧ target(c) = e2 ∧ type(e2) = USB Interface ∧
type(e2) = Cloud ∧ encryption(e2) = None.

3 Threat Model Analysis and Repair

3.1 Threat Analysis

Threat analysis is a process for identifying components and other assets in a
system that are prone to security risks and hence need to be protected in terms
of confidentiality, integrity, availability, and other security-related properties. In
the context of this paper, we formalize threat analysis as follows.

Threat Analysis

Given a system model S and a threat database T , find all the threat rules
T ′ ⊆ T to which S is vulnerable.

With the formal representations of the system architecture model and the
threat rules, threat analysis can be naturally stated as a satisfiability (SAT)
problem, i.e., the problem of determining if a propositional formula can be eval-
uated to true by some assignment of truth values of its variables. We encode the
entire system model with a Boolean formula ϕS and each threat rule t ∈ T with
a formula ϕt that formulates the presence of the threat t. Checking the presence
or the absence of the threat t in the system model S then consists of applying the
SAT solver to the closed formula ϕS∧¬ϕt. (Note the negation of the treat formu-
las to denote absence of a threat). The sat (unsat) verdict indicates the absence
(presence, resp.) of the threat t in the system model S and consequently, the set
T ′ of threats to which S is vulnerable is given as {t ∈ T | solve(ϕS∧ϕt) = unsat}.
If the system is correct, the formula varphiŜ ∧ ∧

t∈T ¬ϕt is satisfied.

3.2 Threat Repair

Threat repair is a mechanism that automatically alters a system model in a
way that ensures the absence of threats, and hence has more ambitious goals



306 R. Bloem et al.

compared to the (passive) threat analysis process. There are many ways that
a system model can be adapted to fulfil a certain goal, and we are typically
interested in a repair that is optimal with respect to some notion of cost. We
formalize the optimal threat repair as follows.

Optimal Threat Repair

Given a system model S and a threat database T such that there is at
least one threat rule t ∈ T satisfied by S, find another system model S′

derived from S such that no rule in T satisfies S′ and that the change
from S to S′ incurs a minimal cost.

We distinguish between two flavors of threat repair – security attribute repair
and full model repair. A security attribute repair consists of changing the value
of one or more security attributes of the system model, without altering its
structure. A full model repair may also include new components, remove existing
components, or change components such as security boundaries.

The repair problem is more ambitious than its analysis counterpart and in
this case SAT solving is not sufficient. Instead we use maximum satisfiability
(MaxSAT) to formulate our repair problem. MaxSAT generalizes SAT by solving
the problem of finding an assignment to the variables of the formula that satisfies
the maximum number of clauses. In the weighted variant of MaxSAT, a cost is
associated to each clause and the goal to minimize the total sum of individual
costs rather then to just count the number of satisfied clauses. Weighted MaxSAT
is formalized with the following definition.

Definition 1 (Weighted MaxSMT [BP14]). Given an SMT formula F, a
set of SMT formulas F1, . . . , Fm and a set of real-valued costs cost1, . . . , costm,
the weighted MaxSMT problem consists in finding a subset K ⊆ {1, . . . , m}
such that: (1) F ∧ ∧

k∈K Fk is satisfiable, and (2) the total cost
∑

k∈K costk is
minimized.

(Note the assumption that the solver minimizes, which makes the formulation
below simpler.)

In the case of the security attribute repair, we partition our system archi-
tecture model formula ϕS into a set of formulas {ϕŜ , ψ1, . . . , ψm}, where ϕŜ

describes the structure of the system architecture model and every ψi encodes
a security attribute assignment in the model. We associate costs to each ψi

according to the change it suggests: If ψi encodes an assignment of value v′

to attribute a of component c and its original value is v, it carries the cost of
changing a from v to v′ (which is 0 if v = v′). Following the notation from Def-
inition 1, we have that F = ϕŜ ∧ ∧

t∈T ¬ϕt and Fi = ψi. We call a clause in F
or a formula ¬ϕt a hard assertion and the Fi are soft assertions. Intuitively, the
solution max solve(ϕŜ ∧ ∧

t∈T ¬ϕt, {ψ1, . . . , ψm}) gives one of three verdicts:

– sat verdict with total cost 0: this means that the system model has no threats
and no repair is required (recall that repairs have positive costs),



On Threat Model Repair 307

– sat verdict with total cost k: this means that the system model has threats
that can be removed by changing security attributes. The total cost of the
required changes is k. In addition, the solver gives a suggestion for the new
security attribute values that are required to remove the threats,

– unsat verdict: the system model cannot be repaired by changing security
attributes and structural changes are required to remove the threats.

3.3 Full System Repair

While the security attributes of the system components cover a large scope of
security-relevant properties, there are threats that require more structural adap-
tations of the system architecture. Therefore, there is a need to complement
security attributes repair with more general model repair approaches. However,
the ability of arbitrary addition and removal of system components, communi-
cation links and security boundaries may render the repair process too power-
ful, resulting in uninteresting repairs. For instance, removing all communication
links between components can be a system repair that effectively removes the
vast majority of potential threats, but results in a worthless system without
functionality.

Meaningless repair strategies can be minimized by restricting the space of
possible repairs to a set of templates that are commonly used by security engi-
neers. In this paper, we have conducted a preliminary study to identify a library
of useful repair templates in the context of the system and the threat model
used. We identify three key structural repairs that each aim to separate trusted
from untrusted components in different ways. Together, these repairs account
for many of the structural repairs we see in practice.

Firewalling. The first structural repair consists in separating the trusted (safety-
critical) part of the system from the untrusted one (e.g. entertainment system)
with a firewall or a secure gateway. For example, safety-critical elements in a
car that are connected to a Controller Area Network (CAN) bus cannot be
done just by setting appropriate security attributes. The real protection of the
safety-critical components would require their separation from the untrusted
part of the system.

Introducing a security boundary. Another structural repair consists in sep-
arating the trusted and safety-critical part of the system from the untrusted
one by using a security boundary. We note that a security boundary is a more
abstract concept that is used during the design phase of the system, and that
its realization is typically done using concrete mechanisms protecting the
interface between the trusted and the untrusted parts of the system.

Network segregation. Segregation is another structural repair strategy that
allows to effectively protect system assets, improve network efficiency, and
meet compliance requirements. For example, a car system in which both
safety-critical components such as braking and steering are connected to the
same bus as non-critical components such as lighting, infotainment, or win-
dows. In this case, we can introduce multiple CAN buses to segregate the



308 R. Bloem et al.

network according to the criticality of a component. We can use a secure
gateway to connect and manage communication between these two parts of
the system.

Fig. 2. Structural repair of the Key Fob model.

Example 3. The key fob model from Fig. 1 contains security weaknesses that can
be mitigated by changing security attributes as well as weaknesses that require
a structural change. As an example of the first type, consider unprotected (non-
encrypted) wireless communication channels. We can mitigate this threat by
setting an appropriate security attribute to the wireless connectors.

As an example of a problem that cannot be solved using attribute changes
alone, consider the infotainment system, which allows outside (potentially mali-
cious) users to access ECU1 through the USB interface. The non-critical ECU1,
in turn, is directly connected to ECU2, which implements the safety-critical
lock/unlock functionality, This presents a security risk that is identified by
THREATGET. This issue can be addressed by (1) adding a firewall between
the two ECUs, or (2) isolating all safety-critical components (including the fire-
wall) within a secure boundary, as shown in Fig. 2.

We adapt the weighted MaxSAT formulation of the threat repair strategy
from Sect. 3.2 to allow full system repair. Suppose that a structural aspect of
the system is described by a formula φori. We implement the formulation of the
repair in two steps.

1. We augment the φori by one or more formulas φalt,1, . . . , φalt,n that describe
alternative structural implementations.

2. We encode n mutually exclusive soft constraints ψ1 through ψn, where ψi

describes that repair i is selected. Each soft constraint carries the cost that
is associated with the structural change.

We illustrate this idea on the example of adding a firewall between a trusted
and an untrusted ECU. Consider the following threat rule t, which states that
there is a threat if an untrusted ECU is directly connected to a trusted ECU
and both are inside the same security boundaries:

∃e1, e2, c. source(c) = e1 ∧ target(c) = e2 ∧
type(e1) = ECU ∧ type(e2) = ECU ∧
trusted(e1) ∧ ¬trusted(e2) ∧ ∀b ∈ B : e1 ∈ B ↔ e2 ∈ B.



On Threat Model Repair 309

Consider the formula ϕori that encodes the connection c3 from Fig. 1, and
the formula ϕalt that encodes the associated firewall repair:

ϕori = source(c3) = ECU1 ∧ target(c3) = ECU2 ∧
type(ECU1) = ECU ∧ type(ECU2) = ECU ∧
¬trusted(ECU1) ∧ trusted(ECU2), and

ϕalt = source(c31) = ECU1 ∧ target(c) = Firewall ∧
source(c32) = Firewall ∧ target(c32) = ECU2 ∧
type(ECU1) = ECU ∧ type(ECU2) = ECU ∧ type(Firewall) = Firewall
¬trusted(ECU1) ∧ trusted(ECU2).

We can now adapt the system model by replacing the hard assertion ϕori, with
two soft assertions ψ1 = ϕori ∧ ¬ϕalt (no repair formula) and ψ2 = ¬ϕori ∧ ϕalt

(repaired formula), with associated costs c1 = 0 and c2 = k. We note that
the non-repaired and the repaired formulas are mutually exclusive and that by
associating a positive cost to ψ2, we will use it only in the presence of threat.
The other repair templates can be encoded as weighted MaxSAT problems in a
similar fashion.

We can encode a third option of introducing a security boundary in much the
same way, with a different associated cost. The MaxSMT solver will then select
the less costly option. Note that the possible repairs can be listed in a relatively
general manner. For instance, we can introduce a new security boundary B
without describing which elements are inside the region and which are outside.
A security boundary can be introduced by adding a variable for each element
that encodes whether the element is inside or outside the boundary. If the SMT
solver decides to use the boundary to repair the threat, it can only do so by
placing the trusted ECU on one side of the boundary and the untrusted ECU on
the other. In all other cases, the threat will remain. The other elements will be
placed by the solver in some way that respects any further threat formulas. Thus,
it is not necessary to enumerate the possible placements of the components with
respect to the boundary.

4 Conclusions

The problem of threat model repair can be effectively solved with the combina-
tion of traditional artificial intelligence (AI) and optimization techniques, namely
SAT and weighted MaxSAT. There are however limitations to the general repair
of system models. First, we showed that there are restrictions on the meaningful
structural changes. Second, threat model repair is applied during (early) concept
design phase. Hence, any repair at this level of abstraction must be followed and
implemented in the real system. Consequently, our threat model repair approach
shall be used as an engineering decision-making support and not a push-button
solution.

Acknowledgements. This work received funding from the AIMS5.0 project regard-
ing AI based transformation of the European Industry. The AIMS5.0 project is sup-
ported by the Chips Joint Undertaking and its members, including the top-up funding



310 R. Bloem et al.

by National Funding Authorities from involved countries under grant agreement no.
101112089.

References

[BP14] Bjørner, N.S., Phan, A.D.: νz - maximal satisfaction with Z3. In: Temur Kutsia
and Andrei Voronkov, editors, 6th International Symposium on Symbolic Compu-
tation in Software Science, SCSS 2014, Gammarth, La Marsa, Tunisia, December
7-8, 2014, vol. 30 of EPiC Series in Computing, pp 1–9. EasyChair (2014)

[CT21] Christl, K., Tarrach, T.: The analysis approach of threatget. CoRR,
abs/2107.09986 (2021)

[McR14] McRee, R.: Microsoft threat modeling tool 2014: identify and mitigate. Inf.
Syst. Secur. Assoc. J. 39–42 (2014)

[SSK19] El Sadany, M., Schmittner, C., Kastner, W.: Assuring compliance with protec-
tion profiles with threatget. In: Alexander B. Romanovsky, Elena Troubitsyna, Ilir
Gashi, Erwin Schoitsch, and Friedemann Bitsch, editors, Computer Safety, Relia-
bility, and Security - SAFECOMP 2019 Workshops, ASSURE, DECSoS, SASSUR,
STRIVE, and WAISE, Turku, Finland, September 10, 2019, Proceedings, volume
11699 of Lecture Notes in Computer Science, pp. 62–73. Springer (2019). https://
doi.org/10.1007/978-3-030-26250-1 5

[TEK+23] Tarrach, T., Ebrahimi, M., König, S., Schmittner, C., Bloem, R., Nickovic,
D.: Attribute repair for threat prevention. In: Jérémie Guiochet, Stefano Tonetta,
and Friedemann Bitsch, editors, Computer Safety, Reliability, and Security - 42nd
International Conference, SAFECOMP 2023, Toulouse, France, September 20-22,
2023, Proceedings, vol. 14181 of Lecture Notes in Computer Science, pp. 135–148.
Springer (2023). https://doi.org/10.1007/978-3-031-40923-3 11

https://doi.org/10.1007/978-3-030-26250-1_5
https://doi.org/10.1007/978-3-030-26250-1_5
https://doi.org/10.1007/978-3-031-40923-3_11

	On Threat Model Repair
	1 Introduction
	2 System and Threat Models
	3 Threat Model Analysis and Repair
	3.1 Threat Analysis
	3.2 Threat Repair
	3.3 Full System Repair

	4 Conclusions
	References


