
Filip Cano Córdoba

Towards Responsible AI: Advances in Safety,

Fairness, and Accountability of Autonomous Systems

DOCTORAL THESIS

to achieve the university degree of

Doctor of Technical Sciences

submitted to

Graz University of Technology

Assessors

Advisor and examiner

Prof. Roderick Bloem
Graz University of Technology

Examiner

Prof. Ruzica Piskac
Yale University

Graz, March 2025

2

AFFIDAVIT

I declare that I have authored this thesis independently, that I have
not used other than the declared sources/resources, and that I have
explicitly indicated all material which has been quoted either liter-
ally or by content from the sources used. The text document up-
loaded to TUGRAZonline is identical to the present doctoral thesis.

Date, Signature

4

Abstract

Ensuring responsible use of artificial intelligence (AI) has become imperative as
autonomous systems increasingly influence critical societal domains. However,
the concept of trustworthy AI remains broad and multi-faceted. This thesis
advances knowledge in the safety, fairness, transparency, and accountability of
AI systems.

In safety, we extend classical deterministic shielding techniques to become re-
silient against delayed observations, enabling practical deployment in real-world
conditions. We also implement both deterministic and probabilistic safety shields
into simulated autonomous vehicles to prevent collisions with road users, vali-
dating the use of these techniques in realistic driving simulators.

We introduce fairness shields, a novel post-processing approach to enforce group
fairness in sequential decision-making settings over finite and periodic time
horizons. By optimizing intervention costs while strictly ensuring fairness con-
straints, this method efficiently balances fairness with minimal interference.

For transparency and accountability, we propose a formal framework for assess-
ing intentional behaviour in probabilistic decision-making agents, introducing
quantitative metrics of agency and intention quotient. We use these metrics to
propose a retrospective analysis of intention, useful for determining responsibil-
ity when autonomous systems cause unintended harm.

Finally, we unify these contributions through the “reactive decision-making”
framework, providing a general formalization that consolidates previous ap-
proaches. Collectively, the advancements presented contribute practically to
the realization of safer, fairer, and more accountable AI systems, laying the
foundations for future research in trustworthy AI.

5

6

Kurzfassung

Die Sicherstellung eines verantwortungsvollen Umgangs mit Künstlicher Intel-
ligenz (KI) ist unabdingbar geworden, da autonome Systeme zunehmend kri-
tische gesellschaftliche Bereiche beeinflussen. Dennoch bleibt das Konzept ver-
trauenswürdiger KI breit gefächert und facettenreich. Diese Dissertation erweit-
ert das Wissen über Sicherheit, Fairness, Transparenz und Rechenschaftspflicht
von KI-Systemen.

Im Bereich der Sicherheit erweitern wir klassische deterministische Shielding-
Techniken, sodass sie auch gegenüber verzögerten Beobachtungen widerstandsfähig
sind. Dadurch ermöglichen wir deren praktischen Einsatz unter realistischen Be-
dingungen. Zudem implementieren wir sowohl deterministische als auch proba-
bilistische Sicherheitsschilde in simulierte autonome Fahrzeuge, um Kollisionen
mit Verkehrsteilnehmern zu verhindern, und validieren so den Einsatz dieser
Techniken in realitätsnahen Fahrsimulatoren.

Wir führen Fairness-Schilde ein, einen neuartigen Post-Processing-Ansatz zur
Durchsetzung von Gruppenfairness in sequenziellen Entscheidungssituationen
über endliche und periodische Zeithorizonte. Durch die Optimierung der Inter-
ventionskosten bei strikter Einhaltung von Fairness-Beschränkungen ermöglicht
diese Methode eine effiziente Balance zwischen Fairness und minimalem Eingriff.

Für Transparenz und Rechenschaftspflicht schlagen wir einen formalen Rah-
men zur Bewertung intentionalen Verhaltens bei probabilistischen Entschei-
dungsagenten vor und führen quantitative Maße für Handlungsfähigkeit (Agency)
und Intentionsquotienten ein. Diese Maße nutzen wir für eine retrospektive
Analyse der Absicht, die hilfreich ist, um Verantwortung festzustellen, wenn
autonome Systeme unbeabsichtigte Schäden verursachen.

Schließlich vereinigen wir diese Beiträge im Rahmen der “reaktiven Entschei-
dungsfindung” und bieten so eine allgemeine Formalisierung, die bisherige Ansätze
integriert. Die vorgestellten Fortschritte leisten insgesamt einen praktischen
Beitrag zur Realisierung sicherer, fairer und verantwortungsvollerer KI-Systeme
und bilden eine Grundlage für zukünftige Forschung zu vertrauenswürdiger KI.

7

8

Acknowledgements

This work would not have been possible without the help and support of so
many people.

A very special thanks to my parents for their unconditional love and support,
my grandmothers Lina and Ana, and my surrogate grandmother Isa, who raised
me to be the person I am today. I also want to thank the rest of my family,
Dani, Carmen, Juan, Maria, Toni, and Antonia, for being there and reminding
me where I come from.

I thank all the people I had the pleasure and privilege to collaborate all these
years. A special thanks to Sam, Timos, and Katrine for their patient discussions;
Kaushik and Konstantin for their motivation and the long work hours; Haritz
for his hard work and kind soul; and Scott, Tom, Martin, Oliver, and Ruzica
for the inspiration to do great research.

Thanks to all the friends and colleagues in Graz, whose daily presence and sup-
port has been very valuable: Malte, Sonja, Masoud, Vedad, Benedikt, Johannes;
and a very special appreciation to Stefan, with whom I’ve had the pleasure to
share a working space, to work and learn (and sometimes complain about life)
together. For the time I spent in Gössendorf, thanks to Ben and Niki for so
many joyful moments spent together, to Alex and Irmi for the wine and the
kind words, and thanks to Erika for her unending enthusiasm.

Thanks to all my friends who have had the patience to keep and feed our friend-
ship from the distance, specially Ander, Zaira, and Irene for reminding me what
is important in life; Maribel, Cristina, and Säıd for the random walks; Marc for
being simply amazing; Susana for being weird together; Katia and Geńıs for
their enormous heart; Tania for her resilience. A very special thanks to Al-
berto, without whom I would not have come to Graz, and without whom I
may not have managed to finish. Thanks for being sunshine in spring and a
lighthouse in my darkest hours.

None of this would have been possible without my teachers, who taught me
everything I know and inspired me to learn more. From the high school teachers
at Lestonnac and Sant Pere, who inspired my love for mathematics and showed
me the kind of person I want to be, to the teachers in FME and CFIS, who
showed me the passion, rigour, and beauty in mathematics and brought me to
the border between mathematics and computer science, where I’ve spent some
of my best time.

9

10

Research, for me, involves coffee, and someone had to pay for all the coffee. In
my case, this work has been partially supported by the European Union’s Hori-
zon 2020 research and innovation programme under grant agreement No 956123
- Foceta and by the State Government of Styria, Austria - Department Zukun-
ftsfonds Steiermark.

Last but certainly not least, I want to thank Roderick and Bettina for their
guidance during these years, for hours and hours of work together, for helping
me understand the inner workings of the business, for setting high standards of
work, for introducing me to so many great researchers, and for inspiring me to
do great work.

Contents

1 Introduction 19
1.1 Motivation . 19
1.2 Safety . 21

1.2.1 Background . 21
1.2.2 Safe Reinforcement Learning 21
1.2.3 Deterministic Shielding Resilient to Delayed Observations 22
1.2.4 Probabilistic Shielding for Autonomous Valet Parking . . 23

1.3 Fairness . 24
1.3.1 Background . 24
1.3.2 Fairness in Sequential Decision-Making Problems. 25
1.3.3 Fairness Shielding . 26

1.4 Transparency and Accountability 28
1.4.1 Background . 28
1.4.2 The Role of Intention in Accountability 29
1.4.3 Intentional Behaviour in Agents operating on MDPs . . . 29

1.5 Formal Methods . 30
1.5.1 The Reactive Decision Making Framework 30

1.6 Outline of the Thesis . 31

2 Preliminaries 33
2.1 Basic Notation . 33
2.2 Probability Theory . 34
2.3 Deterministic Two-Player Games 35

2.3.1 Games with Perfect Information 35
2.3.2 Games Under Delay . 37

2.4 Markov Decision Process . 39
2.4.1 Cylinder Set Construction 40
2.4.2 Reachability Properties 40
2.4.3 Reinforcement Learning 42

2.5 Classification Problems and Fairness 42

3 Reactive Decision Making Framework 45
3.1 Motivation and Outline . 45
3.2 Reactive Decision-Making . 46

3.2.1 Deterministic Two-player Games 47
3.2.2 Markov Decision Processes 48
3.2.3 Classification Problems 48

11

12 CONTENTS

3.2.4 Delayed Observations . 48
3.3 Shielding . 50

3.3.1 Definitions . 50
3.3.2 Shielding Induced by Agents 51
3.3.3 Correctness . 52
3.3.4 Interference . 53
3.3.5 Minimal Correctness . 55

3.4 Classical Shielding . 56
3.4.1 Shielding in Safety Games with Perfect Information . . . 56
3.4.2 Shielding in Safety Games with Delayed Observations . . 58
3.4.3 Probabilistic Shielding in Markov Decision Processes . . . 60

4 Delay-resilient Shielding 65
4.1 Motivation and Outline . 65
4.2 Shields as Safety Games . 67

4.2.1 Maximally Permissive Winning Strategies 68
4.3 Determinization of Strategies . 70

4.3.1 Determinization Maximizing a Fitness Function 70
4.3.2 Post-Shields that Maximise Controllability 71
4.3.3 Post-Shields that Maximise Robustness 73

4.4 Relation between Robustness and Controllability 74
4.4.1 Memory-Restricted Strategies 75
4.4.2 Strategies with Full Memory 76

4.5 Experimental Evaluation . 79
4.5.1 Shielding in a Gridworld 80
4.5.2 Shielded Driving in Carla 82

4.6 Discussion . 85
4.6.1 Limitations . 85
4.6.2 Related Work . 86

5 Probabilistic Shielding 87
5.1 Motivation and Outline . 87
5.2 Methodology . 89

5.2.1 Modeling Scenarios as Markov Decision Processes 89
5.2.2 MDP Structure and State Discretisation 90
5.2.3 Model of the Car . 92
5.2.4 Model of the Pedestrian 94
5.2.5 Shield Computation . 95

5.3 Experimental Evaluation . 96
5.3.1 Validation of the Car Model 96
5.3.2 Safety Shielding vs. AEB 96

5.4 Discussion . 98
5.4.1 Limitations . 98
5.4.2 Related Work . 99

6 Enforcing Fairness Properties 101
6.1 Motivation and Outline . 101
6.2 Fairness Shielding Setting . 104

6.2.1 Environment and Shielding Setting 105
6.2.2 Fairness Enforcement with Minimal Cost 107

CONTENTS 13

6.2.3 Relation to the Reactive Decision Making Framework . . 109
6.3 Algorithm for Finite Horizon Shield Synthesis 109

6.3.1 Recursive Computation of the Value Function 110
6.3.2 Efficient Value Function Computation 113

6.4 Algorithms for Periodic Shield Synthesis 114
6.4.1 Periodic Shielding: The Static Approach 114
6.4.2 Periodic Shielding: The Dynamic Approach 120

6.5 Experimental Evaluation . 123
6.5.1 Experimental Setup . 123
6.5.2 Shield Synthesis Computation Times 127
6.5.3 Performance of Finite Horizon Shields 128
6.5.4 Periodic Shielding . 130

6.6 Discussion . 133
6.6.1 Existence and Composability of Finite Horizon Shields . . 133
6.6.2 Limitations . 136
6.6.3 Related Work . 137

7 Analyzing Intentional Behaviour 139
7.1 Motivation and Outline . 139
7.2 Modelling Intentional Behaviour 142

7.2.1 Modelling Environment, Agents, and Intentions 142
7.2.2 Intention of Agents with Perfect Information 143
7.2.3 Intention of Agents Under Uncertainty 144

7.3 Retrospective Analysis of Intention 146
7.3.1 Setting and Problem Statement 146
7.3.2 Evidence Augmentation Loop 148
7.3.3 Counterfactual Generation 149

7.4 Experimental Validation . 152
7.4.1 Model of Environment . 152
7.4.2 Analysis of a Trace . 153
7.4.3 Comparative Analysis of Several Agents 154

7.5 Discussion . 156
7.5.1 Limitations . 156
7.5.2 Avoidance Properties . 157
7.5.3 Generalized Policies . 158
7.5.4 Single-Agent Setting . 159
7.5.5 Related Work . 159

8 Conclusion 163
8.1 Future Work . 163

8.1.1 Shields for Safety. 163
8.1.2 Fairness in Bounded Horizons. 164
8.1.3 Intention Analysis . 164

8.2 Concluding Remarks . 164

List of Publications 167

Bibliography 169

Nomenclature 193

14 CONTENTS

List of Figures

1.1 Shielding scheme. 23
1.2 The operational diagram of fairness shields. 27

2.1 Example of computation of winning strategies under delay 38

3.1 Reactive decision-making framework. 47
3.2 Reactive decision-making framework with delayed observations. . 49
3.3 Shielded reactive decision-making framework. 50
3.4 Safety game illustrating Example 3.1. 58
3.5 MDP described in Example 3.2. 63

4.1 Delay-resilient shielding scheme. 66
4.2 Gridworld example . 72
4.3 Construction for base case of Theorem 4.2. 77
4.4 Tuple in the border of the winning region. 78
4.5 Bipartite graph for the induction case of Theorem 4.2 78
4.6 Game graph where φc(s0) is arbitrarily large, and φr(s0) = k. . . 79
4.7 Gridworld with possible states after delay δ = 1. 80
4.8 Shield synthesis times for the grid world experiments. 82
4.9 Screenshots of the Carla simulator. 83
4.10 Experimental results on the driving simulator 84

5.1 Screenshot of the parking lot simulation 89
5.2 Representation of absolute and local coordinate systems 90
5.3 Overview of an experiment on the Simrod model. 93
5.4 Scheme of reference actions and action ranges. 94
5.5 Scatter plots to validate the MDP model of the car 95
5.6 Probabilistic shielding in autonomous valet parking example . . . 97

6.1 The operational diagram of fairness shields. 102
6.2 Resource usage for fairness shield synthesis 127
6.3 Distribution of normalized bias 128
6.4 Utility loss accross ML algortithms and fairness thresholds 130
6.5 Utility loss vs. shield cost regression plot 130
6.6 Bias over time with and without periodic shielding 131
6.7 Distribution of normalized bias for each period 132
6.8 Percentage of total utility loss in periodic shields 133

15

16 LIST OF FIGURES

7.1 Example of the computation of agency and intention quotient. . 147
7.2 Illustration of the scenario in Example 7.1 148
7.3 Retrospective analysis of intentional behaviour 149
7.4 Intention quotient along the reference trace 152
7.5 Comparison of the reference trace with a high-agency trace . . . 155
7.6 Scatter plot of intention quotient vs. agency 156

List of Tables

4.1 Performance of different shielding strategies. 81
4.2 Shield synthesis times (in seconds). 83

5.1 Quantitative analysis of probabilistic shielding 98

6.1 Empirical variants of fairness properties 108
6.2 Counterexample: Static-Fair shields are not periodically fair . . . 115
6.3 Datasets characteristics . 124
6.4 Performance of the ML models. Dataset: Bank 125
6.5 Performance of the ML models. Dataset: Adult. 125
6.6 Performance of the ML models. Dataset: Compas. 126
6.7 Performance of the ML models. Dataset: German. 126
6.8 Statistic of normalized fairness 128
6.9 Comparison of utility loss . 129
6.10 Comparison of different types of fairness shields. 131

7.1 Ranges to use in counterfactual generation. 154
7.2 Results of the counterfactual evaluation. 155
7.3 Final values of ρπ(T) and σπ(T) for different strategies. 155

1 Notation index, mathbb latin alphabet. 198

17

18 LIST OF TABLES

Chapter 1

Introduction

δεικνύναι δὴ δεῖ τοῖς τοιούτοις ὅτι ἔστι πᾶν τὸ πρᾶγμα οἷόν τε καὶ
δι᾿ ὅσων πραγμάτων καὶ ὅσον πόνον ἔχει. ὁ γὰρ ἀκούσας, ἐὰν μὲν
ὄντως ᾖ φιλόσοφος οἰκεῖός τε καὶ ἄξιος τοῦ πράγματος θεῖος ὤν, ὁδόν

τε ἡγεῖται θαυμαστὴν ἀκηκοέναι συντατέον τε εἶναι νῦν καὶ οὐ βιωτὸν

ἄλλως ποιοῦντι: μετὰ τοῦτο δὴ συντείνας αὐτός τε καὶ τὸν ἡγούμενον

τὴν ὁδόν, οὐκ ἀνίησιν πρὶν ἂν ἢ τέλος ἐπιθῇ πᾶσιν, ἢ λάβῃ δύναμιν

ὥστε αὐτὸς αὑτὸν χωρὶς τοῦ δείξοντος δυνατὸς εἶναι ποδηγεῖν.
1

a — Plato, seventh letter.

1.1 Motivation

As AI systems increasingly permeate critical domains such as healthcare, fi-
nance, mobility, and human resources; ensuring the responsible and trustworthy
behaviour of these autonomous systems becomes imperative. Without proper
safeguards, AI models can make decisions that are unsafe, biased, or other-
wise misaligned with societal values. The need for trust in AI has gathered
the attention of different stakeholders, including academic institutions, private
corporations, and regulatory bodies [Eur21; Whi22].

The concept of trustworthy AI is broad, recent, and aspirational. Given its
nascent stage, there is no consensus on what makes an AI system trustwor-
thy or who has the authority to define it. Different stakeholders emphasize
certain aspects over others, whether to serve their own interests or to build
trust incrementally by addressing specific challenges. Meanwhile, many public
and private institutions strive to be pioneers in deploying autonomous systems
for critical decision-making, aligning their ambitions with the pursuit of more
trustworthy AI. One of the most influential attempts to shape the meaning and

1“One should show such people what philosophy is in all its extent; the range of studies
by which it is approached, and how much labour it involves. For the person who has heard
this, if she has the true philosophic spirit and that godlike temperament which makes her a
kin to philosophy and worthy of it, thinks that she has been told of a marvellous road lying
before her, that she must forthwith press on with all her strength, and that life is not worth
living if she does anything else.”

19

20 CHAPTER 1. INTRODUCTION

requirements for the broad concept of trustworthy AI is the “Ethics guidelines”
document [Com19] produced by the High-Level Expert Group on AI, a diverse
group of experts from both academia and industry appointed by the European
Commission.

In [Com19], trustworthy AI is generally defined to be lawful, ethical, and robust.
The document outlines seven key requirements to achieve trustworthy AI, which
can be seen as seven different fields of study that we need to collectively develop
and understand. In a nutshell, these requirements are:

1. Human agency and oversight. AI systems should be designed ensuring
oversight through human-in-the-loop, on-the-loop, and in-command mech-
anisms.

2. Technical robustness and safety. AI systems must be resilient, secure,
and reliable, with fallback mechanisms to ensure safety in unexpected
situations and protection against potential attacks.

3. Privacy and data governance. AI systems must respect privacy and data
protection while ensuring data integrity, and legitimate access through
robust governance mechanisms.

4. Transparency. AI systems must be transparent, with traceability mech-
anisms and clear explanations tailored to stakeholders. Users should be
aware of AI interactions and understand its capabilities and limitations.

5. Diversity, non-discrimination, and fairness. AI systems must prevent
unfair bias to avoid marginalization and discrimination while fostering
diversity and accessibility.

6. Societal and environmental well-being. AI systems should benefit all,
including future generations, by being sustainable and environmentally
friendly.

7. Accountability. AI systems must have accountability mechanisms, includ-
ing auditability for assessing algorithms, data, and design. Clear redress
processes should be in place, especially for critical applications.

While all requirements are important, in this thesis, we present advances in the
directions of safety, fairness, transparency, and accountability, so we will only
focus on these fields. In the following Sections 1.2, 1.3, and 1.4, we introduce
each field of study, presenting first a broad approximation to the main problems
and debates, followed by a concrete problem inside of each field that motivates
the work presented in this thesis. We start with safety, follow with fairness and
end with transparency and accountability. We bundle transparency and ac-
countability together because our contribution, while mostly motivated by the
accountability requirement, is essentially a method to better understand the
behaviour of an AI system, and thus fits as well in the category of transparency.
A floating contribution of this thesis is a novel formalization that unifies previ-
ously existing concepts. Just as the list of requirements in [Com19] can be seen
as what an AI system needs to be trustworthy, formal methods are a popular
answer to how to implement these requirements. We dedicate Section 1.5 in

1.2. SAFETY 21

this chapter to present a broad motivation for the use of formal methods and
summarize our novel formalization.

1.2 Safety

1.2.1 Background

Safety in AI broadly refers to ensuring that a system does not produce harmful
or unintended consequences. It encompasses a range of issues, from preventing
system failures to aligning AI decisions with ethical and legal standards. A
key concern is technical robustness, which ensures that AI functions correctly
under both normal and unexpected conditions. Examples of unexpected condi-
tions that have been particularly studied are adversarial examples [GSS15] and
distributional shifts in the input data [Wil+22].

A fundamental concept in AI safety is verification and validation, where formal
methods are used to mathematically prove the correctness of an AI model’s
behaviour. In safety-critical applications like aviation and medical diagnostics,
regulatory frameworks often require rigorous validation before deployment. Ad-
ditionally, fail-safe mechanisms must be in place to handle unexpected situations
gracefully, allowing the system to revert to a safe state when necessary [Cre+07;
Set+98].

Ensuring AI robustness requires designing models that generalize well beyond
their training phase. Techniques such as adversarial training improve resilience
by exposing AI models to perturbed or adversarial examples during training,
making them less susceptible to manipulation [Bai+21a]. Formal verification
methods, such as model checking [BK08] and theorem proving [Har09], pro-
vide mathematical guarantees on system behaviour, ensuring that certain safety
properties always hold.

Another crucial approach is certifiable AI, where models are designed to pro-
vide provable guarantees about their predictions [Fis+21]. This approach has
gathered particular attention for neural networks, where verification techniques
can analyze how slight variations in input data affect model outputs, helping
establish bounds on safe behaviour [Alb21].

AI-driven control systems, particularly those used in robotics, autonomous vehi-
cles, and industrial automation, require additional safety considerations [PT20].

1.2.2 Safe Reinforcement Learning

Reinforcement learning (RL) [SB18] is one of the most successful approaches to
several types of problems where an agent interacts with a probabilistic environ-
ment, modelled as a Markov decision process (MDP). Notable examples beating
human performance at complex games [Mni+15; Sil+16] and discovering higher
order structures of proteins [Jum+21]. RL poses unique safety challenges be-
cause it learns optimal behaviour through trial and error, often by exploring
unknown states. This exploration can lead to catastrophic failures if the system
takes unsafe actions while learning. Safe RL methods aim to mitigate such risks
by integrating safety constraints into the learning process.

22 CHAPTER 1. INTRODUCTION

One common approach in safe RL is reward shaping [NHR99], where the re-
ward function is designed to penalize unsafe actions, guiding the agent away
from hazardous behaviours. Another method is constrained RL, where poli-
cies are optimized under predefined safety constraints [SJS21; WT18]. These
methods can be used not only to produce safe results but also to ensure safe
exploration [Wie+23; Yan+23a].

Constraints can be implemented directly to the MDP [Alt21; GBA21; WS20], or
as regularizers to the corresponding loss functions in learning schemes like con-
strained policy optimization [Ach+17] and trust region-based approaches [Sch+15],
which steer the policy updates away from unsafe behaviours.

Another popular approach to safe RL is the use of restraining bolts [DG+19;
DG+20], which steer the learning process towards safe policies by restricting
unsafe behaviour. Another recent approach is to learn a controller together
with a certificate that proves the controller to be safe [Cha+23].

Shielded RL [Als+18; Gia+21; Car+23; Yan+23b] is another promising ap-
proach, where a safety layer acts as a filter that prevents the agent from taking
dangerous actions. This can be achieved using formal verification techniques to
ensure that the learned policy remains within safe bounds. Shields can be placed
before the agent, serving as a mask of allowed actions (pre-shields), or after the
agent, overwriting unsafe actions by safe ones (post-shields). We illustrate these
two settings in Figure 1.1. While shielding methodologies are popular and col-
lision avoidance in autonomous driving is among the common motivations, the
work presented in this thesis is the first implementation of shielding techniques
for collision avoidance in realistic driving simulators.

In this thesis, we present two contributions to shielding techniques for ensuring
safety, that constitute Chapters 4 and 5. In Chapter 4, we develop the theory of
deterministic shields resilient to delayed observations, and present experiments
in a gridworld and in the Carla driving simulator. In Chapter 5, we report
on our experience in using probabilistic shielding for autonomous valet parking.
Since probabilistic shielding requires a more complex model of the agent and
the environment, Chapter 5 strongly focuses on how to build a realistic model.

1.2.3 Contribution: Deterministic Shielding Resilient to
Delayed Observations (Chapter 4)

Deterministic shields ensure system safety by constructing a safety game from an
environmental model and a formal safety specification [Kön19]. The maximally-
permissive winning strategy allows all actions that won’t cause safety violations
over an infinite horizon. Shields allow any action allowed by the maximally-
permissive winning strategy, and overwrite potentially unsafe actions by safe
ones.

Real-world control systems face delays due to data collection, processing, or
transmission. Ignoring delays can cause safety-critical failures. We propose
delay-resilient pre- and post-shields to guarantee safety under delays in the ob-
servations. To synthesize shields, we extend the safety game to include worst-
case delays, introducing imperfect state information. Both pre- and post- shields
require the maximally-permissive winning strategy for the corresponding safety

1.2. SAFETY 23

(a) Pre-shield. (b) Post-shield.

Figure 1.1: Shielding scheme.

game under delayed observation. We compute it following the algorithm pro-
posed in [Che+18].

For post-shields, we need to define which of the available correct actions the
shield will use to overwrite each potentially unsafe action. To do so, we compute
shields that maximize a given fitness function of states, and propose two fitness
criteria: robustness and controllability. The robustness of a state measures how
close it is to an unsafe state in the safety game graph. The controllability of
a state is the maximal amount of delay under which that state can still be
considered safe.

We tested deterministic shields resilient to delayed observations in the open
source simulator Carla [Dos+17], for avoiding collisions with pedestrians as
well as car-on-car collisions in intersections. We used the default driver available
in Carla as our shielded agent.

1.2.4 Contribution: Probabilistic Shielding for Autonomous
Valet Parking (Chapter 5)

Unlike deterministic shields, which enforce safety strictly, probabilistic shield-
ing accounts for low-probability events but only intervenes when the risk of a
collision exceeds a predefined threshold. This approach reduces unnecessary
interventions, and uses the Markov decision process (MDP) as its underlying
model, instead of the safety game.

The shield evaluates control commands by mapping sensor data and prior ac-
tions to an MDP state, then estimating the probability of avoiding collisions if
the command is executed. If this probability falls below the threshold, the shield
overrides the command. These probability computations rely on probabilistic
model checking, requiring a well-structured MDP representation of the vehicle
and its environment.

Building an appropriate MDP model is challenging—it must balance accuracy
with computational feasibility. The model consists of the ego car and the pedes-
trians. The ego car is represented via an abstraction of the Simrod digital
twin [Deb19], with discretized actions and states to handle uncertainty. The
pedestrians are modeled with movement speeds following a normal distribution,
varying across adults, elders, and children.

we tested probabilistic shields as part of a more complex agent developed as a
shared effort in the Foceta project [Ben+23]. In this case, the simulator used
was Prescan, a proprietary tool partially developed within the project, and the

24 CHAPTER 1. INTRODUCTION

goal of the shield is to act together with an emergency brake system to avoid
collisions with pedestrians.

1.3 Fairness

1.3.1 Background

Fairness in AI is essential to prevent discriminatory outcomes, ensuring that
automated decisions do not reinforce or exacerbate societal biases. AI models,
trained on historical data, often inherit biases present in society, leading to dis-
criminatory outcomes that disproportionately affect marginalized groups [BHN23].
Since AI systems play an increasingly significant role in decision-making pro-
cesses across domains such as hiring, lending, healthcare, and law enforcement,
ensuring fairness and preventing discrimination have become critical concerns
and the focus of a burgeoning field of research [ZMS23; Blu+18; Che+20;
CD+17; DI19; Elz+19; Ge+21; Gra+22; SGD23; Wan+23]. Addressing these
biases is essential to developing ethical AI systems that align with societal values
of justice and equality.

Group fairness vs. individual fairness. Fairness in AI is typically framed
in terms of two broad categories: group fairness and individual fairness. Group
fairness ensures that different demographic groups (e.g., based on race, gender,
or age) receive similar outcomes from an AI system. This can be formalized us-
ing constraints such as demographic parity (equal selection rates across groups)
or equalized odds (equal error rates across groups). Individual fairness [GK21],
on the other hand, requires that similar individuals receive similar treatment,
independent of their group membership. This is typically formulated using sim-
ilarity metrics that measure how closely two individuals resemble each other in
relevant attributes.

Balancing these two notions is challenging, as enforcing strict group fairness
constraints may sometimes lead to violations of individual fairness and vice
versa. Different fairness interventions prioritize one over the other, depending
on the context and ethical considerations. In this thesis, we focus on group
fairness properties.

Sources of bias. AI systems can exhibit bias due to different models of the
world that induce disparities. These biases can be broadly classified into two
categories: intrinsic and extrinsic.

Intrinsic bias stems from biased training data that reflects historical inequalities
or prejudices. For example, a hiring algorithm trained on past hiring decisions
may reinforce gender disparities in hiring practices. Extrinsic bias arises from
the way AI models process and generalize information. Even if the data it-
self is unbiased, the learning algorithms may still introduce disparities due to
optimization choices, feature selection, or model architecture.

Understanding the origin of bias is crucial in determining appropriate mitigation
strategies. If the bias is intrinsic, interventions may involve adjusting the data

1.3. FAIRNESS 25

representation, while extrinsic bias may require changes to the model’s learning
process.

A key discussion in fairness research is whether lower accuracy on paper equates
to a more just and correct model. If the training data shows an intrinsic bias
against a certain group, it stands to reason that maximizing accuracy with
respect to the biased dataset does not induce the most accurate model with
respect to the real underlying unbiased data. Therefore, an unbiased model,
that will achieve lower accuracy with respect to the training data, is not only
more fair, but arguably more accurate. However, it is not possible in many cases
to determine what is the best-performing compromise. This compromise and
the impossibility to find a solution that satisfies all constraints has been studied
in [SG21].

Types of fairness-inducing methods. Fairness interventions can be broadly
categorized into three main approaches:

• Pre-processing methods: These focus on modifying the training data to
remove bias before model training. Techniques include re-weighting sam-
ples, adjusting labels, and generating fair representations that obfuscate
sensitive attributes [KC12; Zem+13].

• In-processing methods: These modify the training procedure to incorpo-
rate fairness constraints directly into the learning process. Regularization
techniques and adversarial training are commonly used to ensure that the
model does not learn biased patterns [ZLM18; Kam+12].

• Post-processing methods: These adjust the model’s predictions after train-
ing to equalize outcomes across demographic groups without altering the
underlying model [HPS16].

Each approach has advantages and trade-offs. In summary, preprocessing en-
sures fairness at the data level but may not generalize well, while in-processing
methods provide direct fairness guarantees but can be computationally expen-
sive. Post-processing methods are easy to implement but tend to compromise
individual fairness.

1.3.2 Fairness in Sequential Decision-Making Problems.

In sequential decision-making settings, such as loan approvals or criminal risk
assessments, fairness concerns are magnified due to the compounding effects
of biased decisions. Biased initial decisions can lead to feedback loops, where
disadvantaged groups receive consistently lower opportunities over time, exac-
erbating inequalities.

Fairness interventions in sequential decision-making often involve tracking dis-
parities over multiple time steps and designing policies that compensate for
historical disadvantages.

Group fairness properties are described in terms of the joint probability distri-
bution of the population and the outcomes. For example, demographic parity
states that the probability of a favourable outcome must be independent of

26 CHAPTER 1. INTRODUCTION

group membership. In a sequential setting, these probabilities can be estimated
using the relative frequencies of each outcome for each group.

For example, consider a company building a large team, with a population that
we can divide into two groups, A and B, with respect to which the decisions
must be fair. After T = 1000 candidates, nA candidates were from group A,
out of which n1

A were offered a job. The rest nB candidates were from group
B, and of them n1

B were offered a job. We can estimate the probability of a
candidate from groups A and B of getting an offer as:

P(offer | A) ≈ n1
A

nA
, and P(offer | B) ≈ n1

B

nB
=

n1
B

T − nA
.

Demographic parity is formally expressed as P(offer | A) = P(offer | B), and in
terms of relative frequencies it would mean that

lim
T→∞

(
n1
A

nA
− n1

B

nB

)
= 0. (1.1)

However, in many cases, if the convergence is too slow, it is not enough to guar-
antee fairness in the long run. Group fairness metrics are emerging properties,
which by their own nature cannot be expected when only looking at a few de-
cisions. After seeing T = 6 candidates, three from each group, and hiring one
from group A and two from group B, the difference between relative frequen-
cies is 1/3, far from 0, but the process has just started, so it is not reasonable
for demographic parity to emerge yet. If the company continues the interview
process and after T = 1000 the acceptance ratio of group A is still 2/3 and the
acceptance ratio of group B is only 1/3, we can argue for an underlying bias.
This concept can be formalized by stating that after a certain finite horizon
of T decisions, the relative frequencies may differ by no more than a certain
threshold κ ∈ [0, 1].

One way of looking at the study of fairness in a bounded horizon is with a
monitoring perspective: if a process is biased after T = 1000 decisions, it is
likely to be fundamentally biased, in the sense that the limit in Equation 1.1
does not converge to 0, so we raise the alarm. However, even if the relative
frequencies would converge in the limit to the same value, it can be the case
that the convergence is too slow. In such cases, finding a considerable disparity
between relative frequencies should not be interpreted as a proxy for a bias in
the limit, but as a tangible bias that is a problem in itself.

On the other hand, once a finite horizon T has been predefined, an algorithm
may act with fairness until the T -th decision, and then act with bias after that,
satisfying fairness in the bounded horizon, but failing in the unbounded horizon.
To this end, we also study the concept of T -periodic fairness, where we require
the relative frequencies to differ by no more than a certain threshold κ after
k ·N decisions, for all k ∈ {1, 2, 3, . . . } [Ala+24].

1.3.3 Contribution: Fairness Shielding (Chapter 6)

In this thesis, we present fairness shields as a post-processing group fairness en-
forcement solution for bounded and periodic horizons in sequential classification
problems.

1.3. FAIRNESS 27

Biased
classifier

Fairness
shield

prelim. decision
accept?/reject?

♂♀♀♂♂♂

input
features

gender, age, ... protected feature
gender

final decision
accept/reject

Figure 1.2: The operational diagram of fairness shields.

As we illustrate in Figure 1.2, the shield monitors the decisions of a potentially
biased classifier and has the power to override them. Given a predefined fairness
criterion and a time horizon or period, the shield observes individuals’ protected
attributes, the classifier’s recommendations, and the cost of modifying decisions.
It then ensures fairness while minimizing intervention costs.

To guarantee fairness in finite horizons, fairness shields are computed as bounded-
horizon optimal control problems with a hard fairness constraint and a soft cost
constraint. The fairness constraint ensures that empirical bias remains below a
threshold, measured either at the end of the horizon or periodically. The soft
cost constraint discourages excessive interventions by minimizing total expected
costs.

The problem becomes harder for periodic horizons, as there are infinitely many
input sequences that the shield has to potentially deal with. We conjecture
that optimal shields for periodic horizons cannot be described with finite re-
sources, and propose three “best effort” solutions that modify the computation
of bounded horizon shields to obtain periodic shields. With these solutions, we
lose the hard fairness guarantee for all traces. As a remedy, we study condi-
tions on the incoming traces that ensure the shields achieve fair outputs. These
solutions can be classified into the static approach, and the dynamic approach.

The static approach consists of resetting and reusing the same shield after each
time period. If the shield has been computed for a finite horizon T , at step
T + 1, the internal counters are reset to zero and the shield enforces fairness
in the segment from T + 1 to 2T in the same way as it did for the segment
from 1 to T . A static shield applies the same fairness criterion for each segment
of decisions of length T , with the hope that the same fairness criterion applies
when concatenating all segments of length T . The advantage of this approach
is simplicity, both in design and computational complexity. The main drawback
is that the hard guarantees hold for small subsets of traces.

The dynamic approach consists of recomputing the shield after each period,
modifying the fairness condition to account for the accumulated decisions of the
trace so far. The advantage of this approach is that the fairness criterion is
tracked more accurately, so these shields tend to interfere less often with the
classifier while ensuring fairness in a large subset of traces. The main drawback
is that the synthesis algorithm has to be executed at the end of each period.

28 CHAPTER 1. INTRODUCTION

To understand the difference between the static and dynamic approach, recall
the example of hiring applicants from groups A and B, trying to enforce a
threshold on demographic parity no larger than κ = 0.2. After the first T =
1000 decisions, the acceptance rate for group A is 0.5, and the acceptance rate
for group B is 0.35. Thus, this segment is biased towards group A, but not
more than the threshold. A dynamic shield would allow the next segment of T
decisions to have an acceptance rate for group A of 0.5 and 0.72 for group B.
Even if looking at the segment from T + 1 to 2T , the difference in acceptance
rates is larger than the threshold, the dynamic shields knows that group B can
overcompensate for the low rate in the first segment, as long as demographic
parity is kept in the threshold for the longer segment of the first 2T decisions.
On the other hand, a static shield would not allow B to overcompensate, being
more restrictive than the dynamic shield.

Shields rely on a known or learned distribution of future decisions and costs.
Even if the distribution is imprecise, fairness guarantees remain intact—only
cost-optimality may be affected. Shields are computed via dynamic program-
ming, optimized to run in polynomial time for a wide variety of group fairness
metrics by abstracting traces to a relevant set of counters.

1.4 Transparency and Accountability

1.4.1 Background

Beyond ensuring that AI systems behave safely and fairly, they must also be
explainable. Trust in AI depends not only on its performance but also on its
transparency — users and stakeholders must understand why a system made
a particular decision. Moreover, when AI systems cause harm, it is essential
to have robust accountability mechanisms in place to determine responsibility
and take corrective action. Explainability is also key for accountability: if an
AI system causes harm or fails in an unexpected way, it must be possible to
trace its reasoning to diagnose the issue and assign responsibility. Without
explainability, AI remains a “black box”, making it difficult to audit, improve,
or justify its decisions in legal and ethical contexts. By integrating explainability
into AI design, we can build systems that foster trust, enable human oversight,
and ensure accountability in decision-making.

Explainability and accountability are closely intertwined. In human account-
ability processes, understanding why a person acted in a certain way is essential
for assigning responsibility and determining degrees of culpability. Courts, for
example, consider intent, circumstances, and explanations when assessing guilt.
Similarly, for AI systems, understanding why a particular decision or action was
taken is crucial in determining liability when harm occurs.

Accountability in software systems has long been a topic of interest in fields
such as cybersecurity, safety-critical systems, and software engineering [FJW11;
Jag+09; KTV10]. Traditional software accountability often relies on clear speci-
fications, audit logs, and formal verification techniques to determine responsibil-
ity when a system fails or produces an unexpected outcome [Kro+17; FJW20].

However, AI-based systems, particularly those leveraging machine learning,

1.4. TRANSPARENCY AND ACCOUNTABILITY 29

present unique challenges. Unlike traditional rule-based software, many AI mod-
els operate effectively as black boxes, making it difficult to trace the logic behind
their decisions. This lack of transparency complicates accountability, as it be-
comes unclear whether failures arise from design flaws, biased training data,
unforeseen interactions, or user misuse.

1.4.2 The Role of Intention in Accountability

A crucial aspect of human accountability is the notion of intention. Under-
standing whether an action was intentional, accidental, or due to negligence is
key in determining degrees of responsibility. Courts, for instance, distinguish
between premeditated actions and unintended mistakes, applying different legal
consequences accordingly [Kno16].

For AI, the concept of intention requires further study. As a caveat, we explic-
itly avoid the debate on whether AI systems may have consciousness or free
will [But01; CM13]. In any case, a large part of the theoretical development on
the concept of intention can be applied to any rational planning agent that acts
with goals and constrained resources [BIP88; Bra87]. This general definition
also applies to many AI agents, regardless of the working notion of conscious-
ness and free will. AI systems exhibit functionally intentional behaviour, such
as pursuing a specified objective or optimizing for a particular reward. Under-
standing intentional behaviour in AI can help refine accountability frameworks
by distinguishing between different sources of harm.

1.4.3 Contribution: Intentional Behaviour in Agents op-
erating on MDPs (Chapter 7)

Interpreting the decision-making processes of modern machine-learning-based
agents in probabilistic settings presents significant challenges due to the ab-
sence of explicit goals or intentions in their models. Traditionally, intention is
connected to planning in both cognitive and computational reasoning [BIP88].
In this thesis, we consider intention as the “state of the world” an agent plans
toward, serving as a proxy for its internal reasoning. Since modern agents,
particularly those trained using reinforcement learning, do not have explicitly
modeled beliefs or reasoning processes, their intentions can only be inferred
probabilistically.

Our proposed framework quantitatively assesses whether an agent’s behaviour
exhibits evidence of intentionality. Instead of making binary assertions about
intention, it provides confidence levels and quantified evidence.

We model autonomous agents as policies within a probabilistic environment as
MDPs. Key to our framework are the notions of agency and intention quotient.
The agency measures the agent’s ability to influence outcomes, defined as the
probability difference between optimally achieving or avoiding a goal. The in-
tention quotient is a normalized value between 0 and 1 that measures how close
the policy of the agent is to achieving or avoiding a goal. Intention quotient
quantifies the degree of apparent intentional behaviour, with values close to 1
indicating high evidence of intentionality.

30 CHAPTER 1. INTRODUCTION

These notions can be used to study an agent preemptively by calculating agency
and intention quotients towards a particular goal around the states of interest.
With the mindset of serving a potential accountability process, we also propose
a retrospective methodology to study concrete traces that end up in a harmful
state. When the trace under study does not offer enough evidence for a con-
fident assessment, we produce counterfactual traces and use them to increase
confidence.

Our method can help understand whether an agent shows evidence of acting
intentionally towards an end. While this is a necessary step for accountability
processes, it is not the only one, and questions such as who is responsible or
who has to pay for the harm intentionally produced by the agent are out of the
scope of this work.

1.5 Formal Methods

In the field of computer science, formal methods can be broadly described as rig-
orous mathematical techniques used to specify, verify, and prove system proper-
ties. Rigorous formalizations not only have the advantage of providing provable
guarantees, but also a deep understanding of those guarantees.

Formal methods have long been a cornerstone of trusted computing, being used
in safety-critical domains like controllers in avionics and medical devices, as well
as performance-critical system code like arbiters and process managers [Woo+09;
Bee+24]. Because of this history, many researchers and practitioners think that
formal methods for AI are destined to play a central role in the future of trust-
worthy AI [Li+23]. By applying logical reasoning, theorem proving, and model
checking, formal methods provide strong guarantees about software and hard-
ware systems. Unlike testing, which only checks for correctness in specific sce-
narios, formal verification provides mathematical certainty for all possible cases
within a given model. However, the guarantees are only as good as the model,
and, as the popular saying goes, all models are wrong — albeit some of them are
useful. This should serve as a constant reminder throughout the thesis that all
results and guarantees hold in the ideal model, and any consequences of those
results on reality are mediated by how good the model is as a description of the
real world.

1.5.1 Contribution: The Reactive Decision Making Frame-
work (Chapter 3)

The frameworks used to formalize the different contributions in this thesis use
different models: safety games are used for deterministic safety shielding, MDPs
are used for probabilistic safety shielding and intention analysis, and sequential
classification problems are used for fairness shielding.

However, these frameworks always have in common an agent interacting with an
environment. In this thesis, we introduce the reactive decision making frame-
work as a formal generalization of the aforementioned formal models. We also
formalize the concept of shielding in the reactive decision making framework,

1.6. OUTLINE OF THE THESIS 31

generalizing previously differentiated notions [Kön19] and refining the defini-
tions to account for edge cases that had been previously mistreated.

1.6 Outline of the Thesis

Chapter 2 introduces the notation and previously established concepts that are
required throughout the thesis. While this chapter, and the thesis as a whole,
is self-contained, the exposition may be too succinct for an unfamiliar reader.
For a deeper understanding of the background material, we give pointers to
adequate reference materials. Chapter 3 introduces the reactive decision making
framework and the notion of shielding. We show how the formal frameworks
used in this thesis are particular cases of this general formalization. We also show
how previous notions of shielding for safety properties correspond to shielding
as described in the reactive decision making framework.

Chapters 4 and 5 explore shielding for safety properties with some source of
uncertainty in the context of autonomous driving. Chapter 4 explores deter-
ministic shielding for safety properties resilient to delayed observations. We
show how shields can be extended to guarantee a safety specification even with
imperfect information, and study different methods to choose a corrective ac-
tion. In Chapter 5, we report our experience on using probabilistic shielding on
an autonomous car operating in a parking lot with the objective of avoiding col-
lisions with pedestrians. We describe how to build realistic models of a car and
pedestrians in its vicinity, and report the results of a comparative test between
our shields and an automatic emergency brake system.

We move our focus from safety to fairness in Chapter 6, where we introduce
the notion of fairness shields and describe how to compute different types of
fairness shields for finite and periodic time horizons. We validate the usefulness
of fairness shields on an extensive evaluation against standard benchmarks from
the literature on algorithmic fairness.

Chapter 7 moves away from runtime enforcement towards explainability and
accountability. In this chapter, we present our framework for studying inten-
tional behaviour on agents operating in MDPs using the notions of agency and
intention-quotient. We present our retrospective methodology, intended for ac-
countability processes after harm has occurred, and showcase how it would work
in a toy example.

Chapter 8 rounds up the thesis with future work and concluding remarks, fol-
lowed by an appendix detailing the publications associated with the completion
of the PhD program.

While the landscape of AI research is currently very English-centric, its fruits
shouldn’t be. As a nod to diversity, each chapter is preceded by a famous quote,
mostly in languages other than English. Do not take them too seriously. The
last pages of this document contain a cheat sheet meant to help the reader go
through the notation. Let the power of well-structured indices prevail when the
power of well-written text may fail.

32 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

ΑΓΕΩΜΕΤΡΗΤΟΣ ΜΗΔΕΙΣ ΕΙΣΙΤΩ.
1

a — Inscription above the entrance of Plato’s Academy. 2

In this chapter, we will briefly cover the basic concepts that will be used through-
out the thesis. This serves the double purpose of being a lightweight introduction
to the topics and fixing the notation used throughout the thesis.

2.1 Basic Notation

Sets, numbers, and functions. We use B = {⊥,⊤} to denote the Boolean
domain, N = {0, 1, . . . } to denote the set of natural numbers, Z to denote the set
of integer numbers, and R to denote the set of real numbers. Given a < b ∈ R,
we use (a, b) to denote the open interval between a and b, [a, b] to denote the
closed interval, and (a, b] to denote the interval open at one end and closed at
the other. Given a real number a ∈ R, we use ⌊a⌋ to denote the largest integer
that is less or equal than a (i.e., the floor of a), ⌈a⌉ to denote the smallest integer
that is greater or equal than a (i.e., the ceiling of a) and ⌊a⌉ to indicate the
integer that is closest to a (i.e., the result of rounding a). We use the standard
convention that ⌊a⌉ = ⌈a⌉ when a is at the same distance of ⌊a⌋ than ⌈a⌉. In
general, it is true that a − 1 ≤ ⌊a⌋ ≤ a ≤ ⌈a⌉ ≤ a + 1. Given a, b ∈ R, we
use the notation a ≪ b to indicate that a is much smaler than b, and a ≫ b to
indicate that a is much greater than b, where how much is much depends on
the context.

Given a finite set X, we denote its cardinality by |X|. Given a function f : X →
Y, and a subset X ⊆ X , the image set is f(X) = {y ∈ Y : ∃x ∈ X, f(x) = y}.
Similarly, given a subset Y ⊆ Y, the antiimage set is f−1(Y) = {x : f(x) ∈ Y }.
Given an arbitrary domain X and a function f : X → Rn, the support of f is
Supp(f) = {x ∈ X : f(x) ̸= 0}. Let X be a subset X ⊆ X , we define the

1Let no one ignorant of geometry enter here.
2The existence of this inscription is a disputed fact, since the earliest known documents

that mention it date about 700 years after Plato’s death. It has become, however, a powerful
meme.

33

34 CHAPTER 2. PRELIMINARIES

indicator function of X in X as 1X : X → {0, 1}, such that 1X(x) = 1 if and
only if x ∈ X. We will use the equivalent notation 1[x ∈ X]. In the special case
where the set is a single element, X = {y}, we will use the notation 1[x = y].
Similarly, if X = X \ y, we will denote the indicator function as 1[x ̸= y].

Words and languages. An alphabet Σ is a finite set. A word (or trace) in
an alphabet is a sequence of elements in the alphabet. We use Σi to denote the
set containing words of length i in the alphabet Σ and Σ≤k to denote the set
of words of length at most k in Σ, i.e., Σ≤k = ∪k

j=0Σ
j . We use Σ∗ for the set

of all words of finite length, i.e., Σ∗ = ∪∞
k=0Σ

k. We use Σω to denote the set of
infinite words in Σ, and Σ∞ = Σ∗∪Σω. We will also use 2Σ to denote the power
set of Σ. Given a word w ∈ Σ∞, we use |w| to refer to its length. Given a word
w = σ0σ1 · · · ∈ Σ∞, for n,m such that n ≤ m ≤ |w|, we will use the notation
w[n:m] = σnσn+1 . . . σm, and in the case n = 0 we will use the notation w:m

to refer to w[0:m]. Given two words w1 = σ0 . . . σn, w2 = σn+1 . . . σn+m in Σ,
the concatenation is the word w1 · w2 = σ0 . . . σnσn+1 . . . σn+m. Given a finite
word w = σ1 . . . σn, we use wω to denote the resulting word of concatenating w
infinitely many times. A set of words L ⊆ Σ∞ is called a language.

2.2 Probability Theory

In this section, we define some basic notions of probability theory. We refer the
reader to [Dur19, Chap. 1] for a more detailed discussion.

Let Ω be a non-empty set, a σ-algebra is a set F ⊆ 2Ω that satisfies: (i) Ω ∈ F ,
(ii) if A ∈ F , then Ω \ A ∈ F , and (iii) if {Ai}∞i=1 is a countable collection of
sets in F , then

⋃∞
i=1 Ai ∈ F . The tuple (Ω,F) is a measurable space. Given

a set Ω and a subset F ⊆ 2Ω, the σ-algebra generated by F is the smallest
σ-algebra F such that F ⊆ F . The most commonly used measurable space is
(Rn,Bn), where Bn is the Borel σ-algebra on Rn, i.e., the σ-algebra generated
by the open sets of Rn. Let (Ω,F) and (Ω′,F ′) be two measurable spaces, a
function f : Ω → Ω′ is measurable if for every B ∈ F ′, f−1(B) ∈ F .

A probability space is a tuple (Ω,F ,P), where (Ω,F) is a measurable space
and P : F → [0, 1] is a function satisfying: (i) P(Ω) = 1, (ii) if A ∈ F , then
P(Ω \ A) = 1 − P(A), and (iii) for any countable collection {Ai}∞i=1 of disjoint
sets in F , we have P (

⋃∞
i=1 Ai) =

∑∞
i=1 P(Ai). P is called a probability measure

over (Ω,F). A random variable on Ω is a measurable function X : Ω → R from
a probability space (Ω,F ,P) to (R,B). We typically think of a random variable
as a symbol that takes a value in B ∈ B with probability P(X−1(B)). We also
denote P(X−1(B)) as P[X ∈ B]. When B = {b}, we may denote P(X−1(B)) as
P[X = b].

A random variable X induces a a probability measure µ on (R,B), called its
probability distribution (or simply distribution), by setting µ : B → R, µ(A) =
P(X ∈ A). The distribution of a random variable is usually described using its
distribution function F : R → [0, 1], defined as F (x) = P(X ∈ (−∞, x)). We
say that X follows the distribution F , and denote it by X ∼ F . The set of
distributions over R is the set of probability measures over (R,B), and denoted
as D(R). For a countable set Ω, a distribution over Ω is any function d : Ω → R,

2.3. DETERMINISTIC TWO-PLAYER GAMES 35

such that there exists a probability space (Ω,F ,P) satisfying for all ω ∈ Ω that
{ω} ∈ F and P({ω}) = d(ω). We denote the set of distributions over Ω as D(Ω).

The expected value of a random variable is E[X] =
∫
Ω
X(ω)dP(ω), where

∫
is

the standard Lebesgue integral on the measure given by P.

2.3 Deterministic Two-Player Games

2.3.1 Games with Perfect Information

The deterministic two-player game is a widely used formalism to model deter-
ministic interactions between an agent and an environment, where the environ-
ment is considered adversarial.

Formally, a deterministic two-player game is a tuple G = (S, s0, Senv, Sag,A, T ,Acc),
where S = Senv ∪ Sag is a finite set (the state space), composed of the disjoint
sets Senv (states of the environment) and Sag (states of the agent). There
is a special state, s0 ∈ Senv, the initial state. A is the set of actions, T ⊆
(Senv × Sag) ∪ (Sag ×A× Senv) is the transition relation and Acc ⊆ Sω is the

winning condition for the agent. For convenience, we usually write s
σ−→ s′ for

(s, σ, s′) ∈ T , and s′
u−→ s for (s′, s) ∈ T , where u stands for “undefined”. The

state space is required to be deadlock-free, i.e., for all s ∈ Senv, there exists
s′ ∈ Sag such that (s, s′) ∈ T . Similarly, for all s′ ∈ Sag, there exist σ ∈ A and
s ∈ Senv such that (s′, σ, s) ∈ T . The transition relation is deterministic for the

agent, i.e., for any s ∈ Sag and σ ∈ A, if s
σ−→ s′ and s

σ−→ s′′ then s′ = s′′. It is
useful to think of G as a bipartite graph, where the set of nodes is partitioned
into Sag and Senv, the edges from Sag to Senv are labeled with symbols in A,
and the edges from Senv to Sag are unlabeled.

On some occasions, it will be useful to work with a concrete set of actions for
the environment. An environment action set is a set Aenv, that uniquely labels
each transition of the environment, making the transition relation deterministic
for the environment. That is, for every pair of states s ∈ Senv, s

′ ∈ Sag such that
(s, s′) ∈ T , there exists a unique label x ∈ Aenv associated with the pair. We

write this relation as s
x−→ s′. To make the environment transitions deterministic,

we require that given s ∈ Senv, x ∈ Aenv, there is at most one state s′ ∈ Sag

such that s
x−→ s′.

Note that a set Aenv has at least as many labels as the maximum out-degree of
T for states in Senv, that is

|Aenv| ≥ max
s∈Senv

|{s′ ∈ Sag : (s, s′) ∈ T }| . (2.1)

Furthermore, this bound is tight: since the condition on the transition is defined
independently for every environment state, we can reuse labels without any issue
for different environment states.

Plays. The game is played by two players: the agent and the environment. In
the safety game, at every state s ∈ Sag, the agent chooses a transition s

σ−→ s′,
and at every state of the environment s ∈ Senv, the environment chooses a
transition s

u−→ s′. Together, they produce a trace of states τ = [s0, s1, . . .],

36 CHAPTER 2. PRELIMINARIES

where for all i ∈ N, s2i
u−→ s2i+1 and there exists σi such that s2i−1

σi−→ s2i.
In the game context, a trace of states is also called a play. Sometimes, it is
useful to consider the concrete actions of the agent that give rise to a play.
For a given play τ = [s0, s1, s2, . . .], the corresponding state-action play is τ =

[s0, s1, σ1, s2, s3, σ2, s4], where for all i ∈ N, s2i−1
σi−→ s2i. Since the actions are

determined by state transitions, it is equivalent to talking about plays as state
sequences or state-action sequences. We will use state-action plays whenever
concrete actions take an essential role. The set of all plays of a game G is
denoted by Π(G) ⊆ (Senv × Sag)

ω.

Strategies. A strategy for the agent is a function ξ : (Senv × Sag)
∗ → 2A,

that given a trace τ ∈ S∗, and produces a set of actions ξ(s) ⊆ A. A strategy is
memoryless if it only depends on the last state of the trace. In such cases, we
will denote it as a function ξ : Sag → 2A. A strategy is deterministic if ∀τ ∈ S∗,
|ξ(τ)| = 1. When it is clear from context that a strategy ξ is deterministic, we
will denote it as a function ξ : Senv × S∗

ag → A, and as a function ξ : Sag → A
when it is also memoryless. A play τ = [s0, s1, . . .] is valid under a strategy ξ of

the agent if for all i ∈ N, there exists σi ∈ ξ(s2i−1) such that s2i−1
σi−→ s2i. The

set of behaviours Beh(G, ξ) consists of all plays following ξ, that is:

Beh(G, ξ) = {τ = [s0, s1, . . .] ∈ Π(G) : ∀i ∈ N, ∃σi, s.t. σi ∈ ξ(s2i−1)}. (2.2)

A strategy ξ is winning for the agent if Beh(G, ξ) ̸= ∅ and for all τ ∈ Beh(G, ξ)
we have τ ∈ Acc. A winning strategy ξ is maximally permissive if Beh(G, ξ′) ⊆
Beh(G, ξ) for every winning strategy ξ′.

An output-restricted strategy is a function ξ : Sag×2A → 2A, satisfying that ∀s ∈
Sag,∀Σ ∈ 2A, ξ(s,Σ) ⊆ Σ. Each output-restricted strategy ξ has an equivalent

unrestricted strategy ξ̂, defined as ξ̂(s) = ξ(s,A). An output-restricted strategy
is deterministic if ∀s ∈ Sag, ∀Σ ∈ 2A, |ξ(s,Σ)| = 1. The previous definitions for
winning and maximally permissive strategy apply to the unrestricted strategy.

Synthesis of winning strategies of safety games. A game G is a safety
game if its winning condition is defined by the game staying in a set of safe states
F ⊆ S. That is, if Acc = Fω. It is a classical result [Tho95] that the maximally
permissive strategy of a safety game, if it exists, is unique, memoryless, and can
be computed in O(|S| · |A|). This is done by computing the so-called winning
region. The winning region is the set W of states that are part of a trace valid
under a winning strategy:

W =

{
s ∈ S : ∃τ = s0s1 . . . s, and ∃ξτ : Sag → 2A, such that

ξτ is winning and τ is valid under ξτ

}
(2.3)

With the help of the winning region, we can define the strategy ξmax.perm. as

ξmax.perm.(s) = {σ ∈ A : s
σ−→ s′, for s′ ∈ W}. (2.4)

This strategy has the property of being winning and maximally permissive [Tho95].
In safety games, we often say that a state s is safe when s ∈ W .

2.3. DETERMINISTIC TWO-PLAYER GAMES 37

2.3.2 Games Under Delay

Delayed games follow the intuition that the system does not have access to the
most recent inputs, forcing it to make decisions having only partial information
on the current state. In this section, we summarize the construction of delayed
safety games from [Che+21], with two differences. The first one is that we con-
sider delays as full-step and not half-step delays. This is not a conceptual change
but rather a change that lightens notation in some definitions. The second is
that we extend the definitions to include an arbitrary amount of memory.

Game graph under delay. Introducing delays does not change the game
graph itself, but we add two parameters, one for the amount of delay and one
for the amount of memory available. Formally, a deterministic two-player game
with delay δ and memory µ is a tuple Gδ,µ = ⟨S, s0, Senv, Sag,A, T ,Acc, δ, µ⟩,
where δ ∈ N, represents the delay in the input observation, µ ∈ N represents
the length of the register (memory) of own outputs allowed to the agent, and
G = ⟨S, s0, Senv, Sag,A, T ,Acc⟩ is a two-player game.

Game play under delay. A delay of δ causes the agent to be unaware of the
last δ transitions produced by the environment. The agent is aware of its own
actions and can store them in a register of size µ used to limit the uncertainty
about the current (partially unknown) state of the game. We give the name of
observed state of the agent to the state from which a strategy chooses which
action to take. We give the name of current state of the agent to the state in
which the action chosen by the agent is applied. In perfect information games
(i.e., when δ = 0), the current state and the observed state of the agent are
the same. In delayed games, the current state of the agent is δ agent states
ahead of the observed state. Therefore, a strategy under delay δ is aware that
an observed state s and output register σ limits the possible current states, and
has to choose an action to be applied, knowing it will be applied in one of the
possible current states, without explicit knowledge of which one.

Strategies under delay. In a game with delay δ, the agent can only observe
the first state after δ steps in the game, and has to play the first moves “blindly”.
In this initial transient period, the agent needs to ensure it can travel from the
initial state to a state with a defined winning strategy. Therefore, we also need
to define the strategy for an unobserved state. Let Sag∗ = Sag ∪ {ε}, where ε
represents the unobserved state.

A strategy for the agent under delay δ with memory µ is a function ξδ,µ : Sag∗ ×
A≤µ → 2A. When δ and µ are clear from context or irrelevant, we will denote
it simply as ξ. A state-action play τ = [s0, s1, σ1, . . .] is valid under strategy ξ
if ∀i ∈ N,

σi ∈ ξ
(
s2(i−δ)−1, [σi−µ, . . . , σi−1]

)
, (2.5)

with sj , σj = ε for any j < 0, to account for the transient period.

Most of the time, the strategy takes as input a state s ∈ Sag and a sequence
of actions σ ∈ Aµ representing the last µ actions executed by the agent. The
state s is the observed state, and the strategy has to take care that any action
σ′ ∈ ξ(s, σ) will be executed in the current state, about which the agent has

38 CHAPTER 2. PRELIMINARIES

only partial information given by s and σ. Note that the state-action trace used
in Equation 2.5 is τ = [s0, s1, σ1, s2, s3, σ2, s4, . . .], where si is a state of the
agent or the environment depending on the parity of i. More concretely, for
all i, we have s2i−1 ∈ Sag, s2i ∈ Senv, and s2i−1

σi−→ s2i. The strategy has to
define the action σi to take in the (unknown) current state s2i−1, using only
information of the µ latest actions and the observed state s2(i−δ)−1 that is δ
observations behind the current state.

At the beginning of the game, before there are δ environment transitions, the
agent has not had time to observe any state yet, and thus the observed state
is represented by the empty state ε. Similarly, if there have only been ν < µ
actions played by the agent, the action register is σ ∈ Aν . This transient phase
is the reason why we need to define the strategy also for the domain {ε}×A≤µ.

As in the undelayed setting, we define the behaviour Beh(Gδ,µ, ξ), as the set
of traces that are valid under ξ, and a strategy ξ is winning if all traces valid
under ξ are inside winning set Acc. A winning strategy ξ is maximally per-
missive if Beh(Gδ,µ, ξ

′) ⊆ Beh(Gδ,µ, ξ) for every winning strategy ξ′. Chen et
al. showed that a safety game G with delay δ and memory µ = δ is equiv-
alent to a safety game with no delay G′ with a set of states S′ =

(
S ×Aδ

)
∪(

{s′0} × A≤δ
)
[Che+21, Lemma 2]. In particular, this result, together with [Tho95],

proves that for any game that can be solved with delay δ, there exists a winning
strategy with µ = δ memory. Some games have winning strategies with less
or no memory. We refer to strategies with less memory as memory-restricted
strategies, with the special case of memoryless strategies when µ = 0.

Synthesis of winning strategies under delay. We outline the algorithm
to solve delayed safety games with delay δ and memory µ = δ, as presented
in [Che+21]. A more detailed version of the algorithm is given is presented as
part of Chapter 4, where we extend it to strategies with any amount of memory
µ ≤ δ.

The algorithm to solve a delayed safety game iteratively constructs and solves
the safety game with increasing delays d = 0, 1, . . . , δ and memory size µ =
d. At every iteration in d, the maximally permissive strategy for the agent is
computed using the strategy for the previous delay d−1, followed by a reduction
of the game graph aiming to mitigate the exponential blow-up in the state
space and the computation of the transient phase. To compute the maximally

✓

✗
✓

✗
✓

b

a

✓
✗

✓
✓

✓ ξδ=1,µ=1(s, [b]) = {a, b} ∩ {b} ∩ {b} = {b}
s1

s2

s

ξδ=1,µ=1(s, [a]) = {a} ∩ {a, b} ∩ {a, b} = {a}

ξδ=1,µ=0(s) = ξδ=1,µ=1(s, [a]) ∩ ξδ=1,µ=1(s, [a])

= {a} ∩ {b} = ∅

s3

s4

s5

s6

s7

Figure 2.1: Computation of winning strategies under delay δ = 1 with memory
µ = 0, 1. In this example, the observed state is s, and the current state is
one of s3, s4, s5, s6, or s7. From state s ∈ Sag, if the last action was a, the
agent knows the environment has made a transition from state s1, making b
potentially unsafe. Similarly, if the last action by the agent was b, the current
state is one of s5, s6, or s7, making a unsafe. If the agent cannot store its last
action in memory, there is no winning strategy from s.

2.4. MARKOV DECISION PROCESS 39

permissive strategy using previous delays, for each state s ∈ Sag and output
register [y1, . . . , yd], we compute the set Is,yd

, containing all states s′′ ∈ Sag

that can be reached by a pair of transitions s
yd−→ s′

u−→ s′′. The intersection
of the actions allowed by the maximally permissive strategy for delay d − 1 in
states of Is,yd

corresponds then to the actions allowed with delay d in state s
with output register [y1, . . . , yd]. Figure 2.1 shows an example of computing the
maximally permissive winning strategy under delay δ = 1 from the one under
delay δ = 0, for memory µ ∈ {0, 1}.

2.4 Markov Decision Process

A Markov decision process (MDP) is a tuple M = (S,A,P), where S is a
countable set of states, A is a countable set of actions, and P : S ×A → D(S) is
the probabilistic transition function. Given a state s ∈ S and an action a ∈ A,
P(s, a) is a distribution of states. It is common in the literature to denote the
probability of a state s′ ∈ S under the distribution P(s, a) as P(s, a, s′) instead
of P(s, a)(s′). Sometimes, an MDP is described together with a special state
s0 ∈ S, indicating it is the initial state. Sometimes, instead of a single initial
state, the MDP is accompanied by a distribution of initial states ι ∈ D(S). A
policy π : S → D(A) is a function mapping each state s ∈ S to a probability
distribution over the actions in A.

A Markov chain (MC) is a tuple M = (S,P), where S is a countable set
of states and P : S → D(S) is a transition function. Similarly to the nota-
tion used in MDPs, for s, s′ ∈ S, it is usual to denote the probability of s′ in
the distribution P(s) as P(s, s′). Given an MDP M = (S,A,P) and a pol-
icy π : S → D(A), the Markov chain induced by π is Mπ = (S,Pπ), where
Pπ(s, s

′) =
∑

a∈A π(s)(a) · P(s, a, s′).

An infinite trace (also known as path in the literature) in a MC M is a sequence
τ = s0s1s2 . . . where P(si, si+1) > 0 for all i ≥ 0. We denote the set of all
infinite traces by ΩM.

A distance in an MDP is a function d : S×S → R≥0 such that for all x, y, z ∈ S,
we have

• Simmetry: d(x, y) = d(y, x).

• Triangular inequality: d(x, y) ≤ d(x, z) + d(z, y).

• Identity: d(x, y) = 0 if and only if x = y.

A ball of radius r > 0 centered at state s ∈ S is the set

Br(s) = {s′ ∈ S : d(s, s′) < r}.

Similary, a ball of radius r > 0 centered at a set of states S ⊆ S is the set

Br(S) = {s′ ∈ S : ∃s ∈ S. d(s, s′) < r}.

40 CHAPTER 2. PRELIMINARIES

Product MDP. Given two MPDsM1 = (S1,A1,P1) andM2 = (S2,A2,P2),
the product MDP of M1 and M2 is the MDP M = (S1 × S2,A1 × A2,P),
where the transition function P is defined as follows. For each (s1, s2), (s

′
1, s

′
2) ∈

S1×S2, and for each (a1, a2) ∈ A1×A2, the transition probability is defined as

P
((

s1, s2
)
,
(
a1, a2

)
,
(
s′1, s

′
2

))
= P1

(
s1, a1, s

′
1

)
· P
(
s2, a2, s

′
2

)
.

Similarly, we can define the product between an MDP and a Markov chain.
Given an MDP MD = (SD,A,PD) and a Markov chain MC = (SC ,PC), the
product MDP of MD and MC is the MDP M = (SM × SC ,A,P), where the
transition function is defined as follows. For each (sD, sC), (s

′
D, s′C) ∈ SD × SC

and each a ∈ A, the transition probability is defined as

P
((

sD, sC
)
, a,
(
s′D, s′C

))
= PD

(
sD, a, s′D

)
· PC

(
sC , s

′
C

)
.

2.4.1 Cylinder Set Construction

To define a probability measure over traces, we use the cylinder set construction.
This is a standard construction in the literature; details can be found in [BK08,
Chap. 10]. Let M = (S,P) be a Markov chain. For a finite trace prefix ω =
s0s1 . . . sn, the cylinder set generated by ω, denoted Cyl(ω), is the set of all in-
finite traces starting with ω. Formally: Cyl(ω) = {ω′ ∈ Ω : ω′ begins with ω}.
The probability of the cylinder set Cyl(ω) is defined as PM(Cyl(ω)) =

∏n−1
i=0 P(si, si+1).

The σ-algebra associated with M, denoted by FM, is the σ-algebra gener-
ated by all Cyl(ω), where ω is a finite trace prefix. With this construction,
(ΩM,FM,PM) is a probability space that lets us measure the probabilities of
finite trace prefixes (as the probability of its corresponding cylinder set), and in
the limit lets us measure the probability of infinite traces.

Let M = (S,A,P) and π : S → D(A) be a policy. We cannot define a proba-
bility space on M. To talk about probabilities in an MDP, we need to make a
cylinder set construction on the Markov chain induced by an MDP and policy.
The construction for MDPs is slightly different, as we include actions as part of
the trace.

An infinite state-action trace is a sequence ω = s0a0s1a1 . . . , where π(si)(ai) > 0
and P(si, ai, si+1) > 0 for all i ≥ 0. We denote the set of all infinite state-
action traces as ΩM

π and make the same cylinder set construction to define the
sigma algebra on ΩM

π generated by all cylinder sets of finite state-action trace
prefixes, and the corresponding probability measure, where for a given trace
prefix ω = s0a0s1a1 . . . sn, the probability of the cylinder set associated with
it is PM

π (Cyl(ω)) =
∏n−1

i=0 π(si)(ai)P(si, si+1). We will denote the generated
probability space as (ΩM

π ,FM
π ,PM

π).

2.4.2 Reachability Properties

A reachability property is defined as the probability of reaching a given set of
target states T ⊆ S from an initial state s ∈ S under a policy π after at most

2.4. MARKOV DECISION PROCESS 41

k ∈ N ∪ {∞} transitions. Formally, we define the reachability probability of T
in M from s0 using the policy π in less than k transitions as:

PM
π (Reach≤k(s, T)) = PM

π

(
{ω ∈ ΩM

π : s0 = s and ∃n ≤ k, sn ∈ T}
)
. (2.6)

Similarly, we may be interested in computing a reachability probability after a
particular action has been fixed. The probability of reaching T in M from s
after performing action a ∈ A is defined as:

PM
π (Reach≤k(s, a, T)) =

∑
s′∈S

P(s, a, s′)·PM
π

(
{ω ∈ ΩM

π : s0 = s′ and ∃n ≤ k, sn ∈ T}
)
.

(2.7)

Sometimes, it is of interest to know the maximum and minimum values of the
reachability probability when considering the space of all policies. We define
these probabilities as:

PM
min(Reach≤k(s, T)) = min

π : S→D(A)
PM
π (Reach≤k(s, T)),

PM
max(Reach≤k(s, T)) = max

π : S→D(A)
PM
π (Reach≤k(s, T)),

PM
min(Reach≤k(s, a, T)) = min

π : S→D(A)
PM
π (Reach≤k(s, a, T)),

PM
max(Reach≤k(s, a, T)) = max

π : S→D(A)
PM
π (Reach≤k(s, a, T)).

It may also be interesting to consider the maximum and minimum values when
restricting to a certain subset of available policies Π ⊆ {π : S → D(A)}. In such
cases, the definitions are analogous and we denote them as

PM
min|Π(Reach≤k(s, T)) = min

π∈Π
PM
π (Reach≤k(s, T)),

PM
max|Π(Reach≤k(s, T)) = max

π∈Π
PM
π (Reach≤k(s, T)),

PM
min|Π(Reach≤k(s, a, T)) = min

π∈Π
PM
π (Reach≤k(s, a, T)),

PM
max|Π(Reach≤k(s, a, T)) = max

π∈Π
PM
π (Reach≤k(s, a, T)).

Avoidance properties. With the same spirit, we define the avoidance prob-
ability as the complement of the reach probability. We use the notation
Avoid≤k(s, T) = ¬ Reach≤k(s, T), and define it as

PM
π (Avoid≤k(s, T)) = 1− PM

π (Reach≤k(s, T)). (2.8)

We also consider the minimum and maximum probabilities as described before
for avoidance probabilities. Since the avoidance property is the complement of
the corresponding reachability property, the policy that maximizes one mini-
mizes the other, and viceversa. That is:

PM
min(Avoid≤k(s, T)) = 1− PM

max(Reach≤k(s, T)), and

PM
max(Avoid≤k(s, T)) = 1− PM

min(Reach≤k(s, T)).

The same reasoning applies in the case that an action has already been decided
— Pmin /max(Avoid≤k(s, a, T)) — and the case when there is a restriction on
the set of policies — Pmin /max|Π(Avoid≤k(s, T)).

42 CHAPTER 2. PRELIMINARIES

Bounded and unbounded properties. When k ∈ N, we say that these are
bounded reachability/avoidance properties. When k = ∞, we say that these
are unbounded reachability/avoidance properties. In such cases, we may drop
the explicit reference to k in our notation, writing PM

π (Reach(s, T)) instead of
PM
π (Reach≤∞(s, T)) for unbounded reachability.

The probabilities for bounded and unbounded reachability can be computed
using probabilistic model checking algorithms [Kat16].

2.4.3 Reinforcement Learning

Reinforcement learning (RL) [SB18] is a category of machine learning where an
agent learns to select actions from observations through trial and error, with
the goal of maximising the long-term returns defined by a reward function. A
reinforcement learning problem is formalized with an MDP M = (S,A,P).

In RL problems, the MDP is accompanied by a reward function R : S×A×S →
R. An RL agent executes a policy π : S → D(A) in the MDP. A state-action
trace is a sequence of states, actions and rewards τ = s0a0r1, s1a1r2 . . . , where
s0s1 . . . is a trace in the MDP induced by π and ri+1 = R(si, ai, si+1).

The interaction between the environment and the agent generates state-action-
reward traces as follows. At each step, the agent observes the current state
si ∈ S, selects an action ai ∈ A, the environment transitions to a next state
si+1, sampled from the probability distribution P(si, ai), and the agent receives
a reward R(si, ai, si+1). Note that adding the rewards is just a formalism,
since a state-action trace already determines the corresponding state-action-
reward trace. The discounted return for a state-action-reward trace τ is G(τ) =∑∞

k=0 γ
trt, where γ ∈ [0, 1) is the discount factor. Note that if R is a bounded

function, γ < 1 guarantees that G(τ) is finite for any τ . Since τ can be seen
as an element of ΩM

π , G is a random variable on ΩM
π , so we can consider

its expectation E(G). When it becomes important to state which policy π is
being used to induce an MC and generate a probability space, we will write
Eτ∼π(G(τ)).

The goal of the agent is to find a policy that maximises the expected discounted
return. Formally, the goal of the agent is to find π∗ : S → D(A) such that

π∗ ∈ argmax
π : S→D(A)

Eτ∼π[G(τ)].

There are many algorithms to approximate the optimal policy from available
traces; see [SPC23] for a recent survey. We will use in this thesis the Q-learning
algorithm [WD92], which is one of the most classic approaches to the problem.

2.5 Classification Problems and Fairness

Classification problems are a standard setting in supervised machine learning
where there is an input space X ⊆ Rn, a discrete set of labels Y ⊆ N and a
ground truth distribution θ ∈ D(X × Y). An element x = (x1, . . . , xn) ∈ X is
an instance, and each of the xi’s are the different features.

2.5. CLASSIFICATION PROBLEMS AND FAIRNESS 43

The classification problem consists on finding f : X → Y that minimizes the
expected loss, defined as L(f) = E(x,y)∼θ

[
1[y ̸= f(x)]

]
, when given a set of

samples (x0, y0), . . . , (xN , yN) sampled from θ.

In some problems, there are concrete features of the instances that are considered
protected or sensitive features, and it is of utmost importance to protect against
bias with respect to those features. For example, in the problem of screening
applications for a job, one of the protected features may be the applicant’s
gender. There are many metrics used to determine whether a classifier is biased
with respect to sensitive features. When talking about fairness with respect to
a given feature, it is useful to partition the input space into X = F × G, where
G represents the sensitive feature, and F represents the rest of the features. It
is also useful to think of X as a random variable on X that follows the input
part of the ground truth distribution θ, and f(X) as a random variable on
the label space Y. Similarly, X = (F,G), where F is a random variable on F
and G is a random variable on G. In this thesis, we will use fairness metrics
based on demographic parity and equal opportunity that assume the sensitive
feature can only take a finite set of values, i.e., G = {g1, . . . , gk}. A classifier
f : F × G → Y satisfies demographic parity (DP) if for all i ∈ {1, . . . , k}, we
have E[f(X) | G = gi] = E[f(X)]. When Y = {0, 1}, a classifier f : F × G → Y
satisfies equal opportunity (EqOpp) if for all i ∈ {1, . . . , k}, we have E[f(X) |
G = gi, y = 1] = E[f(X) | y = 1].

The literature on enforcing fairness properties in classification problems is vast
and rich (see [BHN23] for a recent account of the state of the art).

44 CHAPTER 2. PRELIMINARIES

Chapter 3

Reactive Decision Making
Framework

If I seem to wander, if I seem to stray, remember that true stories
seldom take the straightest way. — Patrick Rothfuss, The Name of
the Wind.

3.1 Motivation and Outline

This thesis presents different lines of work with the common motivation of ad-
vancing trust in autonomous systems, using different formal models. While each
chapter can be seen as a standalone contribution towards this goal, the formal
models and methods used in each chapter can be encompassed as part of a
general framework.

In this chapter, we introduce the reactive decision-making framework, which
generalizes the many models used throughout the thesis. Following the general
definition, we justify how safety games, MDPs, and classification problems can
be expressed as particular cases in this framework.

We also introduce a generalized definition of shielding, a method that is used in
most of the chapters in this thesis. We present a unified definition and justify
how this adapts to different notions of shielding in the literature.

Outline. In Section 3.2, we introduce the reactive decision-making framework
and show how other formalizations used in the paper can be viewed as particular
cases of it. In Section 3.3 we introduce a generalized definition of shielding and
in Section 3.4 we show how classical notions of shielding can be expressed in
this generalized framework.

Declaration of sources. This chapter is the original work of the author of
this thesis and, at the time of writing, remains unpublished.

45

46 CHAPTER 3. REACTIVE DECISION MAKING FRAMEWORK

3.2 Reactive Decision-Making

The reactive decision-making framework is an abstract framework that models
the different problems presented in this thesis. In a reactive decision-making
framework, an agent interacts with an environment, depicted in Figure 3.1.
There is a set of observations O, controlled by the environment, and a set of
actions A, controlled by the agent. An environment is a tuple E = (O,A,T),
where T : (O×A)∗ → D(O). We call T the environment transition function .
An agent is a tuple Ag = (O,A, π), where π : (O ×A)∗ ×O → D(A). We call
π the agent policy function. Given O and A, the set of all policies is Pol(O,A).
An environment and an agent are compatible if they share the same set of
observations and actions.

An environment E = (O,A,T) is deterministic if for all input τ ∈ (O×A)∗, the
support of the environment transition function, Supp(T (τ)), has only a single
element. In such cases, we would write the environment transition function as
T : (O × A)∗ → O. An agent Ag = (O,A, π) is deterministic if for all input
(τ, o) ∈ (O × A)∗ × O, Supp(π(τ, o)) has only a single element. In such cases,
we would write the policy function as π : (O × A)∗ × O → A. Given a policy
π : (O × A)∗ × O → D(A), a determinization of π is any deterministic policy
πdet : (O ×A)∗ ×O → A, such that for all (τ, o) ∈ (O ×A)∗ ×O, we have that
πdet(τ, o) ∈ Supp (π(τ, o)).

An environment E = (O,A,T) is memoryless if the transition function depends
only on the last pair of action and observation, that is, if for all (o, a) ∈ O ×A
and for all τ, τ ′ ∈ (O × A)∗, we have T (τ · (o, a)) = T (τ ′ · (o, a)). Similarly,
an agent Ag = (O,A, π) is memoryless if the policy function depends only on
the last observation. Formally, if for all o ∈ O and for all τ, τ ′ ∈ (O × A)∗,
π(τ, o) = π(τ ′, o).

Note that the definitions we give of agents and environments are strictly func-
tional, so we do not consider how the elements are internally designed. For
example, an agent may be designed as an automaton, with internal states and
internal transition functions. For the general theory presented in this chapter,
we do not model such details of the inner structure; we just study agents and
environments as abstract functions that produce an output when given an input.

An observation-action trace is a (finite or infinite) sequence of observations
and actions τ = (o0a0), (o1a1), · · · ∈ (O × A)∞. Given an environment E =
(O,A,T) and an agent Ag = (O,A, π), an observation-action trace is valid if for
all k < |τ |, we have that ok+1 ∈ Supp(T (τ:k)) and ak+1 ∈ Supp(π(τ:k, ok+1)).
In other words, a trace is valid if it could have been produced by the pair
agent-environment.

An observation trace is a (finite or infinite) sequence of observations τO =
o0, o1, . . . ∈ O∞. An action trace is a (finite or infinite) sequence of actions
τA = a0a1, . . .A∞. Given an observation trace τO and an action trace τA, we
can produce an observation-action trace τ = (o0a0), (o1a1), · · · ∈ (O ×A)∞ by
interlacing them. We will denote this by τO||τA.

Given an environment E , an observation trace τO is valid if there exists an agent
Ag and an action trace τA such that τO||τA is valid for E and Ag . Given an

3.2. REACTIVE DECISION-MAKING 47

Environment Agent

o ∼ T (τ)

a ∼ π(τ, o)

Figure 3.1: Reactive decision-making framework.

agent Ag , an action trace τA is valid if there exists an environment E and an
observation trace such that τO||τA is valid for E and Ag .

Probability of traces

Given an environment E = (O,A,T) and an agent Ag = (O,A, π), we can make
a similar cylinder set construction as in Section 2.4.1 to define a probability
measure on the space of finite and infinite traces.

Let ΩE ,Ag be the set of all observation-action traces. Let ω = o1a1, . . . , onan be
a finite prefix, the cylinder set generated by ω is

Cyl(ω) = {ω′ ∈ ΩE ,Ag : ω′ begins with ω}.

The probability of the cylinder set Cyl(ω) is

PE ,Ag(Cyl(ω)) =

n∏
i=0

T
(
ω[:i−1]

)
(oi) · π

(
ω[:i−1], oi

)
(ai).

Let FE ,Ag be the σ-algebra generated by the cylinder sets of all finite traces ω.
The space (ΩE ,Ag ,FE ,Ag ,PE ,Ag) is a probability space.

Sometimes it is useful to talk about traces of a given length and assign proba-
bilities to them, instead of thinking of infinite traces. Let ΩE ,Ag

k be the set of

traces of length equal to k. Since ΩE ,Ag
k is countable, we can use FE ,Ag

k = 2Ω
E ,Ag
k

as our σ-algebra. Let ω ∈ ΩE ,Ag
k , its probability is defined as PE ,Ag

k (ω) =

PE ,Ag(Cyl(ω)). Then (ΩE ,Ag
k ,FE ,Ag

k ,PE ,Ag
k) is a probability space.

Note that in ΩE ,Ag
k , a trace ω is valid if and only if PE ,Ag

k (ω) ̸= 0. This is not
true for infinite traces.

3.2.1 Deterministic Two-player Games

In this section, we show how a deterministic two-player game corresponds to a
memoryless environment in the reactive decision-making framework, where the
sets of observations and actions are both finite, and all probability distributions
over observations and actions are uniform over their support.

A deterministic two-player game is formalized as a tuple G = (S, s0, Senv, Sag,A, T ,Acc)
(Section 2.3). The set Sag corresponds to the set of observations O in the reac-
tive decision-making framework, and the set Senv corresponds to O × A. The
set of actions A is the same for both formalisms. Given o ∈ Sag, and σ ∈ A, the

48 CHAPTER 3. REACTIVE DECISION MAKING FRAMEWORK

transition is trivially o
σ−→ (o, σ). Given (o, σ) ∈ Senv, the allowed transitions

(o, σ)
u−→ o′ are those for which o′ ∈ T (o, σ).

Note that a play in the safety game, τ = [s0, s1, s2, . . .], always has the form
τ = [(o0, σ0), o1, (o1, σ1), o2, (o2, σ2), . . .], where s2i = (oi, σi) and s2i+1 = oi+1,
so it naturally corresponds to an observation-action trace.

In a deterministic two-player game, the concrete value of the probability of
a given observation or action is unimportant, it is only relevant whether the
probability is non-zero. Therefore, the transition functions can be expressed as
T : O × A → 2O and π : (O × A)∗ × O → 2A, instead of T : O × A → D(2O)
and π : (O×A)∗×O → D(2A). Note that this is an interpretation of the model.
All allowed transitions are considered to have the same probability because the
only thing that matters is whether the probability is non-zero. In the game
setting, the environment is considered adversarial, so any action with a non-
zero probability (no matter how low), needs to be considered when computing
strategies for the agent.

3.2.2 Markov Decision Processes

In the reactive decision-making framework, a Markov decision process corre-
sponds to a memoryless environment. In typical MDP notation, as introduced
in Section 2.4, observations are called states, denoted as S (instead of O). Since
the environment transition function is memoryless, it is written with (S ×A) as
its domain – instead of (S × A)∗ –, denoted by P : S × A → D(S), and called
the probabilistic transition function.

3.2.3 Classification Problems

In classification problems, the observation space is the input space of the prob-
lem, i.e., following the notation of Section 2.5, O = X . It is standard to
assume that there is a single distribution from which problem instances are
sampled. This would correspond with an environment transition function that
does not depend in any way on the current trace. This is a stronger condi-
tion as being memoryless since we are imposing that for all τ, τ ′ ∈ (O × A)∗,
T (τ) = T (τ ′). Therefore, we can simply represent the environment as a dis-
tribution ΘX ∈ D(O). There is also literature studying classification problems
where the data distribution changes according to the actions (accepts or rejects)
given by a classifier. This phenomenon has been studied as it relates to fairness
in [D’A+20]. Our framework is well adapted to such cases, as it would mean
just keeping a full environment transition function.

Another characteristic of classification problems is that the set of actions rep-
resents the labels available for classification, i.e. A = Y.

3.2.4 Delayed Observations

In some use cases, it is interesting to consider agents that work with uncertain
observations. We are particularly interested in the case of agents that receive
information about observations produced by the environment delayed by a cer-
tain number of steps, in the same spirit as safety games with delayed input

3.2. REACTIVE DECISION-MAKING 49

presented in Section 2.3.2. These delays are a common challenge when deal-
ing with asynchronous control architectures. In this section, we provide two
formalizations of the delayed framework and show that they are equivalent.

The first formalization is intended to be an intuitive one, while the second
formalization is an operational one, that we will use to develop the theory of
shielding resilient to delayed observations. We will show that both formulations
are, in fact, equivalent in Section 3.2.4.3.

3.2.4.1 Delayed Observations through Modified Agents

We can formalize delays as part of the reactive decision-making framework by
considering a variation of the actions available to the agent, as depicted in
Figure 3.2. The environment is the same, and samples are the next observation
from the full observation-action trace. On the other side, the agent does not
have access to the last δ observations produced by the environment. In the initial
transient phase, the agent only has access to its own action record. After the
transient phase, after δ steps, the agent starts receiving the first observations,
entering the steady observation phase.

Given an environment E = (O,A,T), an agent under delay δ has a policy
function π : Delayedδ(O,A) → D(A), where

Delayedδ(O,A) = A≤δ ∪
{
(o1, a1, . . . , on, an, an+1, . . . , an+δ−1) :

oi ∈ O, ai ∈ A, n ≥ 0

}
. (3.1)

In other words, the agent has either access to a trace longer than δ with the δ
last observations removed (steady observation phase), or it has access to a trace
shorter than δ composed of only actions (transient phase). This is similar to
how we defined strategies in games under delay in Equation (2.5).

3.2.4.2 Delayed Observations through Restriction to Agnostic Agents

While Figure 3.2 is a more intuitive formulation, we will use an equivalent for-
mulation that is more operational, in terms of considering only agents restricted
to a certain domain.

Definition 3.1 (Delayed-observation agent). Let E = (O,A,T) be an envi-
ronment and δ ≥ 0. An agent Ag = (O,A, π) works with observations delayed

Environment Agent

on+1 ∼ T (o1, a1 . . . on, an)

a ∼ π(o1, a1 . . . on−δ, an−δ, on−δ+1an−δ+1, an−δ+2 . . . an)

Figure 3.2: Reactive decision-making framework with delayed observations.

50 CHAPTER 3. REACTIVE DECISION MAKING FRAMEWORK

by δ if it is agnostic to the last δ observations. That is, if for all τ ∈ (O ×A)∗,
all (a1, . . . , aδ) ∈ Aδ, and all (o1, . . . , oδ), (o

′
1, . . . , o

′
δ) ∈ Oδ

π
((

τ · (o1, a1), . . . , (oδ−1, aδ−1)
)
, oδ

)
= π

((
τ · (o′1, a1), . . . , (o′δ−1, aδ−1)

)
, o′δ

)
(3.2)

We denote the set of agents working with observations delayed by δ as Πδ .

3.2.4.3 Equivalence

The equivalence between Definition 3.1 and an agent with domain Delayedδ(O,A)
as in Equation (3.1) stems from the fact that if an agent π with domain
(O×A)∗×O is agnostic to the last δ observations, it is fully determined by the
agent π′ : Delayedδ(O,A) → D(A), and vice versa.

For every τ ∈ (O×A)∗×O, we can factor it as τ =
(
(o1, a1), . . . , (on, an), . . . , (on+δ−1, an+δ−1), oδ

)
,

and then define π(τ) as

π(τ) = π′((o1, a1), . . . , (on, an), an+1, . . . , an+δ−1

)
.

For the backwards direction, given τ ∈ Delayedδ(O,A), we can determine π′(τ)
as follows. The element τ ∈ Delayedδ(O,A) is of the form τ = (o1, a1, . . . , on, an, an+1, . . . , an+δ−1),
for some n ∈ N, oi ∈ O and ai ∈ A. We choose δ arbitrary observations
(on+1, . . . , on+δ) ∈ Oδ and define π′(τ) as

π′(τ) = π
((

(o1, a1), . . . , (on+δ−1, an+δ−1)
)
, on+δ

)
.

The distribution corresponding to π′(τ) is well defined, i.e., does not depend on
the choice of observations on+1, . . . , on+δ, by virtue of Equation (3.2).

3.3 Shielding

3.3.1 Definitions

A shield is an element that modifies the behaviour of an agent, filtering actions
either before (pre-shield) or after (post-shield) the agent decides on them. Fig-
ure 3.3a illustrates the introduction of a pre-shield in a reactive decision-making
pair, while Figure 3.3b illustrates it if for a post-shield. We use the symbol ,
intended to be read as “shield”.

Environment Agent

o ∈ O

a ∈ A

A ⊆ A
Shield

(a) Pre-shield.

Environment Agent

o ∈ O

a ∈ A
Shield

a ∈ A

(b) Post-shield.

Figure 3.3: Shielded reactive decision-making framework.

3.3. SHIELDING 51

Definition 3.2 (pre-shield-ready agent). A pre-shield-ready agent is a function
Agpre : (O×A)∗×O×2A → D(A), such that for any input (τ, o, A) ∈ (O×A)∗×
O × 2A, the agent only proposes actions in A, i.e., Supp(Agpre(τ, o, A)) ⊆ A.

Definition 3.3 (Pre-shield). A pre-shield is a function : (O×A)∗×O → 2A,
that, given a trace and an observation, produces a set of allowed actions. A
pre-shield together with a pre-shield-ready agent form a new agent Ag : (O ×
A)∗ ×O → D(A), defined as Ag (τ, o) = Agpre(τ, o, (τ, o)).

Given a pre-shield-ready agent Ag : (O × A)∗ × O × 2A → D(A), it induces a
regular agent Agreg : (O × A)∗ × O → D(A), by considering only unrestricted
actions. That is, for any input (τ, o) ∈ (O × A)∗ × O, Agreg is defined as
Agreg(τ, o) = Ag(τ, o,A). We call this the regular agent induced by Ag .

Definition 3.4 (Post-shield). A post-shield is a function : (O×A)∗×O×A →
A that given a trace, an observation and an action, produces a new distribution
of allowed actions. A shield together with an agent Agpos form a new agent
Ag : (O ×A)∗ ×O → D(A), defined as Ag (τ, o) = (τ, o,Agpos(τ, o)).

Note that the probabilistic nature of a post-shielded agent Ag does not come
from the shield itself, but from the fact that given (τ, o), Agpos(τ, o) is a distribu-
tion of actions, which induces a distribution of shielded actions (τ, o,Agpos(τ, o)).

As mentioned for the environment-agent construction, our definitions of shields
are strictly functional, so we develop the general theory of shielding without
discussing how these functions are to be computed or implemented. The dis-
cussions on implementation are specific for each type of shielding and are a
substantial part of the content of Section 3.4 and Chapter 6.

3.3.2 Shielding Induced by Agents

A trivial way of building shields is through the induced shield construction.

Definition 3.5 (Induced pre-shield). Let Ag : (O × A)∗ × O → D(A) be an
agent. The pre-shield induced by Ag is the pre-shield

pre
Ag , defined for any

(τ, o) ∈ (O ×A)∗ ×O as

pre
Ag (τ, o) = Supp (Ag(τ, o)) .

To build the induced post-shield, we also need a determinization of the agent.

Definition 3.6 (Induced post-shield). Let Ag : (O × A)∗ × O → D(A) be an
agent, and let Agdet, a determinization of Ag . The post-shield induced by Ag
and Agdet is the post-shield

pos
Ag , defined for any (τ, o, a) ∈ (O ×A)∗ ×O ×A

as

pos
Ag,Agdet

(τ, o, a) =

{
a if a ∈ Supp (Ag(τ, o))

Agdet(τ, o) otherwise.

Any agent shielded with these shields will produce only traces that are valid for
Ag .

52 CHAPTER 3. REACTIVE DECISION MAKING FRAMEWORK

With a similar spirit, we can also build agents from given shields. However, a
shield may be compatible with many agents. We formalize this concept with
the following definitions.

Definition 3.7 (Agents associated with a pre-shield). Let : (O×A)∗ ×O →
2A be a pre-shield. An agent Ag : (O×A)∗ ×O → D(A) is associated with if
pre
Ag = .

Definition 3.8 (Agents associated with a post-shield). Let : (O×A)∗×O×
A → A. An agent Ag : (O×A)∗×O → D(A) is associated with if there exists
a determinization of Ag , named Agdet, such that

pos
Ag,Agdet

= .

For both pre- and post-shields, the set of agents associated with a shield is
denoted by Π .

Given a set of agents Π, the set of shields associated with Π is ΣΠ defined as

ΣΠ =
{

: Π ⊆ Π
}
. (3.3)

We can characterize certain aspects of a shield by its set of associated agents. For
example, we have the following technical result, that will be used to characterize
shields in a delayed observation setting as shields whose set of associated agents
is inside Πδ for some δ ∈ N.

Lemma 3.1. Let E = (O,A,T) be an environment, δ ∈ N, and let be a shield
such that Π ⊆ Πδ . Then is also agnostic to the last δ observations. That is,

for all τ ∈ (O ×A)∗, all (a1, . . . , aδ−1) ∈ Aδ, and all (o1, . . . , oδ), (o
′
1, . . . , o

′
δ) ∈

Oδ we have:

1. If is a pre-shield, i.e., : (O ×A)∗ ×O → 2A, then((
τ ·(o1, a1), . . . , (oδ−1, aδ−1),

)
, oδ

)
=

((
τ ·(o′1, a1), . . . , (o′δ−1, aδ−1),

)
, o′δ

)
.

(3.4)

2. If is a post-shield, i.e., : (O ×A)∗ ×O ×A → A, then for all action
aδ ∈ A((

τ ·(o1, a1), . . . , (oδ−1, aδ−1),
)
, oδ, aδ

)
=

((
τ ·(o′1, a1), . . . , (o′δ−1, aδ−1),

)
, o′δ, aδ

)
.

(3.5)

Proof. This results follows directly from the definitions. Suppose is a pre-
shield and let Ag ∈ Π . Since Ag is associated with , we have that for any

trace τ ∈ (O × A)∗ and any observation o ∈ O, (τ, o) = Supp(Ag(τ, o)) (by
Definition 3.5). Using the hypothesis that Σ ⊆ Πδ we have that Ag ∈ Πδ ,
so the condition in Equation (3.4) is satisfied by virtue of Definition 3.1. The
proof is analogous for the case of being a post-shield.

3.3.3 Correctness

The idea behind shielding is that a shielded agent should satisfy a certain de-
sirable property, while being as close as possible to the original agent. In its

3.3. SHIELDING 53

most general form, a property can be defined as a language of correct traces
L ⊆ (O ×A)∞.

Definition 3.9 (Correctness). Let L ⊆ (O × A)∞. An agent is correct with
respect to L if any trace τ that is valid under Ag is in L. A pre-shield-ready
policy Ag : (O ×A)∗ ×O × 2A → D(A) is correct if the regular policy induced
by Ag is correct. A (pre- or post-) shield is correct with respect to L if any
shielded policy Ag is correct with respect to L.
A correct shield always exists as long as a correct agent exists, since we can
build a shield that strictly follows a correct agent, using the induced shield
construction from the previous section. Therefore, if we pick Ag to be correct
with respect to a specification L ⊆ (O ×A)∞, then any agent shielded by

pre
Ag

or
pos
Ag,Agdet

will also be correct with respect to L.
While it is good to know that a correct shield always exists, it is not very useful
to build a shield that is trivially correct by not caring about the underlying
agent.

3.3.4 Interference

Another desirable property in shields is that they minimize their interference
with the agent being shielded. Intuitively, a post-shield interferes with its agent
every time that it overwrites the agent’s action. For pre-shields the intuition is
a bit different. A pre-shield interferes with an agent every time that the action
the agent would take if it had no restrictions is not allowed by the shield. We
formalize these ideas in the following definition.

Definition 3.10 (Interference set of a shield). Let : (O×A)∗×O → 2A be a
pre-shield, and Agpre : (O×A)∗ ×O× 2A → D(A) be a pre-shield-ready agent.
The interference set of applied to Agpre is

J (Agpre) =
{
(τ, o) ∈ (O ×A)∗ ×O : ∃a ∈ Supp

(
Agpre(τ, o,A)

)
, a /∈ (τ, o)

}
.

Let : (O×A)∗×O×A → A be a post-shield, and Agpos : (O×A)∗×O → D(A)
be an agent. The interference set of applied to Agpos is

J (Agpos) =
{
(τ, o) ∈ (O ×A)∗ ×O : ∃a ∈ Supp

(
Agpos(τ, o)

)
, a ̸= (τ, o, a)

}
.

A non-interfering shield always exists, independent of whether there exist correct
agents or not, we call it the transparent shield. It is built as follows. The
transparent post-shield is

pos
trans defined for any (τ, o, a) ∈ (O×A)∗×O×A as

pos
trans(τ, o, a) = a.

The transparent pre-shield is
pre
trans defined for any (τ, o) ∈ (O ×A)∗ ×O as

pre
trans(τ, o) = A.

As in the case of the trivially correct shield, this transparent shield is an inter-
esting theoretical construct, but it is not of much utility, because it is generally
not correct.

54 CHAPTER 3. REACTIVE DECISION MAKING FRAMEWORK

Definition 3.11 (Equivalence modulo interference). Let , and
′
be two post-

shields. We say that and
′
are equivalent modulo interferences, denoted it

by ≡i
′
, if for all (τ, o, a) ∈ (O×A)∗ ×O×A, we have that (τ, o, a) = a if

and only if
′
(τ, o, a) = a.

Interference sets are useful because a shield is determined by its interference
sets, and the interference set of a shield induced by an agent Ag on that same
agent Ag is always empty. We formalize these properties in the following result.

Lemma 3.2. Let E = (O,A,T) be an environment and Π be a set of agents.
The following are true.

1. Let ,
′
be two pre-shields, ,

′ ⊆ ΣΠ, and such that for any pre-shield-
ready agent Ag ∈ Π, we have J (Ag) = J ′(Ag). Then =

′
.

2. Let ,
′
be two post-shields, ,

′ ⊆ ΣΠ, and such that for any agent
Ag ∈ Π, we have J (Ag) = J ′(Ag). Then ≡i

′
.

3. Let Ag : (O×A)∗ ×O× 2A → D(A) be a pre-shield-ready agent, Agreg be

the regular agent induced by Ag and
pre
Ag be the shield induced by Agreg.

Then J pre

Ag

(Ag) = ∅.

4. Let Ag : (O × A)∗ × O → D(A) be an agent and
pos
Ag,Agdet

be any shield
induced by Ag. Then J pos

Ag,Agdet

(Ag) = ∅.

Proof. We argue all cases by contradiction.

1. Suppose ̸= ′
, and let (τ, o) be an input such that (τ, o) ̸= ′

(τ, o).
Without loss of generality, we may assume there exists a ∈ A such that a ∈
(τ, o) and a /∈ ′

(τ, o). Consider a pre-shield-ready agent Ag such that
Supp (Ag(τ, o)) = {a}. Since a ∈ Supp (Ag(τ, o)) = {a}, but a /∈ ′

(τ, o),
we have that (τ, o) ∈ J ′(Ag). However, since Supp (Ag(τ, o)) ⊆ (τ, o),

we have that (τ, o) /∈ J (Ag), contradicting J (Ag) = J ′(Ag).

2. Suppose ̸≡i
′
, and let (τ, o, a) be an input making them so. Without

loss of generality, we may assume that
′
(τ, o, a) ̸= a, and (τ, o, a) = a.

Consider an agent Ag such that Ag(τ, o) = a. As in the previous point,
this implies that (τ, o) ∈ J ′(Ag), but on the other hand (τ, o) /∈ J (Ag),

contradicting J (Ag) = J ′(Ag).

3. Suppose (τ, o) ∈ J pre

Ag

(Ag). Then there would exist a ∈ Supp (Ag(τ, o,A)),

such that a /∈ pre
Ag . However, by definition,

pre
Ag (τ, o) = Supp

(
Agreg(τ, o)

)
,

and Agreg(τ, o) = Ag(τ, o,A). Therefore, such a cannot exist, contradict-
ing (τ, o) ∈ J pre

Ag

(Ag).

4. Suppose (τ, o) ∈ J pos

Ag,Agdet

(Ag). Then there would exist a ∈ Supp (Ag(τ, o)),

such that a ̸= pos
Ag (τ, o, a). However, by definition,

pos
Ag,Agdet

(τ, o, a) = a
for all a ∈ Supp (Ag(τ, o)). Therefore, such a cannot exist, finishing the
proof.

3.3. SHIELDING 55

3.3.5 Minimal Correctness

The goals of generating correct traces and minimizing interference often conflict.
As we have seen, one can construct a correct shield from a correct policy by
simply overwriting any action proposed by the agent with the corresponding
action from the correct policy. However, this approach results in significant
interference for many agents. At the other extreme, a fully transparent shield
imposes no interference at all, leaving interference sets empty. An ideal shield
balances these objectives, ensuring correctness while keeping interference sets
as small as possible. Formally, we define this as follows.

Definition 3.12 (Minimal correctness). Let E = (O,A,T) be an environment
and Π be a set of agents. A shield ∈ ΣΠ is minimally correct restricted to
Π if it is correct and for all agent Ag ∈ Π (pre-shield-ready in case of pre-
shield, regular in case of post-shield), and for all correct shield

′ ∈ ΣΠ, we
have J (Ag) ⊆ J ′(Ag).

Theorem 3.1. Let E = (O,A,T) be an environment, L ⊆ (O × A)∞ be a
specification, Π be a set of agents, and be a minimally correct shield. Then:

1. If is a pre-shield, is unique.

2. If is a post-shield, is unique modulo interferences.

3. For any correct agent Ag ∈ Π (pre-shield-ready in case of pre-shield, reg-
ular in case of post-shield), we have J (Ag) = ∅.

Proof. Uniqueness is a consequence of Lemma 3.2. Suppose and
′
are min-

imally correct. Since is minimally correct and
′
is correct, we have for any

agent Ag that J (Ag) ⊆ J ′(Ag). And using that
′
is minimally correct and

is correct, we have that J ′(Ag) ⊆ J (Ag), leading to J (Ag) = J ′(Ag).

By Lemma 3.2, this implies =
′
for pre-shields and ≡i

′
for post-shields.

Since is minimally interfering, for any correct shield
′
, we have that J (Ag) ⊆

J ′(Ag). In particular, since Ag is correct, we can choose
′
to be the shield

induced by Ag . By Lemma 3.2, J ′(Ag) = ∅. Therefore, J ′(Ag) is a subset of

the empty set, so it can only be that J ′(Ag) = ∅.

While this will be our operational definition of a useful shield for most problems,
we want to note that it is not without drawbacks. We explore now its two main
drawbacks: non-existence and cost-independence.

Existence of minimally correct shields. The first drawback of this defi-
nition is that there are environments and specifications for which a minimally
correct shield does not exist, even if correct agents do exist. Consider an envi-
ronment with a single possible observation O = {o}, two actions A = {a, b}, and
a specification L = {w : w contains at least one a}. Given this specification,
the transparent shield cannot be correct, since there exists the agent that only
outputs b, which is not correct. Suppose is a correct post-shield. Then there
exists (τ, o) ∈ (O × A)∗ × O such that (τ, o, b) = {a}. Let k = |τ |. Consider
the agent Ag such that Ag(τ ′, o) = b if |τ ′| ≤ k and Ag(τ ′, o) = a if |τ ′| > k.

56 CHAPTER 3. REACTIVE DECISION MAKING FRAMEWORK

Clearly Ag is a correct agent, however, J (Ag) ̸= ∅. By Theorem 3.1, cannot
be minimally correct. An analogous construction can be made for pre-shields.
In Section 3.4, we explore some concrete cases where the existence of minimally
correct shields is guaranteed.

Uniform cost. The second drawback is that all interferences are given the
same importance. Depending on the problem, it may be useful to assign a
numerical cost to each intervention and ask which is the shield that guarantees
certain correctness properties while having minimal cost. We explore this in the
context of fairness shields in Chapter 6.

3.4 Classical Shielding through the Lens of the
Reactive Decision-Making Framework

Shielding has been successfully used for specifications of the safety type in de-
terministic two-player games and in MDPs. In this section, we explain how
these methods can be seen in our framework.

3.4.1 Shielding in Safety Games with Perfect Information

Shielding was first introduced in safety games [Blo+15]. Recall (Section 3.2.1)
how safety games can be regarded in the reactive decision-making framework
as memoryless environments with a uniform transition function. Also, when
considering the perfect information regime, i.e., no delayed observations, mem-
oryless strategies are enough to define any winning strategy.

Following the general definition (Definition 3.3), and adapting to the fact that
transitions in a safety game are memoryless, a pre-shield is a function : Sag →
2A. Given a strategy of the safety game ξ : Sag → 2A, we call

pre
ξ = ξ the

pre-shield induced by the strategy ξ.

Given a strategy ξ : Sag → 2A and a deterministic strategy χ : Sag → A, we call
pos
ξ,χ the post-shield induced by the pair of strategies (ξ, χ), defined as:

pos
ξ,χ(s, a) =

{
a if a ∈ ξ(s)

χ(s) otherwise.

A pre-shield can be added before an output-restricted strategy ξ : Sag×2A → 2A

to generate a regular strategy ξ : Sag → 2A. Similarly, a post-shield is a

function : Sag ×A → A. A post-shield can be added after a regular strategy
ξ : Sag → 2A to generate a new regular strategy ξ : Sag → 2A.

Note that, by definition, if ξ is a winning strategy of ξ, then
pre
ξ is a correct

pre-shield. Similarly, if ξ is a winning strategy and χ is a determinization of ξ,
then

pos
ξ,χ is a correct post-shield.

Theorem 3.2. Let G = (S, s0, Senv, Sag,A, T ,F) be a safety game with a win-
ning strategy. Let ξ be the maximally permissive winning strategy of G. Then:

1. The minimally correct pre-shield exists and is
pre
ξ .

3.4. CLASSICAL SHIELDING 57

2. For any deterministic winning strategy χ, the shield
pos
ξ,χ is minimally

correct.

Proof. (1.) We argue the first point by contradiction. Since ξ is a winning
strategy,

pre
ξ is correct by construction, so we only have to argue the minimality

property. Suppose that
pre
ξ is not minimally correct. Then there exists a pre-

shield-ready agent Ag : Sag × 2A → 2A, a correct pre-shield : Sag → 2A, and
s ∈ Sag such that s ∈ J pre

ξ

(Ag), but s /∈ J (Ag). Since s /∈ J (Ag), then

Ag(s,A) ⊆ (s). Since s ∈ J pre

ξ

(Ag), then there exists a ∈ A such that

a ∈ Ag(s,A) ⊆ (s), but a /∈ pre
ξ (s). Since

pre
ξ is implemented with the

maximally permissive winning strategy, by definition (recall Equation (2.4)) we

have s
a−→ s′, with s′ /∈ W , where W is the winning region of G.

On the other hand, consider an pre-shield-ready agentAg ′ such thatAg ′(s, (s)) =
{a}, which exists since a ∈ (s). Let Ag ′ be the agent resulting from apply-

ing on Ag ′. This agent is correct because is correct, and by construction,
Ag ′ (s) = a. But then s′ would be part of a valid trace under a winning strat-

egy, so s′ ∈ W . This is a contradiction, as we had previously established that
s′ /∈ W .

(2.) As for the second point, the shield is correct since ξ is winning and χ is
a determinization of ξ, and we will use a similar argument to prove minimality
by contradiction. Suppose

pos
ξ,χ is not minimally correct. Then there exists an

agent Ag : Sag → 2A, a correct post-shield : Sag × A → A and s ∈ Sag such
that s ∈ J pos

ξ,χ

(Ag), but s /∈ J (Ag).

Since s /∈ J (Ag), then for all a ∈ Ag(s), we have (s, a) = a. Since s ∈
J pre

ξ

(Ag), then there exists a ∈ Ag(s) such that
pos
ξ,χ(s, a) ̸= a. Since

pos
ξ,χ is

implemented with the maximally permissive winning strategy ξ, and a deter-
minization of it χ, it means that a /∈ ξ(s), and thus s′ defined by s

a−→ s′ is not
in the winning region W .

On the other hand, consider an agent Ag ′ : Sag → 2A satisfying Ag(s) = a, and
consider Ag ′ , that same agent shielded with . We know that Ag ′ is correct,

because is correct. Since (s, a) = a, we have that Ag ′ (s) = a. The proof

finishes by noting that in such case s′ ∈ W , contradicting s′ /∈ W .

While the definition of minimally correct shields with interference sets is original
to this work, the construction of shields using the maximally permissive strategy
of the underlying safety game is the same as has been described in the original
shielding literature [Blo+15; Kön+17; Als+18; Kön19].

The definition presented in this work captures corner cases that previous defi-
nitions did not, as we show in the following example.

Example 3.1. Consider the safety game G = (S, s0, Senv, Sag,A, T ,F) illus-
trated in Figure 3.4, where the Senv = {s0, s2, s3, s7}, Sag = {s1, s4, s5, s6},
A = {a, b}, F = S \ {s6, s7}, and T is as described in the figure. The win-
ning region of this safety game is W = {s0, s1, s3, s4, s5}, and therefore no trace

58 CHAPTER 3. REACTIVE DECISION MAKING FRAMEWORK

s0 s1 s4

s2 s6 s7

s5s3

u

a

b

ua

u b
u

a, b

u
a, b

u

Figure 3.4: Safety game illustrating Example 3.1.

containing s2 would be allowed by a shielded agent. However, according to the
definition of shield as minimally interfering in previous work [Kön+17, Def. 1],
a trace τ = s0s1s2s4(s3s5)

ω should be allowed by a shielded agent since it does
leave F at any time.

3.4.2 Shielding in Safety Games with Delayed Observa-
tions

When considering games under delay, we need to be aware that memoryless
strategies are not enough, as discussed in Section 2.3.2.

From a reactive decision-making framework point of view, the correspondence
between a game Gδ,µ = ⟨S, s0, Senv, Sag,A, T ,Acc, δ, µ⟩, and an environment
E = (O,A,T) is the same as the correspondence described in the previous
section for games with δ = µ = 0.

The only relevant difference is that we consider only agents restricted to the set
of agents agnostic to the last δ observations, and with a restricted memory µ.
Therefore, the shields we consider are going to have the same restrictions.

In Section 3.2.4 we have defined, for a given environment E = (O,A,T), the set
of agents Πδ as those agnostic to the last δ observations, and we have explained
how restricting to this set of agents is equivalent to considering agents that work
with delayed observations.

A characteristic of safety games is that the transition relation T depends only
on the state – and not the trace leading to that state. Therefore, the agents
relevant for solving safety games under delay δ are only not agnostic to the δ+1-
th observation, counting from the tail. Formally, mirroring Definition 3.1, an
agent Ag = (O,A, π) works only with the last δ+1-th observation if for all τ, τ ′ ∈
(O ×A)∗, all o ∈ O, all (a0, a1, . . . , aδ) ∈ Aδ and all (o1, . . . , oδ), (o

′
1, . . . , o

′
δ) ∈

Oδ, we have

π
((

τ ·(o, a0), (o1, a1), . . . , (oδ−1, aδ−1)
)
, oδ

)
= π

((
τ ′·(o, a0), (o′1, a1), . . . , (o′δ−1, aδ−1)

)
, o′δ

)
.

(3.6)

Following the same equivalence as in Section 3.2.4.3, the agents satisfying Equa-
tion (3.6) are equivalent to agents working on the domain A≤δ ∪ (O×Aδ). In-
troducing a restriction on memory, as described for safety games in Section 2.3.2
is also modelled as a restriction to agents agnostic to certain parts of the input.

3.4. CLASSICAL SHIELDING 59

Concretely, the part of the input that corresponds to actions that overflow the
memory.

Putting these two concepts together, we have the following definition.

Definition 3.13. Let Gδ,µ = ⟨S, s0, Senv, Sag,A, T ,Acc⟩ be a two player game
and let E = (O,A,T) be its corresponding environment. Let δ ∈ N and µ ≤ δ
be two integers representing delay and memory. An agent Ag = (O,A, π) works
in the safety game with memory µ and observations delayed by δ if for all τ, τ ′ ∈
(O × A)∗, all (aδ−µ, . . . , aδ−1) ∈ Aµ, all (a0, . . . , aδ−µ−1), (a

′
0, . . . , a

′
δ−µ−1) ∈

Aδ−µ, all o ∈ O, and all (o1, . . . , oδ), (o
′
1, . . . , o

′
δ) ∈ Oδ, we have:

π
((

τ · (o, a0), (o1, a1), . . . , (oδ−µ−1, aδ−µ−1), (oδ−µ, aδ−µ), . . . , (oδ−1, aδ−1)
)
, oδ

)
=

π
((

τ ′ · (o, a′0), (o′1, a′1), . . . , (o′δ−µ−1, a
′
δ−µ−1), (o

′
δ−µ, aδ−µ), . . . , (o

′
δ−1, aδ−1)

)
, o′δ

)
(3.7)

The set of agents in this regime is denoted as Πδ,µ.

Again, following the same equivalence as in Section 3.2.4.3, the agents in Πδ,µ

can be characterized as agents of the form π : Aµ ∪ (O × Aµ) → 2A, which
is the same form as that of strategies in games with delay δ and memory µ
(Section 2.3.2).

This serves as the basis for the result analogous to Theorem 3.2 for games with
delayed observations.

Theorem 3.3. Let G = (S, s0, Senv, Sag,A, T ,F , δ, µ) be a safety game under
delayed observation δ with a winning strategy with memory µ. Let ξ : Sag∗ ×
A≤µ → 2A be the maximally permissive winning strategy of G. Then, restricting
to the set of agents Πδ,µ, we have that:

1. The minimally correct pre-shield exists and is
pre
ξ ∈ Σ

Πδ,µ
.

2. For any deterministic winning strategy χ, the shield
pos
ξ,χ ∈ Σ

Πδ,µ
is min-

imally correct.

The proof of Theorem 3.3 follows the same argument as the proof of the anal-
ogous theorem for regular safety games (Theorem 3.2), since games under de-
lay are equivalent to regular games with exponentially many states [Che+21,
Lemma 2]. In any case, we include it here for the sake of completeness.

Proof. (1.) We argue the first point by contradiction. Since ξ is a winning
strategy,

pre
ξ is correct by construction, so we only have to argue the minimality

property. Suppose that
pre
ξ is not minimally correct. Then there exists a pre-

shield-ready agent Ag : Sag∗ × A≤µ × 2A → 2A, a correct pre-shield : Sag∗ ×
A≤µ → 2A, and (s, σ) ∈ Sag∗ ×A≤µ such that (s, σ) ∈ J pre

ξ

(Ag), but (s, σ) /∈
J (Ag). Assuming 1 s ̸= ε, we have σ ∈ Aµ, thus it is of the form σ =

(σδ−µ+1, . . . , σδ). Since (s, σ) /∈ J (Ag), then Ag(s, σ,A) ⊆ (s). Since (s, σ) ∈
1We show at the end of the proof how to treat the case s = ε.

60 CHAPTER 3. REACTIVE DECISION MAKING FRAMEWORK

J pre

ξ

(Ag), then there exists a ∈ A such that a ∈ Ag(s, σ,A) ⊆ (s), but a /∈
pre
ξ (s, σ). Since

pre
ξ is implemented with the maximally permissive winning

strategy, this means that there exists s′1, . . . , s
′
2δ+1 ∈ S, and (σ1, . . . , σδ−µ) ∈

Aδ−µ, such that

s
σ1−→ s′1

u−→ s′2
σ2−→ . . .

σδ−→ s′2δ−1
u−→ s′2δ

a−→ s′2δ+1, (3.8)

and such that (s′2, σ
′) is not part of any winning strategy, where σ′ = (σδ−µ+2, . . . , σδ, a) ∈

Aµ.

On the other hand, consider a pre-shield-ready agentAg ′ such thatAg ′(s, σ, (s, σ)) =
{a}, which exists since a ∈ (s, σ). Let Ag ′ be the agent resulting from apply-

ing on Ag ′. This agent is correct because is correct, and by construction,
Ag ′ (s, σ) = a. But then s′2, σ

′ would be part of a valid trace under a winning

strategy. This is a contradiction, as we had previously established that (s′2, σ
′)

cannot be part of any winning strategy.

(2.) The shield is correct since ξ is winning and χ is a determinization of ξ, and
we use a similar argument to prove minimality by contradiction. Suppose

pos
ξ,χ

is not minimally correct. Then there exists an agent Ag : Sag∗ ×A≤µ → 2A, a
correct post-shield : Sag∗ ×A≤µ ×A → A and (s, σ) ∈ Sag∗ ×A≤µ such that
(s, σ) ∈ J pos

ξ,χ

(Ag), but (s, σ) /∈ J (Ag).

Since (s, σ) /∈ J (Ag), then for all a ∈ Ag(s, σ), we have (s, σ, a) = a. Since

(s, σ) ∈ J pre

ξ

(Ag), then there exists a ∈ Ag(s, σ) such that
pos
ξ,χ(s, σ, a) ̸= a.

Since
pos
ξ,χ is implemented with the maximally permissive winning strategy ξ,

and a determinization of it χ, it means that a /∈ ξ(s, σ), and thus (s′2, σ
′) defined

by the same procedure as Equation (3.8) cannot be part of any winning strategy.
To build (s′2, σ)

′ we need to assume again that s ̸= ε.

On the other hand, consider an agentAg ′ : Sag∗×A≤µ → 2A satisfyingAg(s, σ) =
a, and consider Ag ′ , that same agent shielded with . We know that Ag ′ is

correct, because is correct. Since (s, σ, a) = a, we have that Ag ′ (s, σ) = a.

The proof finishes by noting that in such case (s′2, σ
′) as obtained in Equa-

tion (3.8) is part of a valid trace under a winning strategy, contradicting the
previously established point.

Initial phase. In both proofs we have assumed that s ̸= ε, and therefore
σ ∈ Aµ in order to obtain the construction in Equation (3.8). The case for
s = ε follows the same argument, only considering that σ = (σ1, . . . , σν) for
some ν ≤ µ and thus fewer transitions in Equation (3.8).

3.4.3 Probabilistic Shielding in Markov Decision Processes

Probabilistic safety shielding in MDPs was introduced in [Jan+20]. We present
probabilistic safety shielding adapting the definitions in [Jan+20] to our frame-
work. The main difference of shielding in MDPs is that the safety specification
has a probabilistic nature. A probabilistic shield blocks an action when the
probability of the action causing harm is larger than some threshold λ.

3.4. CLASSICAL SHIELDING 61

Property specification.

Let M = (S,A,P) be an MDP, T ⊆ S be a set of “unsafe” states to avoid,
k ∈ N ∪ {∞} a step horizon, and λ ∈ [0, 1]. The language specifying correct
traces will be denoted LT,λ,k. A trace τ = (s0, a0, s1, a1, . . .) is in LT,λ,k if for
every i ≥ 0, we have

PM
max (Avoidk(si, ai, T)) ≥ λ · PM

max (Avoidk(si, T)) . (3.9)

This means that for an action ai to be safe at state si, the probability of not
reaching a bad state if the agent behaves “optimally” has to be at least λ times
the probability of an agent that is optimal in avoiding bad states.

For example, if λ = 1/2, and the policy that best avoids T reaches it with a 10%
probability, any action from which T can be avoided with a 20% probability is
considered to be “safe enough”. In general, the larger the value of λ, the more
restrictive or cautious the shield is. In the extremes, when λ = 0, any action is
allowed, and when λ = 1, only the safest actions are allowed, i.e., the actions
for which PM

max (Avoid≤k(si, ai, T)) = PM
max (Avoid≤k(si, T)).

An agent π : S → D(A) is correct with respect to a specificaiton LT,λ,k if any
valid trace of π is in LT,λ,k. Following the same notation convention as in
Section 2.4.2, when we are considering unbounded properties, i.e., when k = ∞,
we may drop the k from our notation, writing the specification as LT,λ instead
of LT,λ,∞.

Shield synthesis.

Since the environment and the safety specification are defined in a memoryless
manner, we can also consider shields as memoryless. We define the shields
induced by a specification LT,λ,k as one would expect.

A pre-shield in an MDP is a function : S → 2A A pre-shield-ready agent in an
MDP is a function π : S × 2A → D(A). A post-shield in an MDP is a function
: S ×A → A.

Let T ⊆ S, k ∈ N ∪ {∞}, and λ ∈ [0, 1] defining a probabilistic safety specifica-
tion LT,λ,k. The pre-shield induced by T , k, and λ is

pre
T,λ defined as:

pre
T,λ,k(s) =

{
a ∈ A : PM

max (Avoid≤k(si, ai, T)) ≥ λ · PM
max (Avoid≤k(si, T))

}
.

Similarly, let π : S → D(A) be a correct agent. The post-shield induced by T ,
λ, and π is

pos
T,λ,π defined as

pos
T,λ,k,π(s, a) =

{
a if PM

max (Avoid≤k(si, ai, T)) ≥ λ · PM
max (Avoid≤k(si, T))

π(s) otherwise.

Theorem 3.4. Let M = (S,A,P) be an MDP. Let T ⊆ S, k ∈ N ∪ {∞}, and
λ ∈ [0, 1] forming a probabilistic safety specification LT,λ,k. Then:

1. The minimally correct pre-shield exists and is
pre
T,λ,k.

62 CHAPTER 3. REACTIVE DECISION MAKING FRAMEWORK

2. For any correct agent π, the shield
pos
T,λ,k,π is minimally correct.

Proof. Correctness should be clear by construction in both cases, so we only
need to argue for minimality. The arguments to prove minimality are similar to
the arguments used to prove Theorem 3.2.

(1.) We argue the first point by contradiction. Assume that
pre
T,λ,k is not

minimally correct. Then there exists a pre-shield-ready agent Ag : S × 2A →
D(A) and a correct pre-shield such that J pre

T,λ,k

(Ag) ̸⊆ J (Ag). Therefore,

there exists s ∈ S such that s ∈ J pre

T,λ,k

(Ag) but s /∈ J (Ag). Since s ∈ J pre

T,λ

,

there exists a ∈ Supp(Ag(s,A)) with a /∈ pre
T,λ,k(s). By the definition of

pre
T,λ,k,

the action a is not in the allowed actions of the shield only if

PM
max (Avoid≤k(si, ai, T)) < λ · PM

max (Avoid≤k(si, T)) . (3.10)

On the other hand, since s /∈ J (Ag), it means that Supp(Ag(s,A)) ⊆ (s).

In particular, a ∈ (s). Consider a pre-shield-ready agent Ag ′ such that
Ag ′(s, (s)) = {a}. Let Ag ′ be the shielded agent resulting from applying

to Ag ′. This is a correct agent such that Ag ′(s) = a. But then the fragment
(s, a) would be part of a correct trace, meaning that

PM
max (Avoid≤k(si, ai, T)) ≥ λ · PM

max (Avoid≤k(si, T)) ,

which contradicts Equation (3.10).

(2.) We also argue the second point by contradiction. Suppose there ex-
ists π : S → D(A) correct such that

pos
T,λ,k,π is not minimally correct. Then

there exists an agent Ag : S → D(A) and a correct post-shield such that
J pos

T,λ,k,π

(Ag) ̸⊆ J (Ag). Therefore, there exists s ∈ S such that s ∈ J pos

T,λ,k,π

(Ag)

but s /∈ J (Ag).

Since s /∈ J (Ag), it means that for all a ∈ Supp(Ag(s)), we have (s, a) = a.

Since s ∈ J pos

T,λ,k,π

, there exists a ∈ Supp(Ag(s)) with a ̸= pos
T,λ,k,π(s, a). In

particular, since a ∈ Supp(Ag(s)), we have (s, a) = a. This means that

PM
max (Avoid≤k(si, ai, T)) < λ · PM

max (Avoid≤k(si, T)) . (3.11)

On the other hand, consider an agent Ag ′ : S → D(A) such that Ag ′(s)(a) > ε
for some ε > 0, i.e., an agent that from s outputs a with a positive probability.
The shielded version of Ag ′, denoted by Ag ′ is a correct agent, and Ag ′ (s) = a

with probability ε. Therefore, (s, a) is a fragment contained in valid traces of a
correct agent, and thus satisfies

PM
max (Avoid≤k(si, ai, T)) ≥ λ · PM

max (Avoid≤k(si, T)) ,

which contradicts Equation (3.11).

While this is our operational definition of a probabilistic shield and the one we
will be using in Chapter 5, there are certain variations that have been proposed
in the literature

3.4. CLASSICAL SHIELDING 63

a, b

b a, b

δ

1− δ

a

1− ε

ε

s0 s1

s3

s2

a, b

Figure 3.5: MDP described in Example 3.2.

Absolute threshold

The value of λ in Equation (3.9) is considered a relative threshold, as it states
what the minimum probability of reaching an unsafe state can be relative to
the best choice of action. An alternative that has been studied in the litera-
ture [Pra+21a] is to use λ as an absolute minimum threshold on the probability
of not reaching a bad state. In such shields, the condition to let an action pass
is

PM
max (Avoid≤k(si, ai, T)) ≥ λ. (3.12)

Note that if an action satisfies Equation (3.12), then it also satisfies Equa-
tion 3.9, making shields with absolute threshold more restrictive than shields
with relative threshold.

This choice has the advantage of being properly restrictive in the more “critical”
states. For example, consider a threshold λ = 0.6. In a state s ∈ S with
PM
max (Avoid≤k(s, a, T)) = 0.75, the shield with an absolute threshold would only

let actions pass with an optimal probability of avoiding an unsafe state between
0.6 and 0.75. On the other hand, the shield with λ as a relative threshold would
allow actions with the optimal probability of avoiding an unsafe state as low as
0.45.

The main downside of the “absolute” approach is that in some states there may
not be any “allowed” action. In such states, one should just resort to the optimal
actions (that would always be allowed with a relative threshold approach).

Global guarantees

The property defined in Equation (3.9) is local for every decision. A desirable
property would be that a shield synthesized for a specification LT,λ,k would
satisfy for every agent Ag and any initial state of the MDP s, that we have
PM
Ag (Avoid≤k(s, T)) ≥ λ.

This is not the case. In fact, the following example shows that we can make
PM
Ag (Avoid≤k(s, T)) arbitrarily small while keeping λ arbitrarily large.

Example 3.2. Let ε, δ ∈ (0, 1). Consider the MDP M = (S,A,P) illustrated
in Figure 3.5, with S = {s0, s1, s2, s3}, A = {a, b} and P as described in the
figure, where any transition that is drawn and has no number on it has probability
1. Consider T = {s3} and k = ∞. The only state where the agent’s decision

64 CHAPTER 3. REACTIVE DECISION MAKING FRAMEWORK

matters is s0, so an agent can be described as Pa, the probability of taking action
a in s0. If an agent chooses a, it reaches s3 with probability 1− ε and goes back
to s0 with probability ε. If an agent chooses b, it reaches s3 with probability δ
and avoids s3 altogether with probability 1 − δ. The optimal strategy to avoid
s3 is clearly pa = 0, and in such case Pmin(Reach(s0, {s3})) = δ. For a general
agent pa, we have

Ppa (Reach(s0, a, {s3})) = 1− ε+ ε · Ppa (Reach(s0, {s3})) ,
Ppa (Reach(s0, b, {s3})) = δ,

Ppa (Reach(s0, {s3})) = pa · [1− ε+ ε · Ppa (Reach(s0, {s3}))] + (1− pa)δ.
(3.13)

Therefore, with a threshold λ, action a is allowed by the shield if

1− (1− ε+ εδ) ≥ λ(1− δ),

which is equivalent to ε ≥ λ. On the other hand, isolating from Equation 3.13
we get:

Ppa (Reach(s0, {s3})) =
pa(1− ε) + (1− pa)δ

1− paε
= 1− (1− pa)(1− δ)

1− paε
. (3.14)

Once ε is fixed, we can make the value in Equation 3.14 arbitrarily close to 1
by modifying δ and pa.

A potential solution for such cases would be to define the set of correct agents
as those agents that satisfy

PM
Ag(Avoid(s, T)) ≥ λ. (3.15)

This would require us to change the concepts used to define shields, as the
property described in Equation 3.15 cannot be described in terms of traces.

Chapter 4

Safety Shielding Resilient
to Delayed Observation

No oblideu mai que si ens llevem ben d’hora, però ben d’hora ben
d’hora, i no hi ha retrets ni hi ha excuses, i ens posem a pencar, som
un páıs imparable. 1 — Josep Guardiola i Sala.

4.1 Motivation and Outline

Incorporating delays into safety computations is essential for nearly all real-
world control problems. These delays, arising from data collection, processing,
or transmission, are ubiquitous in systems operating within complex environ-
ments [HL72; Bal92; Nil98; Tri04; Ber+08; Che+16; HFM17]. When not prop-
erly addressed, such delays can become the root cause of critical safety issues.

Example 4.1. Consider a scenario where a car detects a pedestrian at position
(x, y) and accounts for a known time delay δ between sensing and acting. The
vehicle must plan its actions to ensure safety for any possible position of the
pedestrian within the interval (x ± ε, y ± ε), where ε is determined based on
assumptions about the pedestrian’s velocity and the delay δ.

Safety shielding is often used to guarantee safe execution of an agent in an
environment that a safety game can model. However, traditional safety shields
assume no delay between sensing and acting, which limits their applicability in
real-world scenarios.

In this chapter, we introduce synthesis algorithms for delay-resilient safety
shields, i.e., shields specifically designed to maintain safety even when input
delays are present. These algorithms account for the uncertainties introduced
by delays, enabling robust performance in dynamic environments. Figure 4.1
illustrates the shielding setup under delayed conditions.

1Never forget that if we get up very early, but very early, very early, and there are no
reproaches or excuses, and we get down to business, we are unstoppable.

65

66 CHAPTER 4. DELAY-RESILIENT SHIELDING

(a) Pre-shield. (b) Post-shield.

Figure 4.1: Delay-resilient shielding scheme.

To synthesise delay-resilient shields, we incorporate a worst-case delay in the
safety game, which induces imperfect state information, and use the algorithm
proposed in [Che+18; Che+21] to compute the maximally permissive winning
strategy. The delay-resilient pre-shields are then computed from the maximally
permissive winning strategy in the delayed safety game. For post-shields, in
addition to the maximally permissive winning strategy, we need a deterministic
winning strategy that will be used to obtain a fixed replacement action for any
unsafe action. To do so, we can define a property over the state space and
set the action maximising such property as the one fixed by the shield. We
study two such properties: controllability and robustness. The controllability
value assigns to any state s the maximal delay on the input under which s stays
safe. The robustness value of a state s is the length of the minimal path from
s to any unsafe state. We discuss how to maximise a state property under the
uncertainty introduced by the delayed input.

Finally, we evaluate delay-resilient shields in two case studies. The first one
is a gridworld in which we implemented all proposed types of delay-resilient
shields and compare computation cost and interference rates. We show that
delay-resilient post-shields that choose corrective actions maximising either ro-
bustness or controllability tend to stabilise the execution, requiring fewer inter-
ferences by the shield. In the second case study, we integrate shielding under
delay in the driving simulator Carla [Dos+17] to enforce collision avoidance
for autonomous driving agents at intersections with cars and pedestrians under
delayed observations. Our results show the effects of delays on the safety analy-
sis and that our method is scalable enough to be applied in complex application
domains. The source code and scripts to reproduce the experiments, along
with videos from our experiments in Carla, are available on the accompaning
repository2.

Contribution. The work presented in this chapter can be summarized in the
following contributions.

• We formalize the concept of pre-shield and post-shield resilient to delayed
observation, showing how to compute them with the maximally permissive
strategy of the corresponding safety game.

• We describe in detail the algorithm to compute the maximally permissive
strategy of a safety game under delay with restricted memory, extending

2https://github.com/filipcano/safety-shields-delayed

https://github.com/filipcano/safety-shields-delayed

4.2. SHIELDS AS SAFETY GAMES 67

the algorithm presented in [Che+21].

• We introduce the concepts of robustness and controllability and how to
build post-shields maximising each one.

• We provide theoretical insight about the differences and similarities of
the controllability and the robustness criterion when choosing a corrective
action in post-shielding.

• We validate our approach in two use cases: a gridworld and a realistic
driving scenario. As far as we know, we present the first integration of
shields in a realistic driving simulator.

Outline. We use in this chapter the formalism of two-player safety games with
delayed inputs as defined in Section 2.3. In Section 4.2 we present the concept of
shields resilient to delays and explain the algorithm required to computed them
by finding the maximally permissive winning strategy of the underlying safety
game undel delayed information. In Section 4.3 we present the two properties
proposed to guide the synthesis of post-shields and how to synthesise shields,
maximising them. In Section 4.4, we explore the relation between robustness
and controllability, proving that they can be arbitrarily different. Finally, in
Section 4.5 we present the results of our experimental evaluation on two use
cases and in Section 4.6 we discuss limitations and related work.

Declaration of sources. This chapter is partially based and reuses material
from the following source previously published by the author of this thesis:

[CC+23b] Filip Cano Córdoba, Alexander Palmisano,Martin Fränzle,
Roderick Bloem, and Bettina Könighofer. “Safety Shielding under De-
layed Observation”. In: Proceedings of the International Conference on Auto-
mated Planning and Scheduling (ICAPS) 33.1 (2023), pp. 80–85.

4.2 Delay Resilient Shields as Strategies in Safety
Games

As we have described in Sections 3.2.1 and 3.4.1, a safety game can be seen as
a particular case of the reactive decision-making framework, where minimally
correct shields (Definition 3.12) correspond to maximally permissive winning
strategies of the corresponding safety game.

Following the construction outlined in Section 2.3.2, given a safety game,
G = ⟨S, s0, Senv, Sag,A, T ,F⟩, we consider the corresponding game played with
delay δ and memory µ, for given values of δ, µ ∈ N, µ ≤ δ.

As described in Section 3.4.2, specifically stated in Theorem 3.3, computing
minimally correct shields in safety games under delay δ and memory µ corre-
sponds to computing the maximally-permissive strategy ξ of the corresponding
game. Then, using the notation in Section 3.4.2, given the maximally permis-
sive winning strategy ξ, the minimally correct pre-shield is

pre
ξ , and minimally

correct post-shields are computed as
pos
ξ,χ , where χ is a determinization of ξ.

68 CHAPTER 4. DELAY-RESILIENT SHIELDING

The following section describes the algorithm used to compute such strategies.
As mentioned before, this is a natural extension of the algorithm presented
in [Che+21] for games where the amount of memory and the delay are the
same.

4.2.1 Computation of Maximally Permissive Winning Strate-
gies in Safety Games under Delay

The algorithm is given in pseudocode in Algorithm 1. The method to solve a
delayed safety game consists of iteratively constructing and solving the safety
game with increasing delays d = 0, 1, . . . , δ and memory size m = min(d, µ),
starting with d = m = 0, which corresponds to the case without delays, as
presented in Section 2.3. At every iteration in d, the maximally permissive
strategy for the agent is computed using the strategy for the previous delay
d − 1 (lines 4,5 or 9,10 depending on the value of m), followed by a reduction
of the game graph aiming to mitigate the exponential blow-up in the state
space (line 11) and the computation of the transient phase (line 12). Note that,
following the convention in Equation 2.5, the action register [y1, . . . , ym] is in
reversed order, i.e., the last action performed by the agent is ym.

The method to compute the maximally permissive strategy using the previous
delays is slightly different for the case of full memory (m = d) and the case of
restricted memory m < d.

Algorithm 1: Maximally Permissive Strategy under Delay, memory
µ ≤ δ (adapted and extended from [Che+18, Algorithm 1]).

input : Safety Game G, maximum delay δ, memory µ
1 ξ0 ← StrategyPerfectInfo(G);
2 for d = 1, . . . , δ do
3 m← min(d, µ);
4 for s ∈ Sag, [y1, . . . , ym] ∈ Am do
5 if m = d then

6 Is,ym ← {s′′ ∈ S1 : s
ym−−→ s′

u−→ s′′};
7 ξd,m(s, [y1, . . . , ym])←

⋂
s′′∈Is,ym

ξd−1,m−1(s
′′, [y1, . . . , ym−1]);

8 else

9 Is ← {s′′ ∈ S1 : s
y−→ s′

u−→ s′′, y ∈ A};
10 ξd,m(s, [y1, . . . , ym])←

⋂
s′′∈Is

ξd−1,m(s′′, [y1, . . . , ym]);

11 Shrink(ξd,m);
12 InitialMoves(ξd,m);

13 return ξδ,µ

• Case m = d. To compute the maximally permissive strategy using previ-
ous delays, we compute Is,ym

(line 6), corresponding to the set of states
that the agent can get as the next observation when the current observa-
tion is state s and the chosen action is ym. From states where the agent
has already decided upon an output, it is equivalent to playing with delay
d − 1. Therefore, the strategy allows the actions that would be safe for
delay d−1 on all possible next observations, eliminating the last executed
action, ym, from the action register (line 7).

4.2. SHIELDS AS SAFETY GAMES 69

• Case m < d. To compute the maximally permissive strategy using previ-
ous delays, we compute Is (line 9), corresponding to the set of states that
the agent can get as the next observation when the current observation is
state s and chosen action is any y ∈ A. In this case, y is undetermined
because of the restricted memory: the output that is provided just next to
the observed state has already been forgotten by the system. From states
where the agent has already decided upon an output, it is equivalent to
playing with delay d − 1. Therefore, the strategy allows the actions that
would be safe for delay d−1 in all possible next observations, maintaining,
in this case, the same memory [y1, . . . , ym] (line 10).

The method StrategyPerfectInfo (line 1) computes the maximally permissive
strategy for the game with perfect information [Tho95]. The method Shrink

(line 11) ensures that in case the intersection in lines 5 or 10 is empty, the
maximally permissive strategy in a state s′′ ∈ Is,ym

or s′′ ∈ Is does not contain
the output ym [Che+21, Algorithm 3]. The method InitialMoves (line 12)
computes the strategy for the transient period, before the agent can get any
observed state, see Algorithm 2.

Algorithm 2: InitialMoves: Strategy for the transient period
(adapted from [Che+18, Algorithm 1]).

input : Safety game G, ongoing maximally permissive strategy ξd,m

1 J = {s : s0
u−→ s};

2 for [y1, . . . , ym−1] ∈ Am−1 do
3 ξd,m(ε, [y1, . . . , ym−1])←

{
yd :

⋃
s∈J ξd(s, [y, y1, . . . , ym−1]) ̸= ∅

}
;

4 for k = m− 2, . . . , 0 do
5 for [y1, . . . , yk] ∈ Ak do
6 ξd,m(ε, [y1, . . . , yk])←

{
y0 : ξd,m(ε, [y0, y1, . . . , yk]) ̸= ∅

}
;

7 return ξd,m

Complexity analysis. Algorithm 1 computes each strategy ξd,m for increas-
ing values of d = 1, . . . , δ (main loop, lines 2-12). For each strategy, the al-
gorithm goes over all states in Sag and registers in Am (loop in lines 4-10),
and at each iteration, computes an intersection of Aenv elements. The cost of
Shrink(ξd,m) and InitialMoves(ξd,m) is negligible in comparison.

Therefore, the cost of computing the strategy ξd,m is O(Sag · |A|m · |Aenv|),
and the total cost of computing ξδ,µ is O (|Sag| · |Aenv| · (µ · |A|µ + (δ − µ)Aµ)),
simplified to

O (δ · |Sag| · |Aenv| · Aµ) . (4.1)

Recall that Aenv represents a set of actions for the environment. As discussed in
Equation (2.1), without loss of generality, we can assume |Aenv| is the maximum
out-degree of the environment transitions.

70 CHAPTER 4. DELAY-RESILIENT SHIELDING

4.3 Determinization of Strategies Resilient to
Delays

The synthesis procedure for a delay-resilient post-shield relies on the construc-
tion of a deterministic winning strategy, denoted by χδ,µ. This section outlines
the process for deriving such a strategy.

In Section 4.3.1, we describe the method for computing the deterministic strat-
egy that maximises a given fitness value, considering both memory and delay.

We present two examples of fitness functions in Sections 4.3.2 and 4.3.3. These
are specifically designed to minimise the number of instances where the post-
shield must interfere due to delays in the input.

4.3.1 Determinisation of Delayed Strategies Maximising a
Fitness Function

When deciding which action to use as a corrective action for post-shields, we
want to decide on an action that maximizes a certain criterion. In this section,
we assume the existence of a fitness function φ : S → R that assigns a fitness
value to each state. We will show how to find the actions that maximize an
abstract fitness value, and in the following sections, we will apply this method to
concrete fitness functions designed to prevent unsafe transitions due to delayed
inputs.

Our goal is to choose at each state the action that maximises this fitness function
among all actions allowed by ξδ,µ. However, because of the uncertainty of the
transitions of the environment, it is not clear what it means to maximise the
fitness function, since the agent has no complete control over the state of the
safety game after each of the agent’s actions.

For this computation, we will take the implicit assumption that from a given
state s ∈ Senv, and a given number of transitions n, all traces from s with
n transitions are equally probable. In this sense, we say that the strategy we
compute maximises the expected fitness value – with the implicit understanding
that the expectation is taken under the assumption of a uniform probability
environment. This assumption can be refined to include more accurate repre-
sentations of the probabilistic nature of the environment whenever such models
are available. We leave this extension for future work.

For our computation, we need to define the k-forward multiset of states Fk(s, σ),
which captures the states reachable from s within k steps respecting a given
memory σ ∈ Aµ, i.e. the last µ actions of the agent.

Definition 4.1 (k-Forward Multiset of States). Let σ = [z1 . . . zµ] ∈ Aµ be a
register of actions. For a state s ∈ Sag, the k-forward multiset is

Fk(s, σ) =


s2k : ∃s1, . . . , s2k−1 ∈ S, and∃y1, . . . , yk ∈ A such that

(1)∀i = 1 . . . µ, yk−µ+i = zi, and

(2) s
y1−→ s1

u−→ s2
y2−→ s3

u−→ . . .
u−→ s2k−2

yk−→ s2k−1
u−→ s2k

 ,

where each state s2k is counted as many times as there are distinct sequences
s1, . . . , s2k−1 ∈ S and y1, . . . , yk ∈ A satisfying conditions (1) and (2).

4.3. DETERMINIZATION OF STRATEGIES 71

The expected fitness value is computed over the k-forwarded multiset of states,
thus, each state adds to the value as many times as it appears in the multiset.

Definition 4.2 (Expected Fitness Value). Let s ∈ S be a state, σ ∈ Aµ a
register of actions and φ : S → R a fitness function. For a given delay δ, the
expected fitness value Eφ(s, σ) is defined as the average of the fitness values of
all states s′ in Fδ(s, σ),

Eφ(s, σ) =
1

|Fδ(s, σ)|
∑

s′∈Fδ(s,σ)

φ(s′).

The strategy χδ,µ : Sag ×Aµ → A that maximises the expected value of φ is:

χδ,µ

(
s, [z1 . . . zµ]

)
= argmax

y∈ξδ,µ(s,[z1...zµ])

Eφ

(
s, [y, z1 . . . zµ]

)
.

Complexity of strategy determinisation. The deterministic strategy is
computed for |Sag|·|A|µ states. Each forward multiset contains at most |Aenv|δ · |A|δ−µ

states, where Aenv is a set of actions for the environment. For each of these
states, the fitness value φ is computed. Assuming c(φ) is the computational
cost of computing φ for one state, and φ is stored in a lookup table, the total
complexity adds up to

O
(
|Sag| ·

(
|Aenv ×A|δ + c(φ)

))
. (4.2)

4.3.2 Post-Shields that Maximise Controllability

In this section, we define and compute a fitness function called the controllability
value. that assigns to each state the maximum delay for which a safe output
exists. For any state s ∈ Sag, the controllability value φc : Sag → R is the largest
delay for which a register of actions exists that makes s safe. To formally define
the controllability value, we use the notion of controllable states.

Definition 4.3 (Controllable State). A state s ∈ Sag is controllable under
delay δ and memory µ if there exists σ ∈ Aµ such that ξδ,µ(s, σ) ̸= ∅, and
uncontrollable otherwise. A state s ∈ Senv is controllable under delay δ and
memory µ if all states s′ ∈ Sag such that s

u−→ s′ are controllable under delay δ
and memory µ.

Definition 4.4 (Controllability Value). The controllability value with memory
µ of a state s ∈ S is the maximum delay δ for which s is controllable with delay
δ and memory µ. We denote it as φc(s).

To unpack this definition, for an agent state s ∈ Sag, we say that φc(s) = δ
if there exists σ ∈ Aµ such that ξδ,µ(s, σ) ̸= ∅ and for all σ′ ∈ Aµ, we have
ξδ+1,µ(s, σ

′) = ∅.
In Definition 4.3, guaranteeing only the existence of σ ∈ Aµ such that ξδ,µ(s, σ) ̸=
∅ might seem too weak because one does not know in advance what the action
register may be when observing a state. Note that, however, Algorithm 1 guar-
antees that an agent following ξδ,µ can only go through pairs (s, σ) ∈ Sag∗×Aµ

such that ξδ,µ(s, σ) is non-empty. This is one of the main consequences of the

72 CHAPTER 4. DELAY-RESILIENT SHIELDING

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7

(a)

1 2 3

(b)

2 4 5 6

(c)

1 2 3 4 5 6 7

(d)

Figure 4.2: (a) Effects of delay on state observation. (b) Gridworld depicting
the least delay-resilient states. (c) Gridworld with φdr values for all states. (d)
Gridworld with φrs values for all states.

Shrink method in Algorithm 1, and is extensively discussed in [Che+21, Algo-
rithm 3].

If a state s is inside the winning region W of the safety game without delay, it
has a controllability value greater or equal to 0. Furthermore, note that as a
consequence of the iterative computation of winning strategies for safety games
under delay, if a state s is controllable for delay δ > 0, it is also controllable
for delay δ − 1. By convention, if s /∈ W , i.e., there is no delay δ that makes it
controllable, we say that φc(s) = −1.

A shield that maximizes controllability will tend to steer the agent towards
states that can be safe even with large delays. In a setting with variable delay,
the shield always operates with the worst-case delay in mind, but the agent may
make a more refined use of the variable delay, so steering the agent towards high-
controllability states translates to more freedom for which actions to choose in
the future, as there are fewer paths leading to uncontrollable states.

Since the maximal delay possible can be very large and the state space of the
corresponding safety game grows exponentially with the delay, we introduce a
cutoff value δmax and compute the maximally-permissive winning strategy until
δmax.

Example 4.2. We showcase the computation of φc on a simple 7 × 9 grid-
world, depicted in Fig. 4.2(a). Initially, a robot is placed at (1, 9). The en-
vironment and the agent can move the robot by one field in alternating turns.
The safety specification requires that the robot never visits the fields (4, 4) nor
(6, 7). Encoding the model and the specification leads to the safety game G =
⟨S, Sag, Senv,A, T ,F⟩:

• S = X×Y ×B, where X = {1, . . . , 7}, Y = {1, . . . , 9} represent the robot’s
position and B = {⊤,⊥} indicates whether it is the turn of the agent (⊤)
or the environment (⊥) to move the robot. The states of the environment
are Senv = X × Y × {⊥}, and of the agent are Sag = X × Y × {⊤}.

• The unsafe states are S \ F = {(4, 4), (6, 7)} × B.

4.3. DETERMINIZATION OF STRATEGIES 73

• The agent’s actions are A = {U, D, R, L, N} to move the robot one field

up, down, right, left, or to hold. Formally: (x, y,⊤)
U−→ (x, y + 1,⊥),

(x, y,⊤)
D−→ (x, y−1,⊥), (x, y,⊤)

R−→ (x+1, y,⊥), (x, y,⊤)
L−→ (x−1, y,⊥),

(x, y,⊤)
N−→ (x, y,⊥).

• The actions of the environment player to move the robot are Aenv =
{U′, D′, R′, L′, N′}, with a meaning analogue to those of the agent’s actions.

Moves that would lead the robot outside of the game’s boundary are replaced
by N. For this game G, we now compute the controllability values φc(s) for all
states s ∈ Sag.

First, we illustrate in Fig. 4.2(a) the effects of delays on the state information
of the play. In the example, we have a delay δ = 1 and memory µ = 1, and the
observed state of the game is s = (2, 5,⊤) (green robot) with memory σ = [U].
The set of possible current states is F1(s, σ) (marked green). To check whether
a next action y = R is safe, we compute F2(s, [R, U]) (marked blue or green).
Since F2(s, [R, U]) ⊆ F , R is a safe action from (s, [U]).

Next, we exemplify the computation of the controllability values for the states
(5, 5), (6, 6), (7, 7) and (7, 8). In Fig. 4.2 (b), each field of the grid is coloured
according to the smallest distance to one of the unsafe states for distances 1, 2
and 3. With this colour coding, the state (x, y,⊤) is controllable with delay δ if
there exists sequence of actions σ of size δ, that takes the robot outside of the
region coloured with δ. The reader can see that all states are controllable for de-
lay δ = 1, 2, but for δ = 3, states (5, 5), (6, 6), (7, 7) and (7, 8) are uncontrollable
(marked with a black robot).

Fig. 4.2 (c) illustrates the controllability value φc(s) for all states. Each field of
the grid is coloured according to its controllability value. Next, we exemplify how
to compute a deterministic strategy χδ=1,µ=1(s, σ) that maximizes the average of
φc over all possible current states. Consider a state s = (3, 4,⊤) (black robot)
with memory σ = [U]. The only two outputs allowed by ξ1,1(s, σ1) are U and
L since any other output would lead the robot to a state at a distance two or
less from an unsafe state. The forward multiset F2(s, [L, U]) is marked with a
dashed green line and results in the expected value Eφc(s, [L, U]) = 74/26. The
expected value Eφc

(s, [U, U]) = 73/26 is computed analogously. A delay-resilient
post-shield that maximises the controllability value corrects the outputs R, D, and
N in state ((3, 4,⊤), [U]) to the output L.

Complexity of computing controllability values. Computing the con-
trollability value as a fitness function only requires computing the maximally
permissive winning strategy for the delay δmax chosen as the cutoff value — see
Equation (4.1).

4.3.3 Post-Shields that Maximise Robustness

In this section, we define an alternative fitness function. The robustness value
φr : S → R assigns to every state the shortest distance to any unsafe state in
the game graph. Intuitively, a large robustness value suggests that the system is
in a state that “easily” satisfies the specification, while values near zero suggest

74 CHAPTER 4. DELAY-RESILIENT SHIELDING

that the system is close to violating it. A shield that maximises robustness
potentially requires fewer corrections in the near future.

Definition 4.5 (Robustness Value). Let G = ⟨S, s0, Senv, Sag,A, T ,F⟩ be a
safety game with winning region W – as defined in Equation (2.3). For any
state s ∈ Sag, the robustness value φr(s) is defined as the smallest k such that
there exists σ ∈ Ak such that Fk(s, σ) ̸⊆ W .

Note that in our definition, we are counting distance only in states of the agent.
That is, when a state has a robustness value of k, there exists a trace with 2k
states – half of them of the agent, half of them of the environment – that leads
to a state outside of the winning region.

Example 4.3 (Continuation of Example 4.2). We exemplify the computation of
φr(s) on the gridworld of Fig. 4.2 (d). Each field of the gridworld is colored with
φr(s) of its corresponding agent state s. For any s, the fitness function φr(s)
is computed as the distance to the closest unsafe state. From s = (3, 4,⊤) with
σ = [U] at delay δ = 1 and memory µ = 1, ξ1,1(s, σ) allows the actions U and L.
Since the expected robustness value Er(s, [U, U]) is greater than Er(s, [R, U]), the
deterministic strategy χ1,1(s, [U]) that maximizes φr would choose U as corrective
output.

A shield that maximizes robustness will steer the agent towards states that are
as far away as possible in the game graph from unsafe states. While this is a
useful heuristic, note that distance in the safety game may not translate to real
safety under delayed observations, as there may be states that are far away from
the unsafe region, but with well-defined paths that the environment can force
the agent to take toward unsafe states. We explore some of these examples in
the following section.

Complexity of computing robustness values. The fitness function φr can
be computed as a breadth-first search on the states, so all robustness values can
be computed in O(|S|) time and memory.

4.4 Relation between Robustness and Control-
lability

Once we have shields that maximize robustness and controllability, we would like
to find results that guarantee certain safety properties when using these shields.
By construction, the post-shields defined in the previous sections maximize their
corresponding fitness function.

By increasing the value of δ, we can make post-shields that guarantee a certain
controllability value. Similarly, we can add a buffer zone to the winning region
W , to force that only states at a distance at least d from unsafe states are ever
visited.

A more interesting guarantee would be some result that guarantees robustness
values in terms of controllability, and vice-versa. In this section, we study the
relationship between robustness and controllability values.

4.4. RELATION BETWEEN ROBUSTNESS AND CONTROLLABILITY 75

Although the intuition behind robustness and controllability is very similar, and
in our experiments, we found them to be equal most of the time, we show that
only very basic relations hold in general. We show that there are example games
where robustness is arbitrarily higher than controllability (Theorem 4.2), and
vice-versa (Theorem 4.3). These examples would break any result of guarantee-
ing controllability when maximizing robustness, or robustness when maximizing
controllability.

4.4.1 Relation between Robustness and Controllability for
Memory-Restricted Strategies.

For strategies with a restricted memory. i.e., with µ ≤ δ, we show a single result
and explore its consequences for the edge cases.

Theorem 4.1. Let G be a safety game with delay δ and memory size µ. For
any controllable state s ∈ Sag it holds that

φr(s) ≥ δ − µ+ 1. (4.3)

Proof. We prove the result by contradiction. Let s ∈ Sag be controllable, i.e.
with ξδ,µ(s, σ) ̸= ∅, for some σ ∈ Aµ. Assume that φr(s) < δ − µ + 1, or
equivalently, φr(s) ≤ δ − µ.

Then, there exists a trace of length δ − µ leading outside of the winning region

W . Let τ = s, s1, . . . , s2(δ−µ) be such trace, where s2(δ−µ) /∈ W and s
y1−→

s1
u−→ s2

y2−→ s3
u−→ . . .

u−→ s2(δ−µ−1)
yδ−µ−−−→ s2(δ−µ)−1

u−→ s2(δ−µ), for some actions
y1, . . . , yδ−µ ∈ A.

Since the memory of the agent is limited to µ, when the observed state is s,
the agent only knows that the current state is s′ at a distance δ from s, with a
trace where the last µ actions are known. However, this would already be too
late: whatever the last µ actions are, any trace starting with τ – of which the
agent has no control – will pass through s2(δ−µ) /∈ W . Therefore, s cannot be
controllable with delay δ and memory µ. This proves the result.

A corollary of Theorem 4.1 is that φr(s) ≥ φc(s)−µ+1, since the controllability
value is a valid delay for which a state s is controllable.

This result gives us information about the minimum amount of memory required
for a winning strategy. The argument is as follows.

A safety game G admits a winning strategy under delay δ if any state s ∈ Sag

with s0
u−→ s is controllable under delay δ. Therefore, the minimum amount of

memory required for a winning strategy is

µ ≥ δ − φr(s0) + 1. (4.4)

This implies that for a fixed game G and increasing delay δ, the amount of
memory needed to have a winning strategy increases after a certain threshold.
At some point, the delay is so high that no memoryless strategies exist: if we
set µ = 0 in Equation (4.4), we get δ ≤ φr(s0) − 1.

76 CHAPTER 4. DELAY-RESILIENT SHIELDING

On the other extreme case, if we set µ = δ in Equation (4.4), we get φr(s0) ≥
δ − δ + 1 = 1, which just means s0 ∈ W . More generally, if we set µ = δ in
Equation (4.3), we get that any state s that is controllable satisfies φr(s) ≥ 1,
which just means that s is in the winning region. Therefore, Theorem 4.1
provides no bound for φc in terms of φr.

4.4.2 Relation between Robustness and Controllability for
Strategies with Full Memory.

In this section, we will prove two results that give counterexamples to any
possible bound of φc in terms of φr and vice-versa, for strategies with full
memory, i.e., with µ = δ.

Theorem 4.2. For all delay δ > 0, and all k ≥ 0, there exists a safety game
Gk
δ,µ=δ = ⟨S, s0, Sag, Senv,A, T ,F⟩ with one state s ∈ S satisfying

φc(s) < δ and φr(s) ≥ δ + k + 1.

Proof. We will do the proof by induction on k for any delay δ.

Base Case. For k = 0, we need to construct a safety game Gk
δ containing a state

s, that is uncontrollable for delay δ, but at least δ + 1 steps are needed to get
to an unsafe state. A game with a section as depicted in Figure 4.3 serves as an
example, with action set A = {x, y}.
For any given delay δ, the dotted pattern in the middle of the figure repeats
δ − 3 times. In this case, we will prove that state s is not controllable for delay
δ. The environment has a choice in se for the next state to be ŝ or s̃. When
the observed state is s, the current state is either ŝ′ or s̃′. Any action register
will consist of a sequence of x’s and y’s, and the only information relevant in
the register is the parity of y’s: an even number of y actions takes the state of
the game from ŝ to ŝ′ or from s̃ to s̃′, while an odd number of y actions takes
the state of the game from ŝ to s̃′ or from s̃ to ŝ′.

Therefore, in this game graph, without knowing the first choice of the environ-
ment – state ŝ or s̃ –, the agent cannot know whether the current state is ŝ′ or
s̃′. Since a safe action in ŝ′ leads to the unsafe state s× when taken from s̃′ and
vice versa, the state s is uncontrollable for delay δ.

Induction step. For a general k, we use the property for k − 1. Consider the
game graph Gk−1

δ satisfying the hypothesis.

This graph contains a state s uncontrollable for delay δ and with a robustness
value of at least δ + (k − 1) + 1 = δ + k. Without loss of generality, we assume
that the robustness value is exactly φr(s) = δ + k. If φr(s) was larger, Gk−1

δ at
state s would serve already as Gk

δ and the induction step would be finished.

State s being uncontrollable means that for any action register σ = (y1 . . . yδ),
the forward multiset Fδ(s, σ) contains at least another new uncontrollable state
s′ — which may be inside or outside W . The same argument can be applied to
the newly introduced uncontrollable states. Therefore, for any action register
σ, following repeatedly transitions from uncontrollable state to uncontrollable
state, eventually leads to a state outside of the winning region W .

4.4. RELATION BETWEEN ROBUSTNESS AND CONTROLLABILITY 77

x x x

x

x x x
x

y

y

y

y
y

y

y

y

se

ŝ ŝ′

s̃
s̃′

s×

δ − 3 times

∈ Senv

∈ Sag

s
x, y

Figure 4.3: Construction for base case of Theorem 4.2. Square nodes represent
states of the environment, circle nodes represent states of the agent. The dash-
dotted line represents the divide between the winning region and the rest of the
game. Except for states se and s×, only states and transitions of the agent are
labelled.

We define ΠU (s) as the set of all paths starting from s that end outside of
the winning region in exactly δ + k transitions. That is, paths of the form
τ = s, s1, . . . , s2(δ+k), with s2(δ+k) /∈ W . This set is non-empty because φr(s) =
δ + k. We enumerate paths in ΠU (s) = {τi : i ∈ I} with some appropriate
index set I.

While these paths are longer than δ, each of them contains at least one state
that is uncontrollable because it leads directly outside the winning region W .
For each i ∈ I, the path τi contains a state si that is uncontrollable for de-
lay δ because it leads directly outside the winning region (and not to a state
uncontrollable but inside the winning region).

Since si leads directly outside the winning region and is uncontrollable, we have
the following construction, illustrated in Figure 4.4.

From state si, there is at least a path of length δ that ends in a state sb ∈ Sag,
for which one transition with label x leads to a state outside of the winning
region sd /∈ W . Since sb ∈ W , there is another transition y leading to a safe
state sc. Since si is uncontrollable for delay δ, there is at least another state s′b
with a transition to an unsafe state s′d labeled by y, and a transition to a safe
state s′c labelled by another action z. This builds a tuple of states and actions
(sb, sd, x), as illustrated in Figure 4.4. We do not keep track of the rest of the
states and actions defined but keep in mind that they exist.

Note that sb ̸= s′b, s ̸= si and x ̸= y ̸= z. All the other states and actions could
be the same. In particular, Fig. 4.5 is drawn assuming sd = s′d.

There may be other tuples of states and outputs bordering with the unsafe
region. We enumerate them as (sb, sd, x)

i,j , where i is the index of si and
j ∈ {1, . . . , ni}, where ni is the number of different tuples when fixed i ∈ I.
When it is convenient to distinguish concrete states and actions for each index
(i, j), we use the equivalent notation (si,jb , si,jd , xi,j) instead of (sb, sd, x)

i,j .

For each i, we make the following construction. Consider all the tuples (si,jb , si,jd , xi,j)

as previously described for j ∈ {1, . . . , ni}. We construct a new game Gk−1
δ from

78 CHAPTER 4. DELAY-RESILIENT SHIELDING

s

si
sb

s′b

s′c

sc
x

z

y

y

sd

δ − 1k

∈ Senv

∈ Sag

Figure 4.4: Construction of a tuple (sb, sd, x) on the border of the winning
region as described in the text. Most i superscripts are omitted to make the
image cleaner. Marked in bold are the elements that are part of the tuple.

x1

x2

x3

s1b

s2b

s3b

s1a

s3a

s2a

x3

x2
x1

t1

t2

s×

sm

∈ Senv

∈ Sag

Figure 4.5: Construction of the bipartite complete graph described in the proof,
for a single index i and ni = 3. For the sake of simplicity all all three unsafe
states si,jd for j ∈ {1, 2, 3} are collapsed into a single unsafe state s× /∈ W .

Gk
δ where we add a state of sim ∈ Senv such that si,jb

xi,j

−−→ sim for all i, j. Then
we add new states si,ja ∈ Sag, one for each tuple. We connect these states as
follows, for all i ∈ I and all j ∈ {1, . . . , ni}:

sim
u−→ si,ja , and si,ja

xi,j

−−→ si,jd .

We also add another family of states, indexed by k, denoted tik ∈ Senv. We add
as many of them to make it such that for all i, j and all action x ̸= xi,j , there
exists k such that

si,ja
x−→ tik.

We also connect all tk with all the newly added agent states, that is

tik
u−→ si,ja , for all i, j, k.

The unsafe states in Gk
δ are inherited from Gk−1

δ . In particular, recall that the

states si,jd are unsafe by construction for all i and j.

In Figure 4.5, we illustrate this construction for the case of three tuples (ni =
3) on a single index i and an action set comprised of three actions (A =
{x1, x2, x3}). For each value of i, there would correspond a similar separate con-
struction. For larger values of ni, the corresponding complete bipartite graph
would become larger.

The first observation is that the states si,ja are only controllable for delay δ = 0.

This is because for any register of action σ = [x], si,ja
x−→ tk for some k, and then

4.5. EXPERIMENTAL EVALUATION 79

s0 s1 sk−1

Figure 4.6: Game graph where φc(s0) is arbitrarily large, and φr(s0) = k.

tk
u−→ si

′,j′

a for all i′, j′. So when the observed state is si,ja , the current state
(with delay δ = 1), can be any of the states si

′,j′

a . By construction, any possible

action x will be x = xi′,j′ for some i′, j′, and would lead to the state si
′,j′

d /∈ W .

With this construction, the state si is still uncontrollable for delay δ, because
any strategy that made it uncontrollable before leads now to sim, which is un-
controllable for any delay larger or equal to one, as we have explained in the
previous paragraph.

The existence of at least one of the tik for each i ∈ I is enough to ensure that
states si,ja are safe, i.e., si,ja ∈ W for all i, j. By adding enough states tik we
ensure that each state newly added to Sag has a defined transition for each
action in A.

Since the states si,ja are safe, the path τi needs to be extended by length 2 to
arrive at an unsafe state, which would be one of the si,jd .

Repeating this construction for each path τi of length δ+k, we make all previous
paths of length δ+k go through a construction as illustrated in Figure 4.5 before
reaching any unsafe state, making it take at least one more action to reach any
unsafe state. Thus, the robustness value of s is increased to δ+k+1 in the new
game graph Gk

δ , while the controllability value of s stays the same as it was in
Gk−1
δ .

Theorem 4.3. For all delay δ > 0, and all k > 0, there exists a safety game
Gk
δ,µ=δ = ⟨S, s0, Sag, Senv,A, T ,F⟩ with one state s ∈ S satisfying

φr(s) ≤ δ and φc(s) ≥ δ + k.

Proof. Consider a safety game where the environment has only one choice in
each state. In these kind of games, a player with memory can know exactly
where it is making the next move, so each safe state is controllable. With this
idea in mind, we construct a family of safety games Gk for which the initial state
s0 satisfies φr(s0) = k and is controllable with memory for any delay. Figure 4.6
illustrates this family of games.

4.5 Experimental Evaluation

For our experimental evaluation, we evaluate different types of shields resilient
to delays with full memory on two use cases: a simple gridworld and a more
complex scenario based on a realistic driving simulation.

80 CHAPTER 4. DELAY-RESILIENT SHIELDING

n

Figure 4.7: Gridworld with possible states after delay δ = 1.

4.5.1 Shielding in a Gridworld

Setting. Our first case study is an extension of the one from [Che+21]. Fig-
ure 4.7 illustrates a grid world of size 3n+4×9, where the width is parameterised
by the number of pairs of dead-ends n. There are two actors that operate in
the grid world: a robot (controlled by the agent), and a kid (controlled by the
environment). The safety specification requires the robot to avoid any collision
with the kid.

Game graph. The game graph encoding the relevant safety dynamics for the
grid world is G = ⟨S, s0, Sag, Senv,A, T ,F⟩, defined as follows.

• S = Xenv×Yenv×Xag×Yag×B\P×P×B, where Xag/env = {1, . . . , 2n+
5} and Yag/env = {1, . . . , 9} represent the (x, y) position of the robot
(agent) and the kid (environment), respectively. B indicates whether it is
the turn of the robot or the kid, and P represents the illegal positions,
marked in grey in Figure 4.7. Formally, P = {((x, 5), (2k + 1, y) : x ∈
{3, . . . , 2n + 3}, y ∈ {3, . . . , 7}, k ∈ {1, . . . , n + 1}}. The initial state is
s0 = (0, 0, 2n+5, 9,⊥), indicating that the robot is in the lower left corner,
the kid is in the upper right corner and it is the kid’s turn to move.

• The unsafe states are

S \ F = {(xenv, yenv, xag, yag, b) : (xenv = xag) ∧ (yenv = yag)}.

• The moves of the kid are defined by an action set Aenv = {U′, D′, R′, L′},
with the usual meanings of up, down, right, left. We define a richer action
set for the robot to compensate for the existence of delays in the input. The
action set is A = {N, U, D, R, L, UU, DD, RR, LL, UR, RU, UL, LU, DR, RD, DL, LD,
UUR, UUL, DDR, DDL, RRU, RRD, LLU, LLD}. In summary, the robot can move
zero, one or two steps in each direction, and can also perform three-step
L-shaped moves.

• The transitions work as expected. Environment transitions modify the
position of the kid (xenv, yenv), while the agent’s actions modify the po-
sition of the robot (xag, yag). Any illegal transition (those that would go
out of boundaries or clash with the grey region depicted in Figure 4.7) is
changed to N (“no move”).

4.5. EXPERIMENTAL EVALUATION 81

Delay (steps) 0 1 2 3

Score

Pre-shield 50.1 36.0 34.6 30.2

Robustness 42.5 34.3 31.5 26.8

Controllability 41.3 33.9 31.8 27.5

Interventions

Pre-shield 117.4 150.4 160.1 182.2

Robustness 90.9 107.5 114.1 122.0

Controllability 85.0 95.9 106.9 122.7

Table 4.1: Performance of different shielding strategies.

Results: interference rates. To evaluate the interference of the shields dur-
ing runtime, we implemented a robot with the goal of collecting treasures that
are placed at random positions in a grid world with 4 dead ends. At any time
step, there is one treasure placed in the grid world. As soon as this treasure is
collected, the next treasure spawns at a random location. Collecting a treasure
rewards the agent with +1 score points. The kid is implemented such that it
chases the robot in a stochastic way.

The interference results are presented in Table 4.1. In the table, the first three
rows show the score obtained by the robot, and the last three rows show the
number of times the shield intervenes. Both score and number of interventions
correspond to the amount accumulated over a game of 2000 steps. We compare
pre-shields with post-shields that maximise either robustness or controllability.
Since both the robot and the kid are implemented with stochastic behaviour,
each data point in the table is the average of 100 plays.

The results show that the agent’s score decreases with the delay, as expected.
Since the shield has more uncertainty about the current position of the kid, it
enforces a larger distance between the current position of the robot and the last
observed position of the kid. For the same reason, the shields need to interfere
more frequently with increasing delays. In general, pre-shields compare to post-
shields show a better performance in terms of score and a worse performance in
terms of number of interventions, as it was expected. Additionally, we compared
the corrective actions chosen by post-shields that maximise controllability with
the actions chosen by shields that maximise robustness. We noticed that in
most states, both shields pick the same corrective action, which is reflected in
the similar results obtained.

Results: synthesis times. We compute all types of presented shields. The
synthesis times are presented in Figure 4.8, where Figure 4.8a corresponds to a
fixed delay of δ = 2, and Figure 4.8b corresponds to a fixed-size grid with four
dead-ends, i.e., n = 2.

In the figure we compare the synthesis times for the synthesis of shields, max-
imising robustness () and controllability (). We also include the cost of
computing the maximally permissive winning strategy, which is required for all
shields and is the only cost associated with synthesising pre-shields. To com-
pare with a baseline, we show the cost of computing the maximally-permissive

82 CHAPTER 4. DELAY-RESILIENT SHIELDING

1 2 3 4 5 6 7
Size of the grid (n)

100

102

104

T
im

e
(s

)

Max.-Perm. Strat (Us)

Robustness

Controllability

Max.-Perm. Strat (Chen et al.)

(a) Fixed delay δ = 2, increasing size of
the grid.

0 1 2 3
Delay (δ)

100

102

104

T
im

e
(s

)

(b) Fixed size of the grid n = 2, increas-
ing delay.

Figure 4.8: Shield synthesis times for the grid world experiments.

strategy in the delayed safety game for our implementation () and the imple-
mentation of [Che+21] ().

The improvement of our method compared to the baseline results from a faster
implementation in C++, with only minor algorithmic reasons. The cutoff value
for controllability is set to δmax = 3. Since the cost for computing shields grows
exponentially with δ, the synthesis times for shields maximising robustness grow
exponentially. This effect does not show for shields maximising controllability,
as they always compute the maximally permissive strategy until delay δmax

irrespective of the particular delay δ.

4.5.2 Shielded Driving in Carla

We implemented our delayed shields in the driving simulator Carla [Dos+17].
In all scenarios, the default autonomous driver agent in Carla is used with ade-
quate modifications to make it a more reckless driver. To capture the continuous
dynamics of Carla using discrete models, we designed the safety game with
overly conservative transitions, i.e., accelerations are overestimated, and brak-
ing power is underestimated. In both scenarios, we use delay-resilient shields,
maximising robustness.

4.5.2.1 Shielding against Collisions with Cars

We consider a scenario in which two cars (one of them controlled by the driver
agent) approach an uncontrolled intersection. The shield has to guarantee col-
lision avoidance for any braking and acceleration behaviour of the uncontrolled
car while the observation of the uncontrolled car is delayed. A screenshot of the
Carla simulation is given in Figure 4.9a.

Game graph. To compute delay-resilient shields, the scenario is encoded as
a safety game G = ⟨S, s0, Sag, Senv,A, T ,F⟩, defined as follows.

The set of states is defined as S = Pag × Penv × Vag × Venv, where Pag and Penv

represent, respectively, the distances of the agent’s car and the environment’s
car to the crossing, and Vag and Venv represent the velocity of the agent’s car
and the environment’s car, respectively. The range of modeled distances is

4.5. EXPERIMENTAL EVALUATION 83

(a) Car intersection. (b) Pedestrians at a crosswalk.

Figure 4.9: Screenshots of the Carla simulator.

Pag = Penv = {0, 2, 4, . . . , 100} m. The range of modelled velocities is Vagent =
Venv = {0, 1, 2, . . . , 20} m/s.

Each time step in the game corresponds to ∆t = 0.5 s in the simulation. Each car
can perform three actions: a (accelerate), b (brake) or c (coast, touch no pedal).
Therefore, the set of environment actions is Aenv = {aenv, benv, cenv} and the
set of actions of the agent is A = {aag, bag, cag}. In our model, braking and
throttling have the effect of applying a constant acceleration of a = ±2 m/s2.
Therefore, the position pt and the velocity vt at time step t is updated as

pt+∆t = pt − vt∆t− 1
2a∆t2, vt+∆t = vt + a∆t. (4.5)

Unsafe states represent collisions, therefore Sunsafe = {(pagent, vagent, penv, venv) :
pagent = penv}. From the safety game, we compute delay-resilient shields that
maximise the expected robustness. Note that in the transitions in Equation (4.5)
the velocity is applied as negative because the car gets closer to the intersection
at every step.

In this use case, we implemented post-shields that always correct to the most
conservative safe action, with the understanding that c (coast) is more conser-
vative than a (accelerate) and that b (brake) is more conservative than both a

and c.

Results. In Figure 4.10a, we present the speed of the agent’s car over time,
alongside the occurrences of shield interventions, represented as coloured bars,
for various delays measured in increments of ∆t = 0.5 s. As anticipated, the
duration of shield interference increases with larger delays.

For a delay of 0, the agent’s car brakes continuously until it exits the danger
zone. However, as the delay increases, the shield intervenes earlier, ensuring
the car accounts for the worst-case behaviour of the other vehicle. The shield
always assumes the most adverse environmental conditions, even when these
conditions fail to materialise. This conservative approach explains the frequent

Delay (in steps) 0 1 2 3

Synthesis times (in s)
Car example 1.5 13 48 167

Pedestrian example 0.8 9 34 119

Table 4.2: Shield synthesis times (in seconds).

84 CHAPTER 4. DELAY-RESILIENT SHIELDING

0

1

2

3

4

5

6

7

V
el

oc
it

y
(m

/s
)

Delay 0s

Delay 0.5s

Delay 1s

Delay 1.5s

0

1
Delay 0s

0

1
Delay 0.5s

0

1
Delay 1s

0 1 2 3 4 5 6 7 8 9 10 11 12

Time (s)

0

1
Delay 1.5s

(a) Activation times results.

0 2 4 6 8

Velocity (m/s)

0

10

20

30

D
is

ta
n

ce
(m

)

Delay 0s

Delay 0.5s

Delay 1s

(b) Activation speeds and distances.

Figure 4.10: Experimental results on the driving simulator. In these experi-
ments, we measure when and how often the shields get activated in each sce-
nario.

switching between active and inactive shield states within the same execution,
particularly for larger delays.

We evaluated the shields across multiple safety-critical scenarios by varying ini-
tial positions and velocities. In all cases, the shields successfully prevented col-
lisions, demonstrating their robustness. Table 4.2 provides the synthesis times
required to compute the shields. Each delay step listed in Table 4.2 corresponds
to an increment of ∆t = 0.5 s.

4.5.2.2 Shielding against Collisions with Pedestrians

In the second experiment, we compute shields for collision avoidance with pedes-
trians. Similar to before, the shields guarantee safety under delay, even under
the worst possible behaviour of the pedestrians. A screenshot of the Carla
simulation is given in Figure 4.9b.

Shield computation. The car, which is controlled by the driver agent, is
modelled in the same manner as before. Pedestrians are controlled by the en-
vironment and only have their position as state variables. In our model, we
assume that a pedestrian can move 1 m in any direction within one timestep of
∆t = 0.5 s. We consider a state to be unsafe whenever the ego car moves fast
while being close to a pedestrian and the pedestrian is closer to the crosswalk
than the car. Formally

Sunsafe =
{
(pag, vag, pped) : (vag > 2 m/s ∧ |pag − pped| < 5 m ∧ pped < pag)

}
Results. In Figure 4.10b, we illustrate the shield’s interference points by plot-
ting the distance to the pedestrian and the car’s speed at the moment of each
shield intervention. Because pedestrians are modelled to potentially move to-
ward the car, the shield must account for closer pedestrian positions than those
directly observed, as delays in sensing introduce uncertainty.

With larger delays, this uncertainty grows, requiring the shield to initiate brak-
ing earlier to ensure safety. This conservative approach ensures that the shield

4.6. DISCUSSION 85

compensates for any positional ambiguity introduced by the delay. The synthe-
sis times required for the shield computation are provided in Table 4.2.

In our experiments, we occasionally observed the system entering states with
no available strategy due to discretisation errors. However, despite these occur-
rences, the safety specification was never violated. Our findings suggest that by
using a sufficiently fine-grained model, these discretisation errors can be min-
imised to the point of being negligible, ensuring the system operates reliably
under all tested conditions.

4.6 Discussion

4.6.1 Limitations

We have demonstrated with our experiments that shielding can be a useful
tool to ensure safety specifications in an application so complex as autonomous
driving. However, this is still a methodology that is not ready to be implemented
in today’s technology. In this section, we discuss the main limitations that
hinder the applicability of our method. Further research and development is
needed to address these challenges.

Requiring a deterministic model. One of the foundational assumptions of
our method is the availability of a deterministic model of the system and its
environment. While we tackle one of the sources of uncertainty in this chapter
by proposing shields resilient to delayed information, this assumption may still
be unrealistic. Many real-world systems operate in inherently stochastic envi-
ronments, where uncertainties arise due to sensor noise, unpredictable human
behaviour, or dynamic external factors. Attempting to model such systems de-
terministically may lead to oversimplifications, resulting in shields that fail to
capture the full complexity of the environment. In our driving simulator ex-
periments, we circumvent this limitation by finding a rather conservative model
that reflects the reality most of the time, and observed that this model was good
enough in our experiments to enforce the safety specification. This is an im-
perfect solution and requires fine-tuning the model for each application, making
the implementation of shielding more labour-intensive.

Overly conservative strategies Safety shields are designed to handle worst-
case scenarios, ensuring that safety is maintained regardless of how adverse
conditions may become. While this is the only way to get the strong safety
guarantees that shielding provides, it can lead to overly conservative strategies
that limit the agent’s performance and utility excessively. Furthermore, the
handling of delayed observations only accentuates the shield’s conservativism.
Over-conservatism can also erode user trust, as the system may appear unnec-
essarily cautious or suboptimal in typical operational conditions. This trade-off
between safety and performance poses a significant challenge and calls into ques-
tion whether deterministic shielding can be a viable solution.

Handling divergences from the model A fundamental limitation of safety
shielding lies in its reliance on a predefined safety game model. In practice, the

86 CHAPTER 4. DELAY-RESILIENT SHIELDING

real world may diverge from these models due to inaccuracies in modeling or
changes in the environment over time. When such divergences occur, the shield
is forced to react to situations that were not considered reachable in the original
safety game. In our current approach, the shield’s behaviour is undefined in
these situations.

Overcoming these challenges will be essential for deploying safety shielding tech-
niques in increasingly complex and dynamic real-world systems.

4.6.2 Related Work

Runtime enforcement is a technique in which a monitor modifies the execution
of a system to comply with a specified property [FP19; Ren+19]. Shields for
discrete systems were introduced in [Blo+15] and several extensions and ap-
plications have already been published [Als+18; Els+21; Pra+21b; Jan+20;
Yan+23b].

Chen et al. [Che+18; Che+21] first investigated the synthesis problem for time-
delay discrete systems by the reduction to solving two-player safety games. We
base our shields on the proposed algorithm for solving delayed safety game. Note
that the delayed games discussed by Zimmermann et al. [KZ15a; KZ15b; Zim17;
WZ20] follow a concept different from the delayed safety games considered in
this paper. In their setting, a delay is a lookahead that grants an advantage to
the delayed player: the delayed agent player P1 lags behind the environment
player P0 in that P1 has to produce the i-th action when i + j environment
actions are available. In contrast to Zimmermann et al., we do not grant a
lookahead into future inputs but consider delays in the input data. It was
shown in [Che+18] that the different concepts of delays could not be exchanged
for each other by a swap of roles i.e., by exchanging the players and then giving
a lookahead of j to the input player in order to simulate a delay of j for the
output player.

The notion of delay employed in this paper is different from that in timed
games [Beh+07]. In timed games, delay refers to the possibility of deliberately
delay the next single action. However, both players have full and up-to-date in-
formation in timed games. In [Dav+13] a general framework on using UPPAAL-
TIGA with partial observability was presented. Combining both approaches to
synthesise delay-resilient shields from timed automata specifications is potential
future work.

For runtime enforcement in continuous dynamical and hybrid systems, control
barrier functions [Ame+19] are used to verify and to enforce safety properties.
Prajna and Jadbabaie extended the notion of barrier certificates to time-delay
systems [PJ05]. Bai et al. [Bai+21b] introduced a new model of hybrid sys-
tems, called delay hybrid automata, to capture the continuous dynamics of
dynamical systems with delays. However, this work does not address the fact
that state observation in embedded systems is de facto in discrete time and
that a continuous-time shielding mechanism, therefore would require adequate
interpolation between sampling points, which could be an interesting future
endeavour.

Chapter 5

Probabilistic Shielding for
Autonomous Valet Parking

Qui no s’arrisca no pisca. 1 — Catalan popular saying.

5.1 Motivation and Outline

In this chapter, we present work done in the framework of the Foceta [Ben+23]
project. One of the two use cases of the project consists of building an au-
tonomous driving car capable of operating safely and effectively in a parking
lot. To achieve this goal, various partners incorporate different components
for perception, planning, and movement execution. The work presented in this
chapter is the theoretical conception and experimental evaluation of a safety
element in the form of a probabilistic shield designed to prevent car collisions
with pedestrians in the parking lot.

We have already demonstrated the usability of deterministic shields in au-
tonomous driving use cases in Chapter 4. In this chapter, we present an al-
ternative approach using probabilistic shielding. By assuming a probabilistic
model of the environment, the shield can consider low probability events as pos-
sible but only react to them when the probability of a harmful event goes over
a particular threshold value.

A probabilistic shield (see Section 3.4.3) is an enforcer that overwrites control
commands when the probability of violating a safety specification is larger than
some state-dependent thresholds. While probabilistic shielding does not enforce
safety with full reliability, a probabilistic safety guarantee makes the use of costly
measures like emergency braking less intrusive during execution. In our use
case, the agent being shielded is an RL-based controller trained to follow a pre-
computed trajectory along the parking lot. Probabilistic shielding is especially
well-suited for RL-based controllers, since, in both cases, the underlying model
of the system is a Markov Decision Process (MDP).

1The one who does not risk, does not gain.

87

88 CHAPTER 5. PROBABILISTIC SHIELDING

When given a control command a, the shield maps the information available
(from sensors, previous actions, etc.) to a state in the MDP and checks that the
maximum probability of avoiding a collision with a pedestrian after executing a
in the MPD is large enough. In case it is not, the shield overwrites the control
command appropriately. This probability is computed using probabilistic model
checking techniques [Kat16]. To do so, we need an explicit description of the
MDP.

Constructing an appropriate MDP model is a challenging task. The MDP must
faithfully represent the agent and its environment while remaining compact
enough to enable feasible model-checking computations. However, our model
only needs to capture the safety-relevant dynamics of the system. Our approach
factors the model into two components: the ego car, controlled by our agent,
and the pedestrians. For the ego car, we build an abstraction based on the dig-
ital twin model of the Simrod vehicle [Deb19]. To derive a tractable MDP from
the digital twin [Jon+20; Sin+21], we discretise actions and states, incorporat-
ing uncertainty into transitions to account for discretisation errors. Pedestrian
behaviour is modelled with movement speeds following a normal distribution,
varying the parameters for three different types of pedestrians: adults, elders,
and children.

Finally, we evaluate our shielding strategy in several scenarios of the car in-
teracting with moving pedestrians. These scenarios are implemented using the
proprietary driving simulator Prescan2. The goal of our experiments is to show
that shielding provides a more gentle and efficient safety layer than the coarser
approach of an automatic emergency brake (AEB) based only on the expected
time to collision.

Contribution. The work presented in this chapter constitutes the first in-
stance of implementing a probabilistic shielding approach in a realistic driving
simulation environment. To make it possible, we had to:

• Design a suitable MDP structure for the car and the pedestrian, and
populate it by mimicking a digital twin model of the car and suitable
behavioural models of the pedestrians.

• Implement our shielding pipeline and integrate it into an existing agent
controlling an autonomous vehicle in a simulated environment.

• Validate experimentally the fitness of the model as well as the effectiveness
of shielding as a safety measure.

Outline. In Section 5.2 we explain how we build the models required for
shielding, as well as the integration of shielding into the existing controller-
simulation framework. In Section 5.3, we show the results of our experimental
evaluation. Finally, in Section 5.4, we discuss limitations and related work.

Declaration of sources. This chapter is based on work performed by the
author of this thesis in the framework of the Foceta project [Ben+23], and it
reuses material from currently unpublished deliverables of said project.

2https://plm.sw.siemens.com/en-US/simcenter/autonomous-vehicle-solutions/prescan

5.2. METHODOLOGY 89

Figure 5.1: Screenshot of the Prescan simulation. The path of the ego vehicle is
marked with a dashed purple line. The two pedestrians that are currently being
shielded, the ones that are close enough, are marked with red dotted circles.

5.2 Methodology

In this section, we discuss the methodology used to adapt the theoretical con-
cept of shielding to our realistic use case. We discuss the shielding setting, the
constructions of MDP models for the ego car and the pedestrians, the compu-
tation of shields for the models and the integration of the shielding module on
the whole autonomous driving controller.

5.2.1 Modeling Scenarios as Markov Decision Processes

In Figure 5.1, we illustrate the use case with a car being controlled by our
shielded agent and several pedestrians that move around the parking lot. The
global car controller is broadly composed of a path-planning module and an RL
agent that controls the pedals and steering wheel. Given an initial position and
orientation of the ego car, a target position and orientation, and a map with
the static elements of the parking lot, the path-planning module computes the
path to follow, and the RL agent controls the pedal and steering commands to
best follow said path. While the goal of the RL agent is to follow the predefined
path, the goal of the shield is to ensure that the car does not collide with any
of the pedestrians while following the path.

Instead of having a unique shield that models interactions with all other pedes-
trians, we develop shields that model the interaction between the ego car and
a single pedestrian. For each pedestrian detected in the vicinity of the ego car,
we instantiate a shield that ensures collision avoidance against that one pedes-
trian. All instantiated shields work then cooperatively: each shield computes
the set of actions that are safe according to its own safety specification. Finally,
the action proposed by the agent is checked against the intersection of all safe
actions and overwritten if needed.

This approach lets us use models that are less complex, with fewer states and
transitions, by not modelling pedestrian-to-pedestrian interactions. The re-
duced complexity of the models permits using accurate models with low com-
putational cost, as well as producing models that are easier to develop, test,
and understand.

90 CHAPTER 5. PROBABILISTIC SHIELDING

Xabs

Yabs Xloc

Yloc

θ

Figure 5.2: Representation of absolute and local coordinate systems. The dotted
grid represents the local-discrete system.

The drawback is that we have no theoretical guarantee that the intersection of
all safe actions is non-empty. It is theoretically possible to have a scenario with
two pedestrians in which the only way to avoid colliding with the first pedestrian
is accelerating, while the only way to avoid colliding with the second pedestrian
is braking. In such cases, the behaviour of the shield is undefined. While this is
theoretically possible, we have not encountered such cases in our experiments,
since braking at maximum strength is typically a safe action at relatively low
speeds, regardless of the positions of the pedestrians.

5.2.2 MDP Structure and State Discretisation

We need to model the relevant dynamics of the ego car and the behaviour of
pedestrians with an MDP with finite sets of states and actions. The states
are built from sensor readings, with relevant magnitudes such as positions and
velocities being continuous. We need a discrete representation of those readings.
Similarly, the set actions proposed by the agent are continuous, so we will need
to find a suitable discretisation for the action space.

As stated before, we instantiate an individual shield for each pedestrian. Under
the assumption that the behaviour of the pedestrian and the ego vehicle are
independent, we can build the model for a shield as a product MDPM = Mcar×
Mped, where Mcar = (Scar,A,Pcar) is an MDP that encodes the dynamics
of the ego vehicle and Mped = (Sped,Pped) is a Markov chain that encodes
the behaviour of the pedestrian. For both Mcar and Mped, the transition-
probability function models transitions of a fixed timestep ∆t.

In the following sections, we describe Mcar that models the ego vehicle’s dy-
namics, and Mped that models the behaviour of a pedestrian. But before that,
we need to introduce the three coordinate systems we will be using for building
the shields.

5.2.2.1 Coordinate Systems.

Both sets of states Scar and Sped are defined in terms of positions and velocities
of the ego vehicle and the pedestrian, respectively. To define positions and

5.2. METHODOLOGY 91

velocities, we work with three coordinate systems, depicted in Figure 5.2. We
call them absolute, local-continuous and local-discrete.

• Absolute. The absolute coordinate system has its origin at an arbitrary
reference point O, and two orthogonal axes X and Y . This coordinate
system does not move during an execution, and the input from sensors
is assumed to be given in absolute coordinates. Coordinates can be any
real numbers, and values are in units of metre (m) and metre per second
(m s−1).

• Local-continuous. The local-continuous coordinate system is a reference
frame that moves with the ego vehicle and is oriented in such a way that the
X axis is always parallel to the ego vehicle’s velocity. In local-continuous
coordinates, the position of the ego vehicle is always (0, 0), and the velocity

is
(√

v2x + v2y, 0
)
, where v = (vx, vy) is the velocity of the ego car in

absolute coordinates. Coordinates can be any real numbers, and values
are in units of m and m s−1. The difference between the absolute and local-
continuous systems is a translation and a rotation. Therefore, magnitudes
stay constant, and the formula to change from local to absolute coordinates
is [

x
y

]
abs

=

[
carx
cary

]
abs

+

[
cos θ − sin θ
sin θ cos θ

]
·
[
x′

y′

]
loc

,

where θ is the angle between the absolute X-axis and the velocity of the
ego car, as depicted in Figure 5.2. The rotation matrix can be inverted to
change from absolute to local coordinates.

• Local-discrete. The local-discrete coordinate system is a discretization
of the local-continuous system. This is the coordinate system used in-
ternally in the shield. We define two multipliers µpos, µvel ∈ R for the
magnitudes of distance and velocity, respectively. Magnitudes in local-
discrete coordinates are therefore given in units of 1

µpos
m for positions

and 1
µvel

ms−1 for velocities. Given a distance magnitude x in local-

continuous coordinates, it is transformed to local-discrete as X = ⌊µ · x⌉,
where µ is the corresponding multiplier for the type of magnitude x and
⌊z⌉ is the result of rounding z to its closest integer.

Since both local-continuous and local-discrete coordinate systems share the same
X-axis and Y -axis, we will call them in the following the local X-axis and local
Y -axis, without specifying discrete or continuous.

Finding adequate multipliers µpos and µvel is a matter of finding a suitable
compromise. Larger values provide coarser discretisations, so the models are
smaller and easier to work with. However, coarse discretisation incurs larger
modelling errors. After some trial and error, we found µpos = µvel = 1/2 to be
a good value for our experiments.

The absolute reference is the reference frame used by the simulator. Global
variables monitored in the experiments, such as vehicle and pedestrian positions
and velocities, are logged in this reference system. The local continuous is the
system used internally by the car sensors. The information that arrives to the
shield, such as the relative positions of pedestrians to the ego car is obtained

92 CHAPTER 5. PROBABILISTIC SHIELDING

in this reference frame. Finally, the local-discrete is the internal system that
the shield uses to represent states in the MDP and to decide on the safety of
actions depending on the results given by the model checker. During execution,
the conversion from local-continuous to local-discrete and back is necessary for
every action taken, as the information needs to arrive to the shield and be
given back to the car controller. In contrast, conversion from absolute to local-
continuous is only required to interpret the results of the experiments.

5.2.3 Model of the Car

The model of the car is based on the digital twin model of the Simrod vehi-
cle [Deb19]. The digital twin model was provided to us as a functional mock-up
unit (FMU) compatible with both C++ and Simulink. We are only allowed to
interact with this unit as a black box: we can initialise certain variables such as
positions and velocities, set an action profile, and let the digital twin run for a
given span of time ∆t. At the end, we read the new values of the variables of in-
terest. The digital twin only models the dynamics of the car on an empty road,
so any interactions of the ego car with other road users have to be modelled on
top of it.

5.2.3.1 State Space

We consider the position and velocity along the X-axis of the local-discrete
coordinate system. Since we only shield for throttle and brake, we can assume
that the direction of the ego vehicle stays locally unchanged.

Moreover, the MDP model used by the shield is constrained to positions no
greater than a predefined limit, xmax, and velocities not exceeding a threshold,
vmax. The value of vmax is set slightly above the maximum speed permitted on
the road, ensuring realistic constraints. In contrast, xmax is a more flexible pa-
rameter, chosen to be sufficiently large to encompass all possible consequences of
the ego vehicle’s decisions made at the origin of the local-continuous coordinate
system.

Formally, we consider Scar = Xcar × Vcar, where Xcar = [0, . . . , xmax] represents
the position of the ego car along the X-axis and Vcar = [0, . . . , vmax] represents
the velocity of the ego car. The values in Xcar are integers and represent posi-
tions in units of 1

µpos
m, while values in Vcar are integers representing velocities

in units of 1
µvel

ms−1.

5.2.3.2 Action Space

Following the convention found in the Simrod model, we consider actions in
the range [−1, 1]. For an action a ∈ [−1, 1], the sign indicates which pedal
to press (brake for a < 0, throttle for a > 0), and |a| indicates how much
the pedal is pressed. Since the MDP needs to work with a discrete set of
actions, we define a set of representative actions A = {α1, . . . , αn}, satisfying
−1 ≤ α1 < · · · < αn ≤ 1.

For both space and action spaces, the input received by sensors and controller
is rounded to the closest value in the MDP discretisation.

5.2. METHODOLOGY 93

x

y

vx
vy

x +∆x

y +∆y

vx +∆vx
vy +∆vy

Apply command

a ∈ [−1, 1]

for a time ∆t

.

Simrod initial state Simrod final state

Figure 5.3: Overview of an experiment on the Simrod model.

For the sake of simplicity, the shield can only overwrite the throttle and brake
commands and leaves the steering command untouched.

5.2.3.3 Transition Probabilities

We obtain the transition probabilities for our model by probing the Simrod
digital twin model at concrete values, as we will describe in this section. These
experiments are best thought of within the local-continuous coordinate system.

Given an initial position (x, y) and initial velocity (vx, vy) for the ego car, a
driving command a ∈ [−1, 1] and a timestep ∆t, the Simrod digital twin pro-
vides us with a new position (x+∆x, y+∆y) and velocity (vx+∆vx, vy+∆vy),
as the result of applying the driving command c for a duration of ∆t. Figure 5.3
illustrates such an experiment. In an ideal scenario, we would execute the ex-
periment in Figure 5.3 for each combination of initial positions, velocities and
driving commands. However, this is unfeasible because of the complexity of
the digital twin model, and the need to account for a discretised MDP model.
Therefore, we build the transition probabilities by adjusting them to experimen-
tal data obtained by the Simrod model. We design the following experiment:

• We define m reference velocities, 0 < v1 < · · · < vm < vmax. For each
reference velocity vj , the interval rvj = [(vj−1+vj)/2, (vj+vj+1)/2) is the
range of velocities that have vj as its reference velocity, i.e. for all v ∈ rvj ,
vj is the closest velocity to v among the set of reference velocities. For
the first and last ones, we include the minimum and maximum velocities,
respectively, i.e. rv0 = [0, (v1 + v2)/2) and rvm = [(vm−1 + vm)/2, vmax].

• Similarly, for each value in the action space αi, we define the action range
rαi = [(αi−1 + αi)/2, (αi + αi+1)/2), with the special cases of rα0 =
[0, (α1 + α2)/2) and rαn = [(αn−1 + αn)/2, αmax]. In Figure 5.4, we
provide a visual representation of these ranges for actions. The ranges for
velocities are analogous.

• We choose a value N of the number of samples used for each reference
action and velocity. For each action range rαi and velocity range rvj , we
sample N pairs (aki , u

k
j), for k ∈ {1, . . . , N} uniformly at random from

rαi × rvj .

• For each pair (aki , u
k
j), we perform the experiment described in Figure 5.3,

setting the initial velocity in the X-direction to vx = uk
j , the remaining

initial parameters to zero (i.e. x = y = vy = 0) and the driving command

94 CHAPTER 5. PROBABILISTIC SHIELDING

α = −1 α = 0 α = 1
α1 α2 αn

Brake Throttle

rα1 rα2 rαn

Figure 5.4: Scheme of reference actions and action ranges.

to aki . We label the position and velocity increases as ∆x = ∆xk
i,j and

∆vx = ∆vki,j .

To build the transition probabilities of Pcar from the available data, we adopt
the following two assumptions:

• Assumption 1. The increase in velocity, ∆vki,j , primarily depends on the

reference action (αi) and the velocity at which it is applied (uk
i,j), and

does not depend significantly on other variables such as position, previous
accelerations, or the concrete applied action (aki).

• Assumption 2. The increase in position, ∆xk
i,j is proportional to the initial

velocity (uk
i,j), and the proportionality factor primarily depends on the

applied action (aki).

Assumption 1 implies that transition probabilities should be derived as statis-
tical measures based on the experimental data described earlier, with a single
probability distribution for each reference action αi. Assumption 2 suggests that
for each reference velocity vj and each reference action αi, there exists a value
γi,j such that ∆xk

i,j ≈ γk
i,ju

k
i,j provides a good approximation. To determine

γi,j , we minimise the error using the following optimisation criterion. For each
i ∈ [1, . . . , n] and j ∈ [1, . . . ,m]:

γi,j = argmin
γ∈R

N∑
k=1

(
∆xi,j − γuk

i,j

)2
. (5.1)

With all this data, we compute the transition probabilities as follows. For each
s = (X,V) ∈ Scar and action αi ∈ A, let vj be the corresponding reference
velocity to V , i.e., the only j for which V/µvel ∈ rvj . Then for each s′ =
(X +∆X,V +∆V) such that ∆X = ⌊γi,jV ⌉:

Pcar

(
s, αi, s

′) = 1

N
#
{
k ∈ [1, . . . ,m] : ⌊∆vki,j · µvel⌉ = ∆V

}
. (5.2)

For any s′ such that ∆X ̸= ⌊γi,jV ⌉, the transition probability is Pcar(s, αi, s
′) =

0. In Equation (5.2), the transition probability for a given velocity increase ∆V
is defined as the relative frequency of the increase in velocity that gets discretized
into ∆V .

5.2.4 Model of the Pedestrian

The behaviour of the pedestrian is modelled by a Markov chainMped = (Sped,Pped),
in which the states Sped = Xped × Yped represent the position of the pedestrian

5.2. METHODOLOGY 95

−1.0 −0.5 0.0
∆ v (m/s)

−0.5

0.0

0.5

B
ra

ke
/t

h
ro

tt
le

ac
ti

on

R = 0.929

(a) Scatter plot of action (α) vs. ∆v.

0 2 4
∆ x (m)

0.0

2.5

5.0

7.5

10.0

V
el

oc
it

y
(m

/s
)

R = 0.999

(b) Scatter plot of velocity (vx) vs. ∆x.

Figure 5.5: Scatter plots to validate Mcar. The high correlation factor (R) in
both cases validates the assumptions on probabilities for the ego car model. In
particular, the high correlation between the chosen action and the increase in
velocity (a) validates Assumption 1, while the high correlation between velocity
and ∆x (b) validates Assumption 2.

relative to the same coordinate origin as the car in the local-discrete system.
The probability transition function Pped determines how the pedestrian behaves
in a stochastic manner.

At each timestep, the pedestrian moves in the X-axis and the Y -axis following
two independent Gaussian distributions. The distributions are centred at 0 m/s
so that the pedestrian is equally likely to move in any direction. The standard
deviation σped indicates how erratic the movement of the pedestrian tends to
be. We set σped = 2 m/s for adults, σped = 1 m/s for elders and σped = 3 m/s
for children. With this model, the average speed of a pedestrian is

√
2σped.

A limitation of this model is that pedestrians, as we model them, are non-
inertial, i.e., their velocity at one step does not influence their velocity at the
next step. While inertial pedestrians would certainly be more realistic, the issue
is mitigated by the fact that the pedestrian’s velocities are small.

5.2.5 Shield Computation

A safety specification is given in the form of a set of states Scrash ⊆ Scar ×Sped

representing collisions, a safety threshold λ ∈ (0, 1), and a bounded horizon
k ∈ N. Given the models Mcar and Mped and a safety specification, we use
Tempest [Pra+21a] to compute a shield that enforces the safety specification,
as described in Equation (3.9). For each tuple (scar, sped, a) ∈ Scar × Sped ×A,
Tempest determines whether executing action a at (scar, sped) is safe according
to the specification. An action a is considered safe from state s if

PM
max (Avoid≤k(s, a, Scrash)) ≥ λ · PM

max (Avoid≤k(s, Scrash)) .

Tempest produces a lookup table that specifies, for each state, a safe alternative
action to replace any unsafe action. This lookup table constitutes the shield.

96 CHAPTER 5. PROBABILISTIC SHIELDING

5.3 Experimental Evaluation

Our experimental evaluation pursues two primary objectives. First, we em-
pirically validate the assumptions underlying the construction of the car MDP
derived from the digital twin FMU model. Next, we assess whether the inte-
grated shields can effectively prevent collisions with pedestrians and determine
if their approach outperforms the automated emergency braking system.

5.3.1 Validation of the Car Model

In Section 5.2.3 we describe a method to obtain experimental data from the
Simrod model in a structured way, that we then use to build our MDP model
of the car. The transition probabilities are built from the data, taking two
assumptions on the dependency of the increases in velocity and position (∆v
and ∆x) on the actions applied and the current velocity.

We can validate experimentally the assumptions made to build this model by
checking the correlations in the data obtained from the experiment described.
In Figure 5.5 we show that both key correlations between ∆v and α (Assump-
tion 1), and between ∆x and vx (Assumption 2) are very high. The data comes
from performing the experiment for reference velocities v = [0, 1, 2, . . . , 10] m/s,
action set A = [−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75], and a number of samples
N = 100. The high correlation factor (R) in both cases validates the assump-
tions on probabilities for the ego car model.

In Figure 5.5a there are some data points that look a bit odd for brake actions
(α < 0), where the decrease in velocity −∆v is smaller than expected. These
data points correspond to individual experiments where the initial velocity is
already very small, so that the brake action applied is more than enough to
fully stop the car, even with a deceleration smaller than typical for such action.
We also observe a steeper curve in the throttle range than in the brake range.
This indicates that, for this car, the deceleration produced by the brake pedal is
more potent than the acceleration produced by the throttle pedal at the same
level. This is a standard safety feature in automobiles.

5.3.2 Safety Shielding vs. Automatic Emergency Brake

To evaluate the performance of the shield, we integrate it as part of the agent
controlling the ego vehicle developed by several partners in the Foceta project.

In evaluating the performance of the safety shield, we focus on how effective the
shield is in enforcing the safety specification. We also assess whether the shield
is an improvement with respect to the AEB in terms of efficiency, perceived
safety by other road users, and comfort of the passengers. Figure 5.6 illustrates
a case where the shield mitigates collision risks more efficiently and earlier than
the standard emergency brake, resulting in lower usage of the brake pedal and
more gentle deceleration. To evaluate the performance of the safety shield in a
systematic way, we created a scene in the AVP scenario with fixed initial and
goal positions and added several pedestrians. We produced 20 configurations
of the pedestrians’ initial positions and moving patterns by random sampling
the pedestrians’ initial positions and velocities. We executed the scene for a

5.3. EXPERIMENTAL EVALUATION 97

Figure 5.6: Example of the advantage of shielding with respect to an automated
emergency brake, avoiding the collision in a smoother and more efficient way.

fixed timespan of 20 seconds, having (a) only the shield as a safety enforcer, (b)
only the emergency brake as a safety enforcer and (c) both the shield and the
emergency brake together. In the latter case, whenever both systems propose
an enforcement action, the emergency brake takes priority over the shield. We
tested the following metrics.

• Effectiveness in avoiding collisions.

– Distance to pedestrian. The average distance from the front of the
car to the pedestrian. Larger values indicate increased safety.

– AEB activation. The percentage of time in the 20-second experiment
where the automated emergency brake is active.

• Efficiency in driving.

– Brake pedal. The average value of the brake pedal signal. Recall
that both pedals have a signal from 0 – not activated – to 1 – fully
activated.

– Throttle pedal. Use of the throttle pedal, analogous to the brake
pedal. A higher value for either pedal metric suggests a driving style
that may accelerate the wear and tear on the vehicle.

– Distance to goal. Average distance to the goal position during the
experiment. Lower values indicate increased efficiency in reaching
the goal.

• Comfort.

– Acceleration. Average value of the acceleration of the ego car. The
average is taken in absolute value. Lower values indicate increased
efficiency and comfort.

98 CHAPTER 5. PROBABILISTIC SHIELDING

Test Only AEB Both Only shield

Distance to pedestrian (m) 4.20± 1.00 3.95± 0.86 4.07± 0.96

AEB activation (%) 19± 11 8± 8 —

Brake pedal (avg. use, 0 to 1) 0.39± 0.22 0.49± 0.26 0.29± 0.27

Throttle pedal (avg. use, 0 to 1) 0.51± 0.21 0.46± 0.24 0.40± 0.18

Distance to goal (m) 13.2± 4.9 14.2± 4.4 12.8± 5.2

Acceleration (m/s2) 0.49± 0.21 0.44± 0.18 0.36± 0.20

Jerk (m/s3) 1.00± 0.80 0.93± 0.86 0.65± 0.65

Time to collision (s) 4.2± 1.8 4.4± 1.6 4.0± 2.0

Table 5.1: Quantitative analysis of probabilistic shielding. Marked in boldface
the best result for each metric on average.

– Jerk. Average value of the jerk felt by the ego car, that is, the
variation in acceleration. This is a standard measure of comfort.

– Time to collision. The hypothetical time that it would take to collide
with the closest pedestrian if the car would maintain its current speed
and trajectory. It is a measure of perceived safety by other road users.

In Table 5.1, we present the results we obtained. For each metric being mea-
sured, we provide mean and standard deviation across all our experiments. We
do not include the number of collisions as the scenarios are designed in such a
way that there would be a collision, but the safety mechanism (be it the shield,
the AEB, or both) has to act to prevent it.

In terms of effectiveness, we can see that the three methods show a similar
performance in terms of maintaining a safe distance with respect to the closest
pedestrian, and we see that when the shield is active, the use of the emergency
brake is down by half. In terms of driving efficiency, we see that the shield tends
to produce less use of both the brake and throttle pedals while maintaining a
low distance to the goal. In our results, however, we do observe that having both
enforcing systems together produces higher use of the brake pedal and higher
distance to the goal, suggesting that the resulting controller may be overly
conservative. In terms of comfort, we observe mainly a notable difference in
jerk, where shielding significantly reduces the discomfort to the passengers due
to high jerk, associated with a harsh use of the brake and throttle pedals. The
data from acceleration supports this claim as well, albeit in a lower magnitude.
Time to collision proves to be very similar across the board, with the shielded
controller showing a slight reduction.

5.4 Discussion

5.4.1 Limitations

Probabilistic safety guarantees. The approach towards safety using prob-
abilistic shielding mitigates two of the main concerns discussed in the previous

5.4. DISCUSSION 99

chapter with regard to deterministic shields, namely the requirement of a deter-
ministic model of what are sometimes inherently stochastic phenomena, and the
worst-case scenario guarantees generating overly conservative controllers. This
step up is made available at the price of relaxing the safety guarantees. This
relaxed specification is also somewhat unintuitive, as we have seen in Exam-
ple 3.2, which can work towards eroding the trust of the user in the runtime
enforcement method.

Model size and control variables. Discretising both the observation and
action spaces inevitably introduces errors in the model. However, this trade-off
is necessary to keep the model size manageable, enabling the use of probabilistic
model-checking methods with reasonable resource consumption. This affects, in
our case, both the car and the pedestrian models. For the pedestrian, a richer
model of their behaviour, distinguishing behaviour modes depending on their
context or having a more fine-grained account of their velocities would make
the model significantly more useful. For the car, allowing a larger model would
allow us to introduce steering as a control variable to be shielded. While steering
is not required to enforce safety in our use case, some pedestrians can be more
efficiently avoided by a gentle steer than the use of the brake pedal.

5.4.2 Related Work

Probabilistic shielding in MDPs was first introduced in [Jan+20], and has been
extended to partially observable MDPs [Car+23]. To the best of our knowledge,
probabilistic shielding on MDPs has not been previously used for realistic self-
driving use cases.

Probabilistic model checking tools. Several tools implement probabilistic
model checking to verify the safety of RL agents. COOL-MC [Gro+22b] takes a
Gymnasium [Tow+24] environment and an MDP model as inputs, querying the
agent’s decisions across all MDP states and using the resulting Markov chain
to verify a user-defined property. MoGym [Gro+22a] converts a user-provided
MDP into a Gymnasium-compatible environment, enabling RL policy training
and statistical model checking through policy queries. Unlike these verification-
based approaches, shielding does not verify the agent’s policy but ensures its
correct execution at runtime. The most widely used tools for probabilistic
model checking include Storm [Hen+22], Prism [KNP11], Modest [HH14],
and PET [MW24]. Our work utilises Tempest [Pra+21a], a fork of Storm
specifically designed to synthesise shields for Markov decision processes and
stochastic multiplayer games.

Shielding methods for autonomous driving. RL has been one of the main
methods to develop autonomous driving agents [Kir+21; Pan+17].

There is further work on probabilistic safe RL methods that fit in the shielding
framework, even though they do not use the same formalism of model check-
ing on MDPs. Most of this work focuses on collision avoidance and safe driv-
ing [Bou+19; KWA20; Lin+24; He+23; Sax+19]. Shielding methods for RL
have been used to optimise the navigation path of a self-driving car [HWL24;
VDL24] or a platoon of self-driving cars [BLS24]. Moreover, they have also

100 CHAPTER 5. PROBABILISTIC SHIELDING

been used for vehicle trajectory tracking control tasks [XZL22], as well as to
optimise self-driving car fuel consumption during traffic congestion [Che+19].
Most of the work that integrates any type of shielding for self-driving car applica-
tions has been tested in simulation [Che+19; BLS24; HWL24; XZL22; VDL24].
There is also recent work implementing autonomous driving capabilities in car
scale prototypes such as the F1Tenth [O’k+20] to validate the proposed solu-
tions [Koc+23].

Chapter 6

Fairness Shields: Enforcing
Fairness Properties for
Bounded and Periodic
Horizons

Jeder nach seinen Fähigkeiten, jedem nach seinen Bedürfnissen.1

a — Popular socialist slogan. 2

6.1 Motivation and Outline

With the rise of machine learning (ML) in human-centric decisions, such as
banking and college admissions, concerns about bias based on protected at-
tributes like gender and race have grown [DF18; Obe+19; SPB19; Liu+18;
Ber+21]. Mitigating such biases is a crucial and active research area in AI.

Most bias prevention methods rely on design-time interventions, such as pre-
processing training data [KC12; CŽ13], modifying loss functions [Aga+18; Ber+17]
— known as in-processing methods —, or post-processing decisions with cali-
brated output functions [HPS16; CH20]. We introduce fairness shielding, the
first run-time intervention method to safeguard fairness in deployed decision-
makers.

Fairness shields address fairness in sequential decision-making, where observa-
tions come one after the other, and decisions have to be made without knowl-
edge of the following observations. While fairness has traditionally been studied
in a history-independent way, the sequential setting better models real-world
decisions [ZL21]. Prior work mostly focuses on fairness over the long run in

1From each according to their ability, to each according to their needs.
2While it was Karl Marx who most popularized this saying, it was a common slogan within

the socialist movement of the XIX century, and its origin is still a disputed fact.

101

102 CHAPTER 6. ENFORCING FAIRNESS PROPERTIES

Sub-symbolic
classifier

Fairness
shield

intervention cost

recommended decision
accept?/reject?

♂♀♀♂♂♂

input
features

gender, age, ... protected feature
gender

final decision
accept/reject

Figure 6.1: The operational diagram of fairness shields.

unbounded horizons [HZ22], but finite-horizon and periodic fairness — evalu-
ating fairness over fixed timeframes — better align with real-world regulatory
assessments [Ala+24]. Our fairness shields enforce these fairness guarantees by
monitoring decisions and intervening only when necessary.

Figure 6.1 illustrates fairness shielding. Given a predefined fairness criterion and
time horizon, the shield observes the protected attribute, classifier (agent) rec-
ommendation, and the cost of altering that recommendation. The final decision
ensures fairness while minimizing intervention costs, with costs either specified
by the decision-maker or assumed constant.

Example 6.1 (Running example - Bilingual team). Consider the process of
assembling a customer service team for a company in a bilingual country, where
language A and B hold both official status. Because of the nature of the task,
it is essential to maintain a balanced representation of native speakers of both
languages. To achieve this, the company enforces a policy requiring that the dif-
ference between the number of employees proficient in each language must not
exceed 20% of the total team size. The hiring process operates within a bounded
time horizon, with a fixed number of T candidates to be screened. Candidates
apply sequentially, and decisions about each applicant must be made before con-
sidering future candidates. Suppose the company uses an ML model to screen
candidates, which is designed without considering linguistic balance, as it is ir-
relevant in other regions where the company operates, and is biased towards
language A candidates. Relying solely on this ML model’s recommendations
could lead to an unbalanced team composition. The recruitment team could fol-
low the ML models’ recommendation until achieving a balanced team becomes
impossible, and then hire some language B candidates. This would create a sit-
uation in which many qualified language A candidates might have to be rejected.
Furthermore, it could also prolong the process of finding suitable language B
candidates. Even if the ML model aims for long-term workforce balance, an
influx of strong candidates from one language group could still skew the team’s
composition.

A fairness shield can be deployed, which will monitor and intervene in the de-
cisions at runtime to guarantee that the final team is linguistically balanced as
required while keeping the deviations from the decision-maker’s at a minimum.

6.1. MOTIVATION AND OUTLINE 103

Computation of fairness shields. Fairness shields are computed by solving
bounded-horizon optimal control problems, which incorporate a hard fairness
constraint and a soft cost constraint designed to discourage interventions. For
the hard fairness constraint, we consider the empirical variants of standard group
fairness properties, like demographic parity and equal opportunity. We require
that the empirical bias remains below a given threshold with the bias being
measured either at the end of the horizon or periodically. This hard constraint
corresponds to the shield being “correct” with respect to a given specification
(Definition 3.9).

For the soft cost constraint, we assume that the shield receives a separate cost
penalty for each decision modification. The shield is then required to minimize
the total expected future cost, either over the entire horizon or within each
period. The definition of cost may vary by application. In general, the cost
should be associated to the confidence in the classification, with high-confidence
recommendations requiring high costs.

For shield computation, we assume that the distribution over future decisions
(of the agent) and costs are known, either from the knowledge of the model
or learned from queries. Fairness shields are computed through dynamic pro-
gramming. While the straightforward approach would require exponential time
and memory, we present an efficient abstraction for the dynamic programming
algorithm that reduces the complexity.

Types of fairness shields. We propose four types of shields: (i) FinHzn,
(ii) Static-Fair, (iii) Static-BW, and (iv) Dynamic shields. FinHzn is specific
to the bounded-horizon problem, ensuring fairness in every run while being
cost-effective. The other three are suited for the periodic setting, guaranteeing
fairness under diverse assumptions on how often individuals from each group will
appear in a period. Static-Fair and Static-BW reuse a statically computed FinHzn
shield for each period, while Dynamic shields require online re-computation of
shields at the start of each period.

Experiments. We empirically demonstrate the effectiveness of fairness shield-
ing on various ML classifiers trained on well-known datasets. While unshielded
classifiers often show biases, their shielded counterparts are fair in every run
in the bounded-horizon setting and in most runs in the periodic setting. In
most cases, the shielded classifiers exhibit a slightly lower classification accu-
racy as their unshielded counterparts. This discrepancy is more pronounced
under stricter fairness conditions and less pronounced, if the classifier was al-
ready trained to be fair.

Contributions. The contributions presented in this work can be summarized
as follows.

• We formalize the concept of fairness shields, the first runtime interven-
tion procedure for safeguarding the fairness of already deployed decision-
makers.

• We propose an efficient algorithm for synthesizing fairness shields for fi-
nite horizons and explain how it can be extended to fairness shields in a

104 CHAPTER 6. ENFORCING FAIRNESS PROPERTIES

periodic setting.

• We study the problem of safeguarding for periodic fairness and propose
three solutions formalized in three types of shields: static-fair, static with
bounded welfare, and dynamic. For each of the proposed solutions, we
study under which assumptions they guarantee periodic fairness.

• We evaluate our shields with extensive experiments on several benchmark
datasets, shielding ML agents trained with state of the art in-processing
fairness learning methods. In our experiments, we show the effectiveness
of our shields, validating our theoretical results and evidencing the gap
between theoretical and practical guarantees.

Outline. In Section 6.2 we present the formal setting and how it fits within
the general reactive decision-making framework presented in Chapter 3. In
Section 6.3 we present our main algorithm to synthesize fairness shields for the
finite horizon, which is later re-used for the periodic fairness setting. We present
a general algorithm and a more efficient version for typical fairness properties.
In Section 6.4 we present diverse approaches to extend finite horizon shields to
an unbounded horizon in a periodic manner. In the periodic setting we loose the
strong fairness guarantees of the finite horizon setting, so we focus most of the
section on results studying under which conditions fairness can be guaranteed.
We present our experimental evaluation in Section 6.5, and finish the chapter
in Section 6.6 discussing edge cases, limitations, and related work.

Declaration of sources. This chapter is partially based and reuses material
from the following source previously published by the author of this thesis:

[Can+25a] Filip Cano, Thomas A. Henzinger, Bettina Könighofer,
Konstantin Kueffner, andKaushik Mallik. “Fairness Shields: Safeguard-
ing against Biased Decision Makers”. In: Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI). AAAI Press, 2025,

[Can+24b] Filip Cano, Thomas A. Henzinger, Bettina Könighofer,
Konstantin Kueffner, and Kaushik Mallik. Fairness Shields: Safeguard-
ing against Biased Decision Makers (extended version). 2024. arXiv: 2412.

11994.

6.2 Fairness Shielding Setting

In this section, we present the setting and notation elements that will be used
throughout this chapter. As illustrated in Figure 6.1, the problem of fair classi-
fication in this chapter can also be interpreted in the general reactive decision-
making framework. As we have done in previous chapters, we will use a slightly
adapted notation, focusing on the relevant elements of the work presented in
this chapter. In particular, in this chapter we use for the first time shields
that are not minimally correct, but are rather synthesized minimizing a certain
cost function. We continue using the bilingual team-building problem as our
running example to illustrate the notation elements being introduced. We re-
serve Section 6.2.3 to connect the formalization of this chapter with the general

https://arxiv.org/abs/2412.11994
https://arxiv.org/abs/2412.11994

6.2. FAIRNESS SHIELDING SETTING 105

framework presented in Chapter 3.

6.2.1 Environment and Shielding Setting

Data-driven classifier. We are given a population of individuals, described
by features. Among them, we consider one binary feature to be protected or
sensitive. Typical protected features are race, gender, language, etc. Without
loss of generality, the protected feature takes values in the set G = {a, b}, and
the population can be therefore partitioned into groups a and b, according to
the value of the protected feature. We consider a data-driven classifier that at
each step samples one individual from the population, and outputs a recom-
mended decision from the set B = {1, 0} along with an intervention cost from
the finite set C ⊂ R≥0. As convention, decisions “1” and “0” will correspond
to “accept” and “reject,” respectively. We assume that the sampling and clas-
sification process gives rise to a given input distribution θ ∈ D(X), where the
set X := (G × B × C) is called the input space. The non-protected features
of individuals are hidden from the input space because they are irrelevant for
shielding. We will assume that θ is given, i.e., the shields are computed using
knowledge about θ. When doing experiments, we estimate an approximation of
θ from the available data, as we detail in Section 6.5.1.

Example 6.2 (Continuation of Example 6.1). In the bilingual team example,
an individual is represented by a tuple (g, z) ∈ G ×Z, where G = {a, b} denotes
the language in which the candidate is proficient, and Z encompasses all non-
protected features relevant to evaluating a candidate’s suitability for the job, such
as years of experience, relevant education, and so on. For simplicity, we assume
that a candidate is proficient in only one of the two languages.

The company uses a classifier f : G × Z → B × C, which outputs a prelimi-
nary decision for each candidate (accept or reject) along with a cost associated
with altering that decision. The cost reflects the classifier’s confidence: candi-
dates who are clearly good or bad incur a high cost for decision changes, while
borderline candidates can have their decisions reversed at a lower cost.

Shields. A shield is a symbolic decision-maker that selects the final decision
from the output space Y := B after observing a given input from X , and possibly
accounting for past inputs and outputs.

Formally, a shield is a function π : (X × Y)
∗×X → Y, and its bounded-horizon

variants are functions of the form (X × Y)
≤t × X → Y, for a given t. Fol-

lowing the notions introduced in Chapter 3, a fairness shield is a particular
case of a post-shield (Definition 3.4). In particular, its output is a concrete
accept/reject decision, and not a set of allowed decisions. Note that the in-
put of a shield is (τ, x), where τ ∈ (X × Y)∗ a sequence of previous inputs and
outputs, and x ∈ X is a tuple x = (g, b, c) representing the last individual, for
which a final decision has not yet been made, where g ∈ G is the group member-
ship, b is the accept/reject recommendation of the classifier and c ∈ C is the
cost of overwritting the classifier’s recommendation. We will write Π and Πt to
respectively denote the set of all shields and the set of bounded-horizon shields

106 CHAPTER 6. ENFORCING FAIRNESS PROPERTIES

with horizon t 3. The concatenation of a sequence of shields π1, π2, . . . ∈ Πt is a
shield π, such that for every trace τ , if τ can be decomposed as ττ ′ with |τ | = jt
for some j and τ ′ < t, then π(τ, x) := πj+1(τ

′, x).

Sequential decision making setting. We consider the sequential setting
where inputs are sampled from θ one at a time, and the shield π needs to
produce an output without seeing the inputs from the future. Formally, at
every time i = 1, 2, . . ., we sample an input xi = (gi, ri, ci) from θ. The
probability of getting input xi is θ(xi) > 0. The shield’s output at time i
is yi = π([(x1, y1), . . . , (xi−1, yi−1)], xi). After applying this process of sampling
input and getting the corresponding shield output for t time-steps, the resulting
finite sequence τ = (x1, y1), . . . , (xt, yt) is called a trace induced by θ and π,
and the integer t is called the length of the trace, denoted as |τ |. We use FTtθ,π
to denote the set of every such trace. For every t, the probability distribution θ
and the shield π induce a probability distribution P(·; θ, π) over the set (X ×Y)t

as follows. For every trace τ ∈ (X × Y)t,

P(τ ; θ, π) :=

{∏t
i=1 θ(xi) if τ ∈ FTtθ,π.

0 otherwise.
(6.1)

The notation P(τ ; θ, π) is to be read as “the probability of obtaining the trace τ
when sampling inputs from the input distribution θ, and applying shield outputs
from π”. Note that θ and π are parameters of the distribution, i.e., P(·; θ, π) is
a probability distribution, while τ is the element in the sample space (denoted
Ω in Section 2.2) that has a certain probability to be sampled. Given a prefix
τ , the probability of observing the trace τ · τ ′, for some τ ′ ∈ (X × Y)∗, is
P(τ ′ | τ ; θ, π) = P(τ · τ ′; θ, π)/P(τ ; θ, π). Note that the statistical dependence of
τ ′ on τ is due to π’s history-dependence.

Cost. Let τ = (x1, y1), . . . , (xt, yt) be a trace of length t, where xi = (gi, ri, ci).
At time i, the shield pays the cost ci if its output yi is different from the
recommended decision ri. The total (intervention) cost incurred by the shield
on τ up to a given time s ≤ t is

cost(τ ; s) :=

s∑
i=1

ci · 1 [ri ̸= yi] . (6.2)

The cost incurred up to time t (the length of τ) is simply written as cost(τ),
instead of cost(τ ; t). For a given time horizon t, we define the expected value of
cost after time t as

E[cost ; θ, π, t] :=
∑

τ∈(X×Y)t

cost(τ) · P(τ ; θ, π), (6.3)

and if additionally a prefix τ is given, the conditional expected cost after time
t (from the end of τ) is

E[cost | τ ; θ, π, t] :=
∑

τ ′∈(X×Y)t

cost(τ ′) · P(τ ′ | τ ; θ, π). (6.4)

3We define bounded shields and the set Πt to emphasize that our synthesis algorithm only
defines the behaviour for traces τ with a length at most t.

6.2. FAIRNESS SHIELDING SETTING 107

Note that the difference between Equations (6.3) and (6.4) is that in the second
one, the prefix τ is given as part of the trace to the shield. One can see Eq. (6.3)
as a particular case of Eq. (6.4) when the prefix is the empty trace τ = ε. If τ
is “very fair”, i.e., φ(τ) ≪ κ, the cost of enforcing fairness in the next t steps
will be generally lower than the case where τ is on the limit of being fair, i.e.,
φ(τ) ≈ κ. This effect is amplified with longer prefixes.

The shield π is an element external to the classifier. It takes the protected
feature of the candidate and the classifier’s recommendation as inputs and has
the authority to issue a final accept/reject decision. If the shield’s decision
differs from the classifier’s, the incurred cost is as specified by the classifier. The
shield’s inputs are the features of candidates, the classifier’s decisions, and the
costs, and the input distribution is assumed to be known in advance.

Note that, from the shield’s perspective, the distribution of non-protected fea-
tures is unimportant, as these features are already processed by the data-driven
classifier and summarized into a single cost value. By sampling individuals from
the candidate pool and processing them through both f and π, we obtain a trace
τ that records the individuals and their decisions. In the case of our running
example, this trace encapsulates the results of the hiring process, including the
linguistic distribution of hired candidates and the total cost incurred by the
shield.

6.2.2 Fairness Enforcement with Minimal Cost

Fairness. We model (group) fairness properties as functions that map every
finite trace to a real-valued bias level through intermediate statistics. A statistic
µmaps each finite trace τ to the values of a finite set of counters, represented as a
vector in Np, where p is the number of counters. The welfare for group g ∈ {a, b}
is a function WFg : Np → R. When µ is irrelevant or clear from the context, we
will write WFg(τ) instead of WFg(µ(τ)). A fairness property φ is an aggregation
function mapping (WFa(τ), WFb(τ)) to a real-valued bias. Table 6.1 summarize
how existing fairness properties, namely demographic parity (DP) [Dwo+12],
disparate impact (DI) [Fel+15], and equal opportunity (EqOpp) [HPS16] can
be cast into this form.

Estimating EqOpp requires the ground truth labels of the individuals be re-
vealed after the shield has made its decisions on them. To accommodate
ground truth, we introduce the set Z = {0, 1}, such that traces are of the form
τ = (x1, y1, z1), . . . , (xt, yt, zt) ∈ (X ×Y×Z)∗, where each zi is the ground truth
label of the i-th individual. The shield is adapted to (X × Y × Z)∗ × X → Y,
where the set Z is treated as another input space and the probability distribu-
tion P(Z = zi | X = xi) is assumed to be available.

Example 6.3 (Continuation of Example 6.2). In the bilingual team example,
the welfare of a linguistic group g is defined as the fraction of the team proficient
in language g. A more nuanced interpretation considers the welfare of group g as
the fraction of accepted candidates among those proficient in language g, which
is the empirical variant of demographic parity (DP). This measure accounts
for the possibility that the linguistic distribution of the population may not be
evenly split. If one language is more prevalent in the target population, the hired

108 CHAPTER 6. ENFORCING FAIRNESS PROPERTIES

Name Counters WFg φ

Demographic parity (DP) na, na1, nb, nb1 ng1/ng |WFa(τ)− WFb(τ)|
Disparate impact (DI) na, na1, nb, nb1 ng1/ng

∣∣WFa(τ)÷ WFb(τ)
∣∣

Equal opportunity (EqOpp) n′
a, n

′
a1, n

′
b, n

′
b1 n′

g1/n
′
g |WFa(τ)− WFb(τ)|

Table 6.1: Empirical variants of fairness properties: For g ∈ {a, b}, the counters
ng and ng1 represent the total numbers of individuals from group g who ap-
peared and were accepted, respectively. Counters n′

g and n′
g1 denote the total

numbers of appeared and accepted individuals whose ground truth labels are
“1.” If a welfare value is undefined due to a null denominator, we set φ = 0.

team should proportionally include more members proficient in that language.
To obtain an empirical variant of equal opportunity (EqOpp), we would need
to assume the existence of a ground truth on whether a candidate is actually a
good employee for this job. This can typically only be assessed after the candidate
actually works for some time with the team, so it is not easy to estimate a priori.
In such case, the welfare of a group would be the fractions of hired candidates
with respect to the actually good candidates for each linguistic group.

Bounded-horizon fairness shields. From now on, we use the convention
that θ is the input distribution, φ is the fairness property, and κ is the bias
threshold. Let T be a given time horizon. The set Πθ,T

fair of fairness shields over
time T is the set of every shield that fulfills φ(·) ≤ κ after time T , i.e.,

Πθ,T
fair :=

{
π ∈ ΠT | ∀τ ∈ FTTθ,π . φ(τ) ≤ κ

}
. (6.5)

We now define optimal bounded-horizon fairness shields as below.

Definition 6.1 (Finite Horizon Shields). Let T > 0 be the time horizon. A
finite horizon shield (usually abbreviated to FinHzn) is the one that solves:

π∗ := argmin
π∈Πθ,T

fair

E[cost ; θ, π, T]. (6.6)

Note that even if the input distribution θ is learned and imprecise, as long
as it shares the same support as the true distribution, the fairness guarantees
provided by the shield remain unaffected; only the cost-optimality may be com-
promised.

Periodic fairness shields. FinHzn shields stipulate that fairness be satis-
fied at the end of the given horizon. However, in many situations, it may be
desirable to ensure fairness not only at the end of the horizon but also at inter-
mediate points occurring at regular intervals. For instance, a human resources
department that is required to maintain a fair distribution of employees over
the course of a quarter might also need to ensure a similar property for their
yearly revision, after four quarters. This type of fairness is referred to as peri-
odic fairness in the literature [Ala+24]. For this class of fairness properties, we
define the set of T -periodic fairness shields as

Πfair-per :=
{
π ∈ Π | ∀m ∈ N . ∀τ ∈ FTmT

θ,π . φ(τ) ≤ κ
}
. (6.7)

6.3. ALGORITHM FOR FINITE HORIZON SHIELD SYNTHESIS 109

Note that Πfair-per does not force every subtrace of length T , or mT for some
m ∈ N, to satisfy a certain fairness constraint. The reader may think of the
multiples of the period T, 2T, 3T, . . . as “examination dates”: the trace will be
inspected at time mT , and by then it has to be correct. Therefore, subtraces of
any length that do not end in an examination date may have bias values slightly
over the threshold.

Definition 6.2 (Optimal T -periodic fairness shield). Let T > 0 be the time
period. An optimal T -periodic fairness shield is given by:

π∗ := argmin
π∈Πfair-per

sup
m∈N

τ∈FTmT
θ,π

E[cost | τ ; θ, π, T]. (6.8)

Equation (6.8) requires fairness at each mT -th time (measured from the be-
ginning), and minimizes the maximum expected cost over each period. The
existence of this minimum remains an open question. In Section 6.4, we pro-
pose three ”best-effort” approaches to compute periodically fair shields (under
mild assumptions) that are as cost-optimal as possible.

6.2.3 Fairness Shielding within the Reactive Decision Mak-
ing Framework

The sequential input can be modelled by an environment E = (O,A,T), with
O = X (what we called the input space, X = G×B×C), A = Y, and a transition
function T characterized by a single input distribution. That is, for all trace
τ ∈ (O ×A)∗, there is a unique distribution θ ∈ D(X) such that T (τ) = θ.

The main difference between this shielding setting and those presented in Chap-
ters 4 and 5 is that correctness is not established by avoiding concrete obser-
vations states, but rather correctness depends on the whole trace via a series
of counters. In fact, every observation has a probability that is independent
from the behaviour of the agent or the shield. Another notable difference in
this case is that we are not interested in the notion of minimal interference as
expressed in Definitions 3.10 and 3.12. In contrast, we assign a specific weight,
or cost, to each interference, and build the shield that minimizes interferences
in expectation.

6.3 Algorithm for Finite Horizon Shield Synthe-
sis

We present our algorithm for synthesizing FinHzn shields as defined in Defini-
tion 6.1. A FinHzn shield π∗ computes an output y = π∗(τ, x) for every trace
τ ∈ (X × Y)≤T and every input x ∈ X . Our synthesis algorithm builds π∗ re-
cursively for traces of increasing length, using an auxiliary value function v(τ)
that represents the minimal expected cost conditioned on traces with prefix τ .
To define v(τ), we generalize fairness shields with the condition that a certain
trace has already occurred. Given a time horizon t and a trace τ , whose length
can differ from t, the set of fairness shields over time t after τ is defined as

Π
θ,t|τ
fair :=

{
π ∈ Πt | ∀τ ′ ∈ (X × Y)t . ττ ′ ∈ FT

|τ |+t
θ,π =⇒ φ(ττ ′) ≤ κ

}
.

110 CHAPTER 6. ENFORCING FAIRNESS PROPERTIES

Then v(τ) is given by:

v(τ) := min
π∈Π

θ,(T−|τ|)|τ
fair

E[cost | τ ; θ, π, T − |τ |]. (6.9)

For every trace τ and every input x ∈ X , the optimal value of the shield is
π∗(τ, x) = argminy∈Y v(τ, (x, y)).

In Section 6.3.1, we present a recursive dynamic programming algorithm for
computing v(τ), whose complexity grows exponentially with the length of τ . In
Section 6.3.2, we present show how the algorithm proposed in Section 6.3.1 can
actually be adapted to use only the p counters defining the fairness property,
thus solving the synthesis problem more efficiently, with polynomial complexity
for the vast majority of fairness properties.

6.3.1 Recursive Computation of the Value Function

We compute the value function recursively, defining a trivial value for traces of
length |τ | = T , and showing how the value function for traces of lenght |τ | < T
can be computed by simulating a single optimization step by the shield and
using the value function for traces of length |τ |+ 1.

Base case. Let T be the time horizon and τ be a trace of length T . Since the
horizon has already been reached, if φ(τ) ≤ κ, then the expected cost is zero
because fairness is already satisfied and no more cost needs to be incurre. On
the other hand, if φ(τ) > κ, the expected cost is infinite, because, no matter
what cost is paid, fairness can no longer be achieved. Formally,

v(τ) =

{
0 φ(τ) ≤ κ,

∞ otherwise.
(6.10)

Recursive case. Let τ be a trace of length smaller than T . The probability
of the next input being x = (g, r, c) is θ(x), and the shield decides to output y
that either agrees with the recommendation r (the case y = r) or differs from
it (the case y ̸= r)—whichever minimizes the expected cost. When y = r, the
trace becomes (τ · (x, y = r)). Therefore, no cost is incurred and the total cost
is the same as v(τ · (x, y = r)). When y ̸= r, the trace becomes (τ · (x, y ̸= r)).
Thus, the incurred cost is c and the new total cost becomes c+ v(τ · (x, y = r)).
Therefore

v(τ) =
∑

x=(g,r,c)∈X

θ(x) ·min

{
v(τ · (x, y = r)),

v(τ · (x, y ̸= r)) + c

}
. (6.11)

Equations (6.10) and (6.11) can be used to recursively compute v(τ) for every τ
of length up to T , and the time and space complexity of this procedure is O(|X ×
Y|T). The correctness of Equation (6.11) is formally proven in Lemma 6.1.
Before formalizing the argument, let us see an example of its inner workings.

Example 6.4 (Continuation of Example 6.3). Consider the task of hiring a
linguistically balanced team with a horizon of T = 50 candidates and a target

6.3. ALGORITHM FOR FINITE HORIZON SHIELD SYNTHESIS 111

demographic parity property φ with a threshold κ = 0.2, i.e., 20%. By the end
of the process, a trace τ of |τ | = 50 candidates must satisfy φ(τ) < κ.

Consider the following situation. Suppose τ ′ be the trace obtained after observing
the first 48 candidates, i.e., |τ ′| = 48, and just two more candidates are going
to be observed before the horizon ends. In τ ′, 24 candidates have been observed
for each language proficiency group among A and B, and among them 12 from
group A and 17 from group B have been accepted, resulting in φ(τ ′) = |12/24−
17/24| = 0.208 > κ. This temporary violation of DP is allowed since the process
is ongoing. Suppose a new candidate x = (g, r, c) appears, with g = B. The
classifier tentatively accepts x and informs the shield that reversing this decision
would incur a cost c. If the shield accepts x, the shield will be forced to reject
the next candidate proficient in B or accept the next candidate proficient in A,
regardless of the cost. Conversely, if the shield rejects x, it incurs an immediate
cost of c but balances the languages to a point where intervention will not be
required for the next decision. The shield must therefore weigh its options: either
incur a known cost c now by rejecting x or risk an unknown future cost c′

by accepting x. If the candidate is exceptionally qualified, i.e., the classifier
recommends acceptance with a high cost of modifying its decision, the shield
might choose to accept x, accepting the potential risk of rejecting another well-
qualified candidate proficient in B in the next round. On the other hand, when
the shield is considering a borderline candidate, it may be better to pay a small
price with the current candidate and ensuring that the agent’s decision will be
respected for the next candidate, whatever the decision is.

Lemma 6.1. Let θ ∈ D(X) be a given joint distribution of sampling individuals
and the output of the agent, let κ > 0 be a given threshold for a fairness property
φ, and let T > 0 be a time horizon. For a trace τ ∈ (X × Y)≤T , let v(τ) be the
minimum expected cost after τ , formally defined as

v(τ) := min
π∈Π

θ,(T−|τ|)|τ
fair

E[cost | τ ; θ, π, T − |τ |].

Then for τ with length |τ | = T

v(τ) =

{
0 φ(τ) ≤ κ,

∞ otherwise,
(6.12)

for τ with |τ | < T

v(τ) =
∑

x=(g,r,c)∈X

θ(x) ·min

{
v(τ · (x, y = r)),

v(τ · (x, y ̸= r)) + c

}
, (6.13)

and the shield defined as π∗(τ, x) := argminy∈Y v(τ, (x, y)) is an optimal fairness
bounded horizon fairness shield, i.e.,

π∗ = argmin
π∈Πθ,T

fair

E[cost ; θ, π, T]. (6.14)

Proof. Consider the term to be minimized:

E[cost | τ ; θ, π, T − |τ |] =
∑

τ ′∈(X×Y)T−|τ|

cost(τ ′) · P(τ ′ | τ ; θ, π). (6.15)

112 CHAPTER 6. ENFORCING FAIRNESS PROPERTIES

The sum over traces τ ′ ∈ (X ×Y)T−|τ | can be partitioned into a sum over inputs
x ∈ X and traces τ ′′ ∈ (X × Y)T−|τ |−1, by taking τ ′ = xπ(τ, x)τ ′′. The cost
term is then

cost(τ ′) = cost(xπ(τ, x)τ ′′) = cost(τ ′′) + cost(xπ(τ, x)).

If x = (g, r, c), then

cost(xπ(τ, x)) =

{
0 if r = π(τ, x)

c otherwise.

The probability term is then:

P(τ ′ | τ ; θ, π) = P(xπ(τ, x) | τ ; θ, π) · P(τ ′′ | τxπ(τ, x); θ, π)

The value in Equation (6.15) can be written as∑
τ ′∈(X×Y)T−|τ|

cost(τ ′) · P(τ ′ | τ ; θ, π) = A+B, (6.16)

where

A =
∑
x∈X

∑
τ ′′∈(X×Y)T−|τ|−1

cost(τ ′′) · P(xπ(τ, x) | τ ; θ, π) · P(τ ′′ | τxπ(τ, x); θ, π),

(6.17)
and

B =
∑
x∈X

∑
τ ′′∈(X×Y)T−|τ|−1

cost(xπ(τ, x))·P(xπ(τ, x) | τ ; θ, π)·P(τ ′′ | τxπ(τ, x); θ, π).

(6.18)
Note that the term P(xπ(τ, x) | τ ; θ, π) appears several times. This is the
probability of getting a trace xπ(τ, x) after having seen a trace τ . This is, by
definition P(xπ(τ, x) | τ ; θ, π) = θ(x).

Since θ(x) does not depend on τ ′′, the sum in A can be rearranged as

A =
∑
x∈X

θ(x) ·
∑

τ ′′∈(X×Y)T−|τ|−1

cost(τ ′′) · P(τ ′′ | τxπ(τ, x); θ, π), (6.19)

and therefore

A =
∑
x∈X

θ(x) · E[cost | τxπ(τ, x); θ, π, T − |τ | − 1]. (6.20)

The term B can be similarly rearranged, taking into consideration that in this
case cost(xπ(τ, x)) is also independent of τ ′′:

B =
∑
x∈X

cost(xπ(τ, x)) · θ(x) ·
∑

τ ′′∈(X×Y)T−|τ|−1

P (τ ′′ | τxπ(τ, x); θ, π) . (6.21)

The hanging term is the sum of probabilities, so by definition adds up to 1:∑
τ ′′∈(X×Y)T−|τ|−1

P (τ ′′ | τxπ(τ, x); θ, π) = 1.

6.3. ALGORITHM FOR FINITE HORIZON SHIELD SYNTHESIS 113

Therefore

B =
∑
x∈X

θ(x) · cost(xπ(τ, x)) (6.22)

Putting A and B together we get:

E[cost | τ ; θ, π, T − |τ |] =
=
∑
x∈X

θ(x) ·
(
cost(xπ(τ, x)) + E[cost | τxπ(τ, x); θ, π, T − |τ | − 1]

)
. (6.23)

This partitions the value of E[cost | τ ; θ, π, T − |τ |] into a sum of cost of current
decision (cost(xπ(τ, x))) and expected cost in the rest of the trace. For every x,
the optimal value of the shield π(τ, x) is the one that minimizes

cost(xπ(τ, x)) + E[cost | τxπ(τ, x); θ, π, T − |τ | − 1].

This is precisely, the recursive property that we want to prove.

Finally, to prove Equation (6.14), just note that for the empty trace τ = ε, we

have Π
θ,(T−|τ |)|τ
fair = Πθ,T

fair, which is precisely the set of shields set as minimization
domain in Equation (6.14).

6.3.2 Efficient Value Function Computation through Trace
Abstraction

We now present an efficient recursive procedure for computing FinHzn shields
that runs in polynomial time and space. The key observation is that φ is a
fairness property that depends on τ through a statistic that uses p counters,
as defined in Section 6.2.2. Consequently, the value function v(τ) in Equa-
tion (6.10) and Equation (6.11) depends only on counter values, not on exact
traces. This allows us to define our dynamic programming algorithm over the
set of counter values taken by the statistic µ. Let Rµ,T ⊆ Np be the set of values
the statistic µ can take from traces of length at most T . We have the following
complexity result.

Theorem 6.1. Solving the bounded-horizon shield-synthesis problem requires
O(|Rµ,T | · |X |)-time and O(|Rµ,T | · |X |)-space.

Proof. In this section we have described a dynamic programming approach to
synthesize the shield by recursively computing v(τ) for all possible traces τ ∈
(X ×Y)≤T . As explained before, these computations do not depend directly on
τ , but rather on the statistic µ, that depends on p counters, taking values in
the set Rµ,T . We need to build a table with the shield values for every pair of
counter values and input. Therefore, the table occupies a space O(|Rµ,T | · |X |).
Every element of the table has to be computed only once, and it is done as a
sum over all elements of x, thus the cost in time is O(|Rµ,T | · |X |).

Most fairness properties, e.g., DP and EqOpp, have a range of Rµ,T = [0, T]p,
where p is the number of counters (p = 4 for DP, and p = 5 for EqOpp), making
the complexity polynomial in the length of the time horizon.

114 CHAPTER 6. ENFORCING FAIRNESS PROPERTIES

6.4 Algorithms for Periodic Shield Synthesis

Until now, we have described a method to synthesize finite-horizon shields,
that is, shields that ensure fairness after a finite horizon T (Definition 6.1). In
this section we explore the problem of synthesizing T -periodic shields, which
guarantee fairness for unbounded traces at every T decisions (Definition 6.2).
As previously noted, we leave the question of computing optimal T -periodic
shields open, and present three “best-effort” solutions to the problem, each
with different costs and guarantees.

We present algorithms for computing periodic fairness shields for a broad sub-
class of group fairness properties, which we call difference of ratios (DoR) prop-
erties. A statistic µ is single-counter if it maps every trace τ to a single counter
value, i.e., µ(τ) ∈ N, and additive if µ(τ · τ ′) = µ(τ)+µ(τ ′) for any traces τ and
τ ′. A group fairness property φ is DoR if

(a) for each group g, WFg(τ) = numg(τ)/deng(τ), where numg(τ) and deng(τ)
are additive single-counter statistics, and

(b) φ(τ) = |WFa(τ)− WFb(τ)|.

Many fairness properties, including DP and EqOpp, are DoR. See, for exam-
ple, [BHN23, Table 3.5] for a non-exhaustive list. In this case, DI is an exception
because it violates the condition (b).

For DoR fairness properties, we propose two approaches for constructing pe-
riodic fairness shields: static and dynamic, and we explore their respective
strengths and weaknesses.

6.4.1 Periodic Shielding: The Static Approach

In the static approach, a periodic shield is obtained by concatenating infinitely
many identical copies of a statically computed bounded-horizon shield π, synthe-
sized with the time period T as the horizon. We present two ways of computing
π so that its infinite concatenation is T -periodic fair.

6.4.1.1 Approach I: Static-Fair Shields.

Definition 6.3 (Static-Fair shields). A shield is called Static-Fair if it is the
concatenation of infinite copies of a FinHzn shield (from Definition 6.1).

Unfortunately, Static-Fair shields do not always satisfy periodic fairness. Con-
sider a trace τ = τ1 . . . τm for an arbitrary m > 0, generated by a Static-Fair
shield, such that each segment τi is of length T . It follows from the property of
FinHzn shields that φ(τi) ≤ κ for each individual i. However, T -periodic fairness
may be violated because φ(τ) need not be bounded by κ.

Example 6.5. Consider DP with 0 < κ < 1−2/T . Suppose τ1 and τ2 are traces
of length T , defined as follows. The first trace τ1 contains 1 candidate from group
A, T − 1 candidates from group B, and none were accepted. The second trace
τ2 contains T − 1 candidates from group A, 1 candidate from group B, and all
were accepted. Both traces are fair, since φ(τ1) = φ(τ2) = 0. However, when
concatenating the two traces together, the resulting trace τ1 · τ2 is very biased,

6.4. ALGORITHMS FOR PERIODIC SHIELD SYNTHESIS 115

since it contains T candidates from both group A and B, but only one accepted
candidate from group B, while having T − 1 candidates accepted from group A.
Concretely, φ(τ1τ2) = |(T − 1)/T − 1/T | = 1− 2/T > κ (biased). This example
is summarized in Table 6.2.

An important feature of these counter-examples is the excessive skewness of
appearance rates across the two groups. We further explore this phenomenon
in Section 6.6.1.2. We show that Static-Fair shields are T -periodic fair if the
appearance rates of the two groups are constant across every period.

Theorem 6.2 (Conditional correctness of Static-Fair shields). Let φ be a DoR
fairness property. Consider a Static-Fair shield π, and let τ = τ1 . . . τm ∈ FTmT

θ,π

be a trace such that |τi| = T for all i ≤ m. If deng(τi) = deng(τj) for every
i, j ≤ m and g ∈ {a, b}, then the fairness property φ(τ) ≤ κ is guaranteed.

Proof. Given the condition, we can name dena and denb to the unique values
of dena(τi) and denb(τi). For each i ≤ m, we have the condition that∣∣∣∣numa(τi)dena

− numb(τi)

denb

∣∣∣∣ ≤ κ. (6.24)

We want to prove a fairness condition for the trace τ1 . . . τm, that is expressed
as ∣∣∣∣∑m

i=1 num
a(τi)

m · dena −
∑m

i=1 num
b(τi)

m · denb
∣∣∣∣ ≤ κ. (6.25)

Because of the denominators being the same across all traces, we can reorder
the left-hand-side of Equation (6.25) as

1

m

∣∣∣∣∣
m∑
i=1

(
numa(τi)

dena
− numb(τi)

denb

)∣∣∣∣∣ . (6.26)

Applying the triangular inequality to Equation (6.26) and the condition in Equa-
tion (6.24), we get

1

m

∣∣∣∣∣
m∑
i=1

(
numa(τi)

dena
− numb(τi)

denb

)∣∣∣∣∣ ≤ 1

m

m∑
i=1

∣∣∣∣numa(τi)dena
− numb(τi)

denb

∣∣∣∣ ≤
≤ 1

m
·mκ = κ.

na na1 nb nb1 DP (φ) φ ≤ κ?

τ1 1 0 T − 1 0 0 ✓
τ2 T − 1 T − 1 1 1 0 ✓
τ1τ2 T T − 1 T 1 1− 2/T ✗

Table 6.2: Counterexample showing that Static-Fair shields may not be period-
ically fair for DP. Suppose the bias threshold is 0 < κ < 1 − 2/T . The traces
τ1, τ2 fulfill DP but their concatenation does not.

116 CHAPTER 6. ENFORCING FAIRNESS PROPERTIES

While the condition in Theorem 6.2 appears conservative, we show in Sec-
tion 6.6.1.2 (Theorem 6.5) that it is in fact tight. The tightness result is ex-
pressed in terms of balanced traces, which is a concept that will appear also in
the following section.

Definition 6.4 (Balanced traces). Let µa, µb : (X × Y)∗ → N be a pair of
single-counter statistics, T > 0 be a given time horizon, and N ≤ T/2 be a
given integer. A trace τ of length T is N -balanced with respect to µa and µb if
both µa(τ) ≥ N and µb(τ) ≥ N . We denote the set of all N -balanced traces of
length t as BTT (µa, µb, N).

A particular case of Theorem 6.2 is that fairness is guaranteed when all traces
are (T/2)-balanced with respect to the denominators. In Theorem 6.5, we show,
for the case of demographic parity, with µa, µb = dena, denb, for every κ, there
exist m and ⌊(T − 1)/2⌋-balanced traces τ1, . . . , τm such that φDP(τi) ≤ κ for
each i, but φDP(τ1 . . . τm) > κ. However, these are worst-case scenarios and are
uninteresting from a practical point of view. In our experiments, Static-Fair
shields fulfill periodic fairness in a majority of cases even if the traces violate
the condition in Theorem 6.2.

6.4.1.2 Approach II: Static-BW Shields.

When the condition of Theorem 6.2 is violated, Static-Fair shields cannot guar-
antee fairness as the bound on the bias is not closed under concatenation of
traces (see Example 6.5). A stronger property that is indeed closed under con-
catenation is when a bound is imposed on each group’s welfare. Let l, u be
constants with 0 ≤ l < u ≤ 1. A trace τ has bounded welfare (BW) if for each
group g ∈ G, WFg(τ) = numg(τ)/deng(τ) belongs to [l, u]. The pair (l, u) will be
called welfare bounds. We show that BW is closed under trace concatenations,
which depends on the additive property of numg and deng.

Lemma 6.2. Let (l, u) be given welfare bounds, and WFg(·) ≡ numg(·)/deng(·)
for additive numg, deng. For a trace τ = τ1 . . . τm, if for each i, WFg(τi) ∈ [l, u],
then WFg(τ) ∈ [l, u].

To prove Lemma 6.2, we first need to prove the following auxiliary result.

Lemma 6.3. Let a1, . . . , am, b1, . . . , bm be positive real numbers. Then

min
i∈{1...m}

ai
bi

≤
∑m

i=1 ai∑m
i=1 bi

≤ max
i∈{1...m}

ai
bi
. (6.27)

Proof. This is an extension of the following known inequality: given positive
numbers w, x, y, z, if w/x < y/z, then w

x ≤ w+y
x+z ≤ y

z . We can restate it as:

min
(w
x
,
y

z

)
≤ w + y

x+ z
≤ max

(w
x
,
y

z

)
. (6.28)

We prove this result by induction on m. The base case for m = 1 is trivial.

6.4. ALGORITHMS FOR PERIODIC SHIELD SYNTHESIS 117

For a general m, we start applying inequality (6.28) with w =
∑m−1

i=1 ai, x =∑m−1
i=1 bi, y = am, and z = bm, to obtain:∑m

i=1 ai∑m
i=1 bi

≤ max

(∑m−1
i=1 ai∑m−1
i=1 bi

,
am
bm

)
.

Applying the induction hypothesis we have that∑m−1
i=1 ai∑m−1
i=1 bi

≤ max
i∈{1...m−1}

ai
bi
, (6.29)

and therefore:∑m
i=1 ai∑m
i=1 bi

≤ max

(
max

i∈{1...m−1}

ai
bi
,
am
bm

)
= max

i∈{1...m}

ai
bi
.

This proves the right-side inequality of Equation (6.27). The left-side is analo-
gous.

Proof (Of Lemma 6.2). Let na
i = dena(τi), n

a1
i = numa(τi), n

b
i = denb(τi), and

nb1
i = denb(τi). Applying Lemma 6.3, we have for all g ∈ G that

min
i∈{1...n}

ng1
i

ng
i

≤
∑n

i=1 n
g1
i∑n

i=1 n
g
i

≤ max
i∈{1...n}

ng1
i

ng
i

. (6.30)

And we also know that all welfare values are bounded by l and u. That is, for
all i ∈ {1 . . . n} and all g ∈ G

l ≤ ng1
i

ng
i

≤ u (6.31)

In particular, Equation (6.31) applies to the maximum and minimum welfare
values. This, together with Equation (6.30) finishes the proof.

For DoR properties, BW implies fairness when u − l ≤ κ. Combining this
with Lemma 6.2, we infer that if π is a bounded-horizon shield that fulfills
BW on every trace τ of length T for welfare bounds (l, u) with u − l ≤ κ,
then the concatenation of infinite copies of π would be a T -periodic fairness
shield. The natural course of action for computing shields that fulfill BW is to
mimic Definition 6.1, replacing the condition on φ with a condition on welfare.
However, if we define the set of BW-fulfilling shields as

Πθ,T
BW :=

{
π ∈ Π | ∀τ ∈ FTTθ,π . ∀g ∈ {a, b} . l ≤ WFg(τ) ≤ u

}
,

the set Πθ,T
BW can be empty for some T, l, u. Following is an example.

Example 6.6. Suppose WFg(τ) = ng1/ng, where ng1 and ng are the total num-
bers of accepted and appeared individuals from group g (as in DP). Suppose
T = 2, l = 0.2, u = 0.4. It is easy to see that no matter what the shield does, for
every τ of length 2, WFg(τ) ∈ {0, 0.5, 1}. Therefore, Π2

[0.2,0.4] = ∅.

118 CHAPTER 6. ENFORCING FAIRNESS PROPERTIES

The emptiness of Πθ,T
BW is due to a large disparity between the appearance rates

of individuals from the two groups, which occurs for shorter time horizons and
for datasets where one group has significantly lesser representation than the
other group. To circumvent this technical inconvenience, we make the following
assumption on observed traces.

Assumption 6.1. Let l, u be welfare bounds, and τ = τ1 . . . τm ∈ FTmT
θ,π be a

trace with |τi| = T for each i. Every τi is N -balanced w.r.t. dena and denb for
N = ⌈1/(u− l)⌉.

Assumption 6.1 may be reasonable depending on l, u, T , and the input distri-
bution θ. Intuitively, for a larger T and a smaller skew of appearance prob-
abilities for individuals between the two groups, the probability of fulfilling
Assumption 6.1 is larger (for a given finite m). At the end of this section
(Equation (6.36)) we quantify it as the probability of a sample from a binomial
distribution lying between N and T −N .

Definition 6.5 (Static-BW shields). Let l, u be given welfare bounds, and T be
a given time period. A Static-BW shield is the concatenation of infinite copies
of the shield π∗ solving

π∗ = argmin
π∈Πθ,T,N

BW

E[cost ; θ, π, T], (6.32)

where N = ⌈1/(u− l)⌉, and

Πθ,T,N
BW :=

{
π ∈ Π | ∀τ ∈ FTTθ,π ∩ BTTN .∀g ∈ {a, b} . l ≤ WFg(τ) ≤ u

}
.

With the following technical result prove that Πθ,T,N
BW is indeed non-empty when

Assumption 6.1 is fulfilled. We do so by constructing the shield that keeps
WFg(τ) just above l and showing that it also guarantees WFg(τ) ≤ u when the
trace is sufficiently balanced.

Lemma 6.4. Let φ be a DoR property with φ(τ) = |WFa(τ) − WFb(τ)|, and
WFg(τ) = numg(τ)/deng(τ). Let 0 ≤ l < u ≤ 1 be a pair of welfare bounds. The
set of shields

ΠT,N
BW :=

{
π ∈ Π | ∀τ ∈ FTtθ,π ∩ BTTN . ∀g ∈ {a, b} . l ≤ WFg(τ) ≤ u

}
is not empty for N ≥

⌈
1

u−l

⌉
.

Proof. For a shield to exist that can enforce bounds [l, u] on the welfare, there
must exist, for every value of deng(τ), at least one way of deciding for increasing
or not numg(τ) that maintains the welfare in the desired bounds. Since we do
not know a priori the value of deng(τ), this decision must be incremental, and
be such that the welfare is maintained for any value of deng(τ).

To express this, there needs to exist a sequence (xn) ⊆ N for all n ≥ N such
that

l ≤ xn

n
≤ u, and xn+1 − xn ∈ {0, 1}. (6.33)

6.4. ALGORITHMS FOR PERIODIC SHIELD SYNTHESIS 119

Given l, and u, if deng(τ) is at least N for a given group g, the shield can force
numg(τ) to be exactly xn to ensure the bound on welfare is met.

The condition in Equation (6.33) can be reformulated as ln ≤ xn ≤ un, and
since xn needs to be an integer, we can tighten it to

⌈ln⌉ ≤ xn ≤ ⌊un⌋ . (6.34)

One option is to try xn = ⌈ln⌉. We have to prove that this choice satisfies two
conditions: (i) xn+1 − xn ∈ {0, 1}, and (ii) Equation (6.34).

(i) This is true for any sequence xn built as the integer part of nl, where
l ∈ [0, 1]. For any number x, it is known that x = ⌈x⌉ − {x}, where
0 ≤ {x} < 1. Applying this inequality twice, we get

xn+1−xn = ⌈l(n+1)⌉−⌈ln⌉ < l(n+1)−⌈ln⌉ ≤ l(n+1)− ln = 1+ l < 2.

Since ⌈l(n+1)⌉−⌈ln⌉ is an integer strictly smaller than 2, it is smaller or
equal than 1. It is also clearly non-negative, so it has to be either 0 or 1.

(ii) By construction, ln ≤ ⌈ln⌉. Now we have to see that ⌈ln⌉ ≤ un. If
⌈ln⌉ = ln, then for any n ≥ 1, we have xn ≤ un on account of l < u. If
⌈ln⌉ = ln+1, we need ln+1 ≤ un, which is equivalent to n ≥ 1

u−l . Since

n needs to be an integer, selecting N =
⌈

1
u−l

⌉
ensures this condition is

satisfied for all n ≥ N .

This result guarantees that the optimization problem in (6.32) is feasible, and
thus Static-BW shields are well-defined. Intuitively, we obtain a “best-effort”
solution for π∗: when a trace satisfies Assumption 6.1, π∗ guarantees that τ sat-
isfies BW with minimum expected cost. Otherwise, π∗ has no BW requirement,
and thus for traces that violate Assumption 6.1, the shield will incur zero cost
by never intervening, voiding any potential fairness guarantee.

Synthesis of Static-BW shields follows the same approach as in Section 6.3 with
Equation (6.10) replaced by:

v(τ) =

{
0 if τ /∈ BTTN ∨∧g∈{a,b} WF

a(τ) ∈ [l, u],

∞ otherwise.
(6.35)

We summarize the fairness guarantee below.

Theorem 6.3 (Conditional correctness of Static-BW shields). Let φ be a DoR
fairness property. Let l, u be welfare bounds such that u − l ≤ κ. For a given
Static-BW shield π, let τ = τ1 . . . τm ∈ FTmT

θ,π be a trace with |τi| = T for
each i ≤ m. If Assumption 6.1 holds, then the fairness property φ(τ) ≤ κ is
guaranteed.

Proof. This is a direct consequence of Lemmas 6.2 and 6.4. If Assumption 6.1
holds, Lemma 6.4 ensures that the set of shields is non-empty. Furthermore, any
such shield satisfies the fairness condition φ(τ) ≤ κ for any trace in τ ∈ FTmT

by Lemma 6.2.

120 CHAPTER 6. ENFORCING FAIRNESS PROPERTIES

Existence of Static-BW shields. The feasiblity of the condition N ≥
⌈

1
u−l

⌉
in real cases depends on the values of l and u to enforce, as well as the incoming
probability distribution. This condition, formulated as Assumption 6.1, is the
key to guarantee the existence of Static-BW shields in Theorem 6.4. In its most
simplified form, if we just care about the group membership of any incoming
candidate, the distribution of incoming candidates follows a Bernoulli distribu-
tion B(p), where p is the probability to receive a candidate of group A. After
a time horizon T , the number of incoming candidates of group A follows a bi-
nomial distribution Bin(T, p), and the probability to see at least N candidates
of each group is the probability of the binomial being between N and T − N ,
which is

T−N∑
k=N

(
T

k

)
pk(1− p)T−k. (6.36)

In practice, this corresponds to the probability that our shield will encounter a
trace where demographic parity with the given bound on acceptance rates can
be enforced. It is up to the user to evaluate whether this guarantee is enough
for a given application.

6.4.2 Periodic Shielding: The Dynamic Approach

While the static approaches repeatedly use one statically computed bounded-
horizon shield, the dynamic approach recomputes a new bounded-horizon shield
at the beginning of each period, and thereby adjusts its future decisions based
on the past biases. We formalize this below.

Definition 6.6 (Dynamic shields). Suppose we are given a parameterized set of
available shields Π′(τ) ⊆ Π where the parameter τ ranges over all finite traces.
A Dynamic shield π is the concatenation of a sequence of shields π1, π2, . . . such
that for every trace τ ∈ FTmT

θ,π with m ≥ 0, for every τ ′ ∈ (X × Y)<T , and for
every input x ∈ X , we have π(τ · τ ′, x) = πm+1(τ

′, x), where

πm+1 = argmin
π′∈Π′(τ)

E[cost | τ ; θ, π′, T]. (6.37)

The set Π′(τ) restricts the available set of shields that can be used for the next
period for the given history τ . A näıve attempt for Π′(τ) would be to choose

Π′(τ) = Π
θ,T |τ
fair for every τ , so that fairness is guaranteed at the end of the

current period. However, there exist histories for which Π
θ,T |τ
fair would be empty,

implying that Equation (6.37) would not have a feasible solution for some τ ,
and the Dynamic shield would exhibit undefined behaviors.

This happens because there may be traces of length jT that satisfy a certain
fairness constraint, but no shield can guarantee the next trace will satisfy the
same constraint.

Example 6.7. Consider φ = DP, κ = 0.1, T = 100, and a trace τ such that
na(τ) = 2, na1(τ) = 1, nb(τ) = 98, and nb1(τ) = 49. The trace τ satisfies
DP(τ) = |1/2 − 49/98| = 0. Now assume we build a shield for the next frag-
ment, and in generating the next trace τ ′, only individuals from group b have
appeared for the first 99 samples. Let τ ′[1:99] denote this trace, and let Accb denote

6.4. ALGORITHMS FOR PERIODIC SHIELD SYNTHESIS 121

WFbτ · τ ′[1:99]. Then DP(τ · τ ′[1:99]) = |1/2− Accb|. If the last individual of τ ′ hap-

pens to be from group a, the acceptance rate of group a moves from 1/2 to either
1/3 (if it gets rejected) or 2/3 (if it gets accepted). There is no possible value of
Accb that simultaneously guarantees |1/3− Accb| ≤ κ and |2/3− Accb| ≤ κ.

To circumvent this technical inconvenience, we make the following mild assump-
tion on the set of allowed histories, requiring Π′(τ) to fulfill fairness only if τ
fulfills this assumption.

Assumption 6.2. For a given trace τ ∈ FT
jT
θ,π with j > 0, every valid suffix τ ′

of length t, i.e., τ ′ ∈
{
τ ′′ ∈ (X × Y)T | ττ ′′ ∈ FT

(j+1)T
θ,π

}
, fulfills:

1

dena(ττ ′)
+

1

denb(ττ ′)
≤ κ+ φ(τ).

The set of shields Π′(·) available to the Dynamic shield in Definition 6.6 is then
defined as:

Π′(τ) = Πθ,T
fair-dyn(τ) :=

{
Π

θ,T |τ
fair τ fulfills Assumption 6.2,

Π otherwise.
(6.38)

With the following technical result, we prove that Π
θ,T |τ
fair is non-empty whenever

τ fulfills Assumption 6.2, implying that Πθ,T
fair-dyn(τ) is non-empty for every τ .

This is the analogous result to Lemma 6.4 for dynamic shields.

Lemma 6.5. Let φ be a DoR fairness property with φ(τ) = |WFa(τ)− WFb(τ)|,
and WFg(τ) = numg(τ)/deng(τ). Let τ1 be a trace and κ ≥ 0. There exists a
shield π ∈ Π such that every trace τ2 ∈ FTTθ,π ∩ S satisfies φ(τ1 · τ2) ≤ κ, where

S =

{
τ2 ∈ (X × Y)T :

1

dena(τ1τ2)
+

1

denb(τ1τ2)
≤ κ+ φ(τ1)

}
.

Proof. The proof of this result is analogous to that of Lemma 6.4, with a slightly
more convoluted argument.

Let n1
a = dena(τ1), n

1
a1 = numa(τ1), n

1
b = denb(τ1), and n1

b1 = numb(τ1). With-
out loss of generality, we can assume that n1

a1/n
1
a−n1

b1/n
1
b ≥ 0. The alternative

case is analogous.

For a shield to exist that can enforce φ(τ1τ2) ≤ κ there must exist, for every value
of deng(τ1τ2) (in demographic parity, the amount of individuals of a group), at
least one way of deciding acceptance and rejection (value of numg(τ1τ2)) that
maintains the fairness property in the target bound. Since we do not know
a priori how many individuals of each group will appear, this decision must
be incremental, and be such that the fairness property is maintained for any
number of individuals.

If we name na = dena(τ2) ≥ Na and nb = denb(τ2) ≥ Nb, a new trace τ2 is
enforceable if we can choose Na and Nb satisfying the following condition: there

122 CHAPTER 6. ENFORCING FAIRNESS PROPERTIES

exist two sequences (xna
), (ynb

) ⊆ N such that for all na ≥ Na and nb ≥ Nb∣∣∣∣n1
a1 + xna

n1
a + na

− n1
b1 + ynb

n1
b + nb

∣∣∣∣ ≤ κ, (6.39)

and for both sequences xna+1 − xna ∈ {0, 1} and yna+1 − yna ∈ {0, 1}.
With the spirit of maintaining the welfare bounds as a proxy to maintaining
fairness, we try

xna
:=

⌊
n1
a1

n1
a

na

⌋
, and yna

:=

⌈
n1
b1

n1
b

nb

⌉
.

Using the same argument as in the proof of Theorem 6.4, point (i), the conditions
on xna

and ynb
incrementing by 0 or 1 are met by the fact that n1

a1 ≤ n1
a and

n1
b1 ≤ n1

b .

By definition of the floor function and ceiling functions

n1
a1 + xna

n1
a + na

≤
n1
a1 +

n1
a1

n1
a
na

n1
a + na

=
n1
a1

n1
a

,

n1
b1 + ynb

n1
b + nb

≥
n1
b1 +

n1
b1

n1
b
nb

n1
b + nb

=
n1
b1

n1
b

.

Therefore
n1
a1 + xna

n1
a + na

− n1
b1 + ynb

n1
b + nb

≤ n1
a1

n1
a

− n1
b1

n1
b

= φ(τ1) ≤ κ (6.40)

To prove Equation (6.39), we still have to prove that

n1
a1 + xna

n1
a + na

− n1
b1 + ynb

n1
b + nb

≥ −κ. (6.41)

By the definition of the floor function

n1
a1 + xna

n1
a + na

≥
n1
a1 +

n1
a1

n1
a
na − 1

n1
a + na

=
n1
a1

n1
a

− 1

n1
a + na

,

and by the definition of the ceiling function

n1
b1 + ynb

n1
b + nb

≤
n1
b1 +

n1
b1

n1
b
nb + 1

n1
b + nb

=
n1
b1

n1
b

+
1

n1
b + nb

.

Putting the previous two inequalities together, we have

n1
a1 + xna

n1
a + na

− n1
b1 + ynb

n1
b + nb

≥ φ(τ1)−
(

1

n1
a + na

+
1

n1
b + nb

)
.

To ensure that Equation (6.41) holds, it is sufficient to ensure that

φ(τ1)−
(

1

n1
a + na

+
1

n1
b + nb

)
≥ −κ.

6.5. EXPERIMENTAL EVALUATION 123

Rewriting the previous inequality we arrive to(
1

n1
a + na

+
1

n1
b + nb

)
≤ κ+ φ(τ1), (6.42)

which is the condition defining the set S. Therefore the proposed sequences
(xna

) and (ynb
) satisfy Equation (6.39) for traces in S.

Technically, this guarantees that the optimization problem in (6.37) is feasi-
ble and πm+1 always exists, making Dynamic shields are well-defined (Defini-
tion 6.6). Intuitively, we obtain a “best-effort” solution: If Assumption 6.2 is

fulfilled then πm+1 is in Π
θ,T |τ
fair and achieves fairness for the minimum expected

cost. Otherwise, πm+1 can be any shield in Π that only optimizes for the ex-
pected cost; in particular, πm+1 will be the trivial shield that never intervenes
(has zero cost).

Synthesis of Dynamic shields involves computing the sequence of shields π1, π2, . . .,
which are to be concatenated. We outline the algorithm below.

1. Generate a FinHzn shield (Definition 6.1) π for the property φ and the
horizon T . Set π1 := π.

2. For i ≥ 1, let π be the concatenation of the shields π1, . . . , πi, and let
τ ∈ FTiTθ,π be the generated trace. Compute πi+1 that uses the same
approach as in Section 6.3 with Equation (6.10) being replaced by:

v(τ ′) =

{
0 φ(ττ ′) ≤ κ,

∞ otherwise.
(6.43)

We summarize the fairness guarantee below.

Theorem 6.4 (Conditional correctness of Dynamic shields). Let φ be a DoR

fairness property. Let π be a Dynamic shield that uses Πθ,T
fair-dyn(·) as the set of

available shields. Let τ = τ1 . . . τm ∈ FTmT
θ,π be a trace with |τi| = T for each

i ≤ m. Suppose for every i ≤ m, τ1 . . . τi fulfills Assumption 6.2. Then the
fairness property φ(τ) ≤ κ is guaranteed.

6.5 Experimental Evaluation

6.5.1 Experimental Setup

We demonstrate the effectiveness of fairness shields by testing them in the task
of shielding several ML classifiers in tasks that are standard benchmarks in the
fairness literature. We consider several state-of-the-art learning algorithms from
literature of in-processing fairness, i.e., methods that enforce fairness during the
learning process, typically by means of adding fairness-inducing regularizers to
the loss functions. To preserve consistency among our experiments, we use the
same neural architecture for every dataset and learning algorithm.

124 CHAPTER 6. ENFORCING FAIRNESS PROPERTIES

Dataset Task
Sensitive

Instances
Features y0 y1 ga gb Stat.

Attribute Num./Cat. % % % % Par.

Adult income race 43131 5 / 7 75 25 10 90 0.14
Adult income gender 45222 5 / 7 75 25 33 68 0.20
Bank credit age 41188 9 / 10 89 11 2.6 97 0.13
Compas recid. gender 6172 5 / 4 54 46 19 81 0.13
Compas recid. race 6172 5 / 4 54 46 66 34 0.10
German credit gender 1000 6 / 13 30 70 31 69 0.07
German credit age 1000 6 / 13 30 70 19 81 0.15

Table 6.3: Datasets characteristics. The columns y0/1 represent the percentage
of instances where the ground truth is “accept” (1) and “reject” (0), respectively.
The columns ga/b represent the percentage of instances that belong to group a
and b, respectively. The last column is the statistical parity, representing the
inherent bias in the dataset.

Computing infrastructure. All experiments were performed with a work-
station with AMD Ryzen 9 5900x CPU, Nvidia GeForce RTX 3070Ti GPU,
32GB of RAM, running Ubuntu 20.04.

Datasets. We used four tabular datasets in our experiments, all common
benchmarks in the fairness community: Adult [BK96], COMPAS [Kir+16], Ger-
man Credit [Hof94] and Bank Marketing [MCR12]. Details on the task, sensitive
attributes, size of the dataset, number of numerical and categorical features, as
well as existing bias can be found in Table 6.3.

Training ML classifiers. To train our ML models, we adapted the imple-
mentation provided by the FFB benchmark [Han+24], using the same neural
network, train-test splits, and most training hyper-parameters set as default in
their implementation, tuning only the hyper-parameters related to fairness. The
classifiers receive the full set of features as their input, including the protected
feature, which is marked as a special feature. This is appropriate, since the
learning algorithms that enforce fairness are of the in-processing type, so they
use the protected feature as part of their input, and typically include a term in
the loss function that depends especially on the protected feature.

We use fixed architecture multi-layer perception (MLP) with three hidden layers
with sizes 512, 256, and 64 in all our experiments. In each case, the model is
trained for 150 epochs with batches of 1024 instances, with the exception of the
German dataset, which we trained with batches of 128, as the dataset has only
1000 instances. We use the Adam optimizer [KB15], with a learning rate of
0.01.

Learning algorithms. To train our classifiers, we used the following methods
from the in-processing fairness literature:

• Differential Demographic Parity (DiffDP) is a gap regularization method
for demographic parity. DiffDP introduces a term in the loss function that

6.5. EXPERIMENTAL EVALUATION 125

acc ap auc f1 DP EqOpp

ERM 91 62 94 57 11 3.7
DiffDP 90 57 93 40 3.4 26
HSIC 91 63 94 57 7.0 6.6
LAFTR 91 60 94 40 6.0 4.4
PR 91 59 93 49 3.3 34

Table 6.4: Performance of the ML models. Dataset: Bank.

race gender

acc ap auc f1 DP EqOpp acc ap auc f1 DP EqOpp

ERM 85 79 91 66 11 6.1 85 79 91 66 16 9.6
DiffDP 84 76 90 62 5.4 4.0 83 71 87 54 0.2 33
HSIC 85 79 91 64 8.7 3.1 83 73 87 57 1.8 28
LAFTR 84 78 91 62 10 8.2 85 79 91 65 14 1.5
PR 84 76 89 61 5.6 4.0 83 71 87 53 0.1 33

Table 6.5: Performance of the ML models. Dataset: Adult.

penalizes differences in the prediction rates between different demographic
groups [CM21].

• The Hilbert-Schmidt Independence Criterion (HSIC) is a statistical test
used to measure the independence of two random variables. Adding an
HSIC term measuring the independence between prediction accuracy and
sensitive attributes to the loss has been used as a fair learning method [PS+17].

• Learning adversarially fair and transferable representations (LAFTR) is
a method proposed by [Mad+18], where the classifier learns an interme-
diate representation of the data that minimizes classification error while
simultaneously minimizing the ability of an adversary to predict sensitive
features from the representation.

• Prejudice Remover (PR) [Kam+12] adds a term to the loss that penal-
izes mutual information between the prediction accuracy and the sensitive
attribute.

As a baseline, we trained a fifth classifier simply minimizing empirical risk. We
call it the empirical risk minimizer (ERM).

Hyperparameter tuning. Each of the in-processing fairness algorithms de-
pends on the value of certain parameters that indicate the trade-off in the loss
function between prediction accuracy and fairness. For each training algorithm,
we manually fine-tuned the parameters to obtain a good performance with the
same parameter values across all benchmarks. Unfortunately, the parameters
of different algorithms have different interpretations and characteristic dimen-
sions, so comparing them is not informative. We detail the ones we used in our
experiments, and their meaning.

126 CHAPTER 6. ENFORCING FAIRNESS PROPERTIES

gender race

acc ap auc f1 DP EqOpp acc ap auc f1 DP EqOpp

ERM 65 63 69 59 16 18 65 63 69 60 14 16
DiffDP 63 63 69 55 12 11 65 62 68 58 9.1 15
HSIC 64 63 69 56 15 9.8 64 62 68 57 8.2 11
LAFTR 65 64 70 60 17 15 65 64 70 60 13 18
PR 63 63 69 55 12 8.0 64 62 68 57 8.9 13

Table 6.6: Performance of the ML models. Dataset: Compas.

gender age

acc ap auc f1 DP EqOpp acc ap auc f1 DP EqOpp

ERM 76 87 77 83 5.3 5.5 75 86 76 82 14 15
DiffDP 73 86 74 81 1.1 3.5 72 86 75 80 0.5 1.8
HSIC 73 86 74 81 1.4 1.1 74 86 74 82 4.2 6.0
LAFTR 73 87 76 81 8.2 4.1 73 85 74 81 10 6.4
PR 73 86 73 81 5.7 4.1 75 86 75 83 6.5 4.8

Table 6.7: Performance of the ML models. Dataset: German.

• For DiffDP, a parameter λ controls the contribution of the regularization
term in the loss. We tried a range of λ ∈ [0.5, 10]. We use λ = 1.

• In HSIC, a parameter λ controls the importance of the HSIC term in the
loss function. We tried a range λ ∈ [10, 500]. We use λ = 100.

• In LAFTR, the loss is composed of three terms: one that penalizes re-
construction error (Lx), one that penalizes prediction error (Ly), and one
that penalizes the adversary’s error when trying to obtain information
about sensitive features from the representation (Lz). Three parameters
Ax, Ay, Az control the weights of each term in the loss. We use Ax = 8,
Ay = 4, Az = 2.1. We tried a range or [1, 10] for each parameter.

• For PR, a parameter λ controls the weight of the loss term that penal-
izes mutual information between prediction accuracy and the sensitive
attribute. We tried a range of λ ∈ [0.01, 0.5]. We use λ = 0.06.

In Tables 6.5, 6.4, 6.6, 6.7 we show the metrics of each trained model on each
dataset. For each case, we present accuracy (acc), average precision (ap), area
under the curve (auc), and the F1 score (f1) as performance metrics, while
demographic parity (DP) and equal opportunity (EqOpp) are presented as fairness
metrics. The numbers are presented as percentages. In each column, the best
performer is marked in boldface.

Approximation of the input distribution. For shield synthesis, we need a
distribution of the input space θ ∈ D(G×B×C). In the ideal case, θ ∈ D(G×B×
C) is the exact joint distribution of group membership, agent recommendation
and cost. However, this is unrealistic most of the time, as it assumes knowledge

6.5. EXPERIMENTAL EVALUATION 127

50 100 150
Time Horizon

0

1

2

E
xe

cu
ti

on
ti

m
e

(s
ec

on
d

s)

DP

EqOpp

(a) Time.

50 100 150
Time Horizon

0

500

1000

1500

M
em

or
y

u
sa

ge
(M

B
) DP

EqOpp

(b) Memory.

Figure 6.2: Resource usage for shield synthesis with increasing time horizons.

of the underlying distribution and the classifier. Furthermore, the distribution
of cost given by the agent may be continuous, but we assume that there is a
finite set C of costs allowed.

For our experiments, we used a simple approach that is agnostic to the ML
classifier. We assume there is a cost set of k possible values C = {c1, . . . , ck}
uniformly distributed in the interval [0, 1], and that any recommendation is
equally likely. Therefore for all ci ∈ C, g ∈ G and r ∈ B, we have θ(g, b, ci) =
1/4k. This approximation is easy to compute and agnostic to the ML classifier.

Cost given by the classifier. While θ is the theoretical distribution that
has to be used to synthesize the shield, at the time of deployment the classifier
has to choose an output in the form of a recommendation and a cost. In this
case, the natural choice is given by the last layer of the neural network. The
last layer in a neural network for classification is usually a softmax layer that
assigns for each label a value between 0 and 1, that we can interpret it as the
“confidence value” that the classifier gives to that label being true. We use this
“confidence value” as the cost.

6.5.2 Shield Synthesis Computation Times

As pointed out in Theorem 6.1, our shield synthesis algorithm has a polynomial
complexity for both DP and EqOpp, and the degree of the polynomial is the
number of counters required to keep track of the fairness property. For DP it is
sufficient to track 4 counters: the number of instances appeared and accepted
of each group. For EqOpp, we also need 4 counters for the number of instances
appeared and accepted of each group, counting only those for which z = 1.
Furthermore, we need two extra counters: one to count all instances with z = 0,
and one to keep track of the last decision for which ground truth has not yet
been revealed, for a total of 6 counters.

In Figure 6.2 we show the computation time and memory usage of our shield
synthesis algorithm for a fixed problem with increasing time horizon. Figure 6.2
does not show variability, because the synthesis algorithm, as described, is de-
terministic.

128 CHAPTER 6. ENFORCING FAIRNESS PROPERTIES

Q1 Median Q3 Mean St. Dev. Above

DP
No Shield 0.38 0.83 1.59 1.22 1.29 42.46 %
Static-Fair 0.18 0.42 0.74 0.46 0.31 0.00%

EqOpp
No Shield 0.67 1.76 3.62 2.76 3.01 65.06 %
Static-Fair 0.00 0.21 0.50 0.27 0.28 0.00 %

Table 6.8: Statistic of normalized fairness for finite horizon shields.

0.0 0.5 1.0 1.5 2.0
Normalised Fairness

0

2

4

6

8

10

P
er

ce
nt

Shield = Static-Fair

0 10 20
Normalised Fairness

0.0

0.5

1.0

1.5

Shield = No Shield

Fairness Property

DP

EqOpp

Figure 6.3: Distribution of normalized bias, i.e. Bias / κ, across all runs with
(left) and without shield (right) for both demographic parity and equal oppor-
tunity.

6.5.3 Performance of Finite Horizon Shields

In this group of experiments, we investigate the performance of FinHzn shields
on a single period. We use a time horizon of T = 100 for DP and T = 75 for
EqOpp, with fairness thresholds κ ∈ {0.05, 0.1, 0.15, 0.20}. For each setting we
synthesized a FinHzn shield and simulated 30 runs.

Performance in terms of fairness. In Table 6.8 we present the aggregated
results of our experiments in terms of normalized fairness, i.e., the fairness value
divided by the given fairness threshold. When normalized, a value smaller than
1 indicates that the algorithm is within the constraints, while a value larger
than 1 indicates the algorithm is being too biased. In Figure 6.3 we illustrate
the same distributions on a more graphical way, by plotting the corresponding
value distributions. In the table we summarize the distribution by showing
mean, median, standard deviation, Q1 (i.e., the 25% quantile) and Q3 (i.e.,
the 75% quantile). The last row shows the percentage of the samples that go
over the fairness constraint, i.e., with a normalized fairness value larger than
1. As expected, all shielded samples are compliant with the fairness constraint.
Note that most runs with shield achieve a fairness value significantly below the
threshold. Another common trend is that equal opportunity is in general a
harder constraint to satisfy than demographic parity in our experiments.

Performance in terms of utility loss. The utility of classification tasks is
measured by classification accuracy. Interventions by the fairness shield, which
occasionally convert “correct” classifications into “incorrect” ones for fairness,

6.5. EXPERIMENTAL EVALUATION 129

adult, gender

bank, age

compas, race

german, gender

0.07 0.57 0.57 0.26 0.16
0.78 0.64 0.98 0.76 0.86
3.81 5.58 4.36 4.73 5.94
0.38 0.81 1.39 0.61 0.74
0.30 0.35 0.77 -0.13 0.84
0.24 1.41 0.84 2.23 1.37
0.44 0.24 0.33 0.66 0.62

FinHzn
1.69 10.17 0.36
3.05 7.86 0.49
4.12 5.03 0.71
2.17 8.48 0.58
1.14 9.45 0.46
3.74 7.20 1.06
1.52 8.26 0.34

Periodic

DiffDP ERM HSIC LAFTR PRemover
ML Algorithm

adult, gender

bank, age

compas, race

german, gender

8.69 11.54 8.73 10.74 8.93
10.90 10.59 9.80 10.24 10.25
2.15 2.70 2.75 1.21 2.42
15.86 19.08 18.39 16.21 14.36
14.27 16.83 16.15 16.11 18.20
47.53 48.10 47.20 47.95 49.73
35.95 38.25 36.81 35.90 38.06

Static-Fair Static-BW Dynamic
Shield

11.91 8.38 4.94
11.60 7.74 8.57
2.60 2.69 2.36
20.08 9.85 5.17
20.12 9.26 3.00
56.79 12.22 7.90
50.49 12.27 5.97

(a) DP (top, green) and EqOpp (bottom, blue) with κ = 0.15.

adult, gender

bank, age

compas, race

german, gender

-0.10 0.60 0.09 0.23 -0.05
0.37 0.46 0.52 0.83 0.67
2.77 2.91 3.89 3.39 3.28
-0.17 0.92 0.45 -0.67 0.38
0.06 0.28 0.76 0.43 0.29
0.04 1.05 0.96 1.01 0.65
-0.01 0.21 -0.19 0.64 0.34

FinHzn
0.53 9.08 0.15
1.46 7.25 0.31
3.28 3.39 0.80
1.55 6.31 0.23
0.76 6.83 0.21
3.30 5.12 0.62
0.95 5.37 0.06

Periodic

DiffDP ERM HSIC LAFTR PRemover
ML Algorithm

adult, gender

bank, age

compas, race

german, gender

6.63 8.95 4.86 9.51 6.72
10.51 9.88 10.91 8.97 9.58
1.54 1.19 2.79 2.40 2.66
9.27 14.15 13.76 10.78 12.30
7.74 11.06 10.54 12.45 11.64
35.66 35.61 37.60 37.07 36.55
24.95 24.62 24.73 26.17 27.04

Static-Fair Static-BW Dynamic
Shield

10.92 9.71 3.23
11.03 9.85 6.07
3.41 2.35 2.33
17.25 9.71 3.29
16.84 10.52 2.45
47.58 10.07 6.32
36.26 8.81 3.54

(b) DP (top, green) and EqOpp (bottom, blue) with κ = 0.2.

Table 6.9: Comparison of utility loss (in %). Left: finite horizon shields and
different ML models. Right: periodic shields only on the ERM model.

typically reduce this utility4. We measure utility loss on a given run as the
difference in utility between the unshielded and shielded runs, relative to the
utility of the former.

Table 6.9 (left) shows the average utility loss across all simulations for a thresh-
old of κ = 0.15 and κ = 0.2, respectively, for finite horizon shields. We can
observe that the mean utility loss is smaller when the classifier is trained to be
fair, as fewer interventions are needed. In general, utility loss increases as the
bias threshold κ decreases, with more pronounced differences between classifiers
for smaller κ. We also observe that that most of the variability comes from
the dataset rather than from the ML algorithm. These observations are also
supported by Figure 6.4, which provide insight into the distribution of utility
loss for each ML algorithm accross all datasets.

Finally, we compared the values of utility loss to the cost incurred by the shield.
We do this to validate our approach: we compute shields by minimizing their
expected cost, but our real target when deployed is to minimize the utility loss.

4The scary quotes in “correct” and “incorrect” are here to emphasize that we are consider-
ing correctness with respect to the ground truth of the given — potentially biased — dataset.
We do not enter here in the debate of whether a classifier that is more fair and less accurate
with respect to the trained data is more or less correct in a general sense.

130 CHAPTER 6. ENFORCING FAIRNESS PROPERTIES

0.05 0.1 0.15 0.2
Threshold

0

10

20

U
ti

lit
y

L
os

s

Fairness Property = DP

0.05 0.1 0.15 0.2
Threshold

0

20

40

60

Fairness Property = EqOpp

ML Algorithm

PRemover

HSIC

ERM

LAFTR

DiffDP

Figure 6.4: Distribution of utility loss (in %) incurred by FinHzn aggregated
across all environments for DP (left) and EqOpp (right). The hight of the
boxes indicate the spread of the distribution.

Figure 6.5: Regression plot depicting the relationship between utility loss and
cost for κ = 0.2 for each dataset. The results for other values of κ are analogous.
DP (left) and EqOpp (right).

In Figure 6.5 we show that indeed shield cost and utility loss are very much
correlated, validating the use of one as a proxy for the other.

6.5.4 Periodic Shielding

In this group of experiments, we investigate the performance of periodic shields.
We synthesized Static-Fair, Static-BW, and Dynamic shields with T = 50 for DP
and EqOpp, with fairness thresholds κ ∈ {0.05, 0.1, 0.15, 0.20}, and simulated
them for 10 periods. We compare the models’ performances, with and without
shielding, across 20 simulated runs.

Guaranteed fairness vs. actual fairness. Since in the periodic case we
have lost the hard fairness guarantees, we first aim to determine how effective are
different types of periodic shields in enforcing their corresponding fairness prop-
erty. We summarize our results in Table 6.10. The “Assumption” column is a
reminder of the theoretical assumption under which each of the shields works, as
seen in Theorem 6.2 for Static-Fair shields, Assumption 6.1 for Static-BW shields,
and Assumption 6.2 for Dynamic shields. For each type of shield and fairness
property, we present how often the assumption is satisfied across all experi-
ments, and how often the fairness property is satisfied. Since each assumption

6.5. EXPERIMENTAL EVALUATION 131

Assumption φ
Assumption Fairness
satisfied satisfied

Static-Fair dena,b(τi) = dena,b(τj)
DP 0.0% 95.7%
EqOpp 0.0% 100%

Static-BW dena(τi), den
b(τi) ≥ ⌈ 1

u−l
⌉ DP 43.8% 83.1%

EqOpp 4.1% 56.4%

Dynamic 1
dena(ττ ′) +

1
denb(ττ ′)

≤ κ+ φ(τ)
DP 100% 100%
EqOpp 49.8% 100%

Table 6.10: Comparison of different types of fairness shields.

0 100 200 300 400 500
Step

0.0

0.1

0.2

0.3

0.4

B
ia

s

Fairness Property = EqOpp

0 100 200 300 400 500
Step

T
h

re
sh

ol
d

Fairness Property = DP

Shield Type

Static-Fair

Static-BW

Dynamic

No Shield

Aggregation Method

mean

max

Figure 6.6: Variations of bias over time for the ERM classifier on the Adult
dataset with and without periodic shielding.

has its corresponding result guaranteeing fairness (Theorems 6.2, 6.3, and 6.4),
we know a priori for each instance that the fairness target is going to be sat-
isfied at least as often as the assumption. We observe that the assumption
for Static-Fair is almost never met, the assumption for Static-BW is also often
violated, and the assumption for Dynamic is almost always satisfied. Neverthe-
less, both Static-Fair and Static-BW still perform well as heuristics, with many
runs satisfying the fairness constraint. It is notable that Static-Fair offers better
empirical performance than Static-BW, even though the balance assumption is
almost never met. The more expensive Dynamic shields outperform both static
approaches in terms of both assumption satisfaction and fairness satisfaction.

It is in principle unclear what to do in cases where the fairness guarantees are
not satisfied. Static-fair shields have a defined behaviour regardless of the input.
However, Static-BW and Dynamic shields, we synthesize them by modifying the
conditions in the base case of the recursion (Equation (6.10)) for a condition on
the new fairness target and the assumption. Concretely, the traces that do not
satisfy the fairness guarantee are given cost zero if they also fail to satisfy the as-
sumption. The concrete conditions are detailed in Equations (6.35) and (6.43).
This choice ensures that traces outside the assumption do not hinder the opti-
mization process. This translates in deployment as shields that work for ensur-
ing fairness until the trace reaches a point where it can no longer recover from
failing the corresponding assumption. If and when this point arrives, the shield
“gives up” and becomes transparent until the beginning of the next period.

132 CHAPTER 6. ENFORCING FAIRNESS PROPERTIES

Static-Fair Static-BW Dynamic No Shield
Shield

10−3

10−2

10−1

100

101

N
or

m
al

is
ed

F
ai

rn
es

s

Fairness Property = DP

Static-Fair Static-BW Dynamic No Shield
Shield

Fairness Property = EqOpp

Period

0

1

3

4

6

7

9

(a) Distribution of normalized bias for each period for all runs.

Static-Fair Static-BW Dynamic No Shield
Shield

10−3

10−2

10−1

100

101

N
or

m
al

is
ed

F
ai

rn
es

s

Fairness Property = DP

Static-Fair Static-BW Dynamic No Shield
Shield

Fairness Property = EqOpp

Period

0

1

3

4

6

7

9

(b) Distribution of normalized bias for all runs where the assumption is satisfied.

Figure 6.7: Distribution of normalized bias, for each period. Each run below
the red line satisfies the fairness condition, in terms of DP (left) and EqOpp
(right).

Performance in terms of fairness. As an illustrative example, we show in
Figure 6.6 a single run of the ERM trained model on the Adult dataset, with
fairness shields synthesized for κ = 0.1, with gender as the sensitive feature.
Recall from Table 6.3 that the statistical parity of the dataset is 0.2, so fairness
enforcement will be required. The different colors indicate the different types
of shields. The main observation is that only Dynamic shields show the truly
periodic behaviour, where fairness is guaranteed at the end of each period by a
minimal margin.

In Figure 6.7 we provide insight into the distribution of the normalized bias.
The former aggregates over all runs, while the latter considers only those runs
for Static-BW and Dynamic that satisfy the assumption. We can observe that
Static-BW shields has a relatively high rate of violation in general (Figure 6.7a),
while at the same time being overly conservative when the assumption is sat-
isfied (Figure 6.7b). This problem does not exist with Dynamic shields, as the
normalized fairness of the average run is only slightly below the threshold. In
all cases we can report an improvement over the unshielded runs in terms of
fairness satisfaction.

Performance in terms of utility loss. Table 6.9 (right) shows the average
utility loss for the ERM model across all simulations for a threshold of κ = 0.15
and κ = 0.2, respectively, for periodic shields. In general, if the assumptions

6.6. DISCUSSION 133−100

−50

0

50

100

150

200

P
er

ce
nt

ag
e

U
ti

lit
y

L
os

s

Threshold = 0.1 — Fairness Property = DP

−20

0

20

40

60

80

Threshold = 0.1 — Fairness Property = EqOpp

−100

−50

0

50

100

150
P

er
ce

nt
ag

e
U

ti
lit

y
L

os
s

Threshold = 0.15 — Fairness Property = DP

−25

0

25

50

75

100

Threshold = 0.15 — Fairness Property = EqOpp

Static-Fair Static-BW Dynamic
Shield

−100

−50

0

50

100

150

P
er

ce
nt

ag
e

U
ti

lit
y

L
os

s

Threshold = 0.2 — Fairness Property = DP

Static-Fair Static-BW Dynamic
Shield

−20

0

20

40

60

80

100

Threshold = 0.2 — Fairness Property = EqOpp

Period

0

1

3

4

6

7

9

−100

−50

0

50

100

150

200

P
er

ce
nt

ag
e

U
ti

lit
y

L
os

s

Threshold = 0.1 — Fairness Property = DP

−20

0

20

40

60

80

Threshold = 0.1 — Fairness Property = EqOpp

−100

−50

0

50

100

150

P
er

ce
nt

ag
e

U
ti

lit
y

L
os

s

Threshold = 0.15 — Fairness Property = DP

−25

0

25

50

75

100

Threshold = 0.15 — Fairness Property = EqOpp

Static-Fair Static-BW Dynamic
Shield

−100

−50

0

50

100

150

P
er

ce
nt

ag
e

U
ti

lit
y

L
os

s
Threshold = 0.2 — Fairness Property = DP

Static-Fair Static-BW Dynamic
Shield

−20

0

20

40

60

80

100

Threshold = 0.2 — Fairness Property = EqOpp

Period

0

1

3

4

6

7

9

Figure 6.8: Percentage of total utility loss (in %) for each period incurred by
Static-Fair, Static-Fair and Dynamic across all runs for κ = 0.15. DP (left) and
EqOpp (right).

are satisfied, Dynamic shields incur the least loss and Static-BW shields incur
the most, which is due to their stricter BW objectives. However, an assumption
violation forces both Dynamic and Static-BW shields to go inactive incurring
no additional utility loss. Therefore, the low utility loss of Static-BW shields
in EqOpp can be explained by the frequent assumption violations. For demo-
graphic parity, Dynamic shields outperform Static-Fair and Static-BW shields,
with Static-BW shields experiencing the highest utility loss due to their stricter
BW objective. For EqOpp, the difference is less pronounced, partly because for
Static-BW the frequent assumption violation forces the shield to go idle. We
also observe, as expected, that the utility loss decreases when increasing κ.

We finish by studying the distribution of utility loss incurred across the different
periods, as depicted in Figure 6.8. That is, for each run we normalize the utility
loss per period by the total utility loss of the run. We observe that Dynamic
shields incurr most of their losses in the earlier periods, a trend not observed
for the other shields. Negative values indicate some rare periods in which the
shield actually increases the utility of the classifier.

6.6 Discussion

6.6.1 Existence and Composability of Finite Horizon Shields

When approaching the problem of enforcing fairness properties through finite
horizon shielding, there are two phenomena that can appear unintuitive in the
beginning. The first is the fact that finite horizon shields always exists for DoR
properties, independent on the specification threshold, time horizon or trace
balance. The second is that finite horizon shields for a certain specification allow
arbitrarily biased traces when concatenating them on a static manner — what
we called Static-Fair shields. In this section we explore these two phenomena
and shed some light on the type of edge cases where we observe them.

6.6.1.1 Existence of Finite Horizon Shields

The set of feasible solutions of the optimization problem in Equation (6.6) is
nonempty for DoR properties, because the fairness-shield that always accepts or

134 CHAPTER 6. ENFORCING FAIRNESS PROPERTIES

always rejects each candidate from each group is a solution that trivially fulfils
φ(τ) ≤ κ. In fact, in these cases, the feasible traces always satisfy φ(τ) = 0.

Even nontrivial optimal fairness-shields may exhibit such degenerate behaviors
at runtime, when the order of appearances of individuals from the two groups
is excessively skewed. Consider the following example for φ = DP (demographic
parity). Let T ∈ N be a time horizon and κ < 1/T . As we know, given a trace
τ , demographic parity is defined as

DP(τ) =

∣∣∣∣na1(τ)

na(τ)
− nb1(τ)

nb(τ)

∣∣∣∣ .
Suppose at time T − 1, all the individuals seen so far were from group a (i.e.,
na = T − 1 and nb = 0). If some of the individuals were accepted and the
rest rejected, then 0 < na1 < na, implying κ < na1

na
< 1 − κ. Now if the T -th

individual x is from group b, nb becomes 1, and no matter which action the
shield picks, DP will be violated: If x is accepted, then nb1 = nb1

nb
= 1, and if x

is rejected, then nb1 = nb1

nb
= 0. In both cases, DP (τ) > κ. Therefore, the shield

must have made sure that each individual until time T − 1, all of whom were
from group a, were either accepted or rejected. Luckily, the chances of such
skewness of appearance orders are rare in most applications, so that FinHzn as
in Definition 6.1 exhibit effective, non-trivial behaviours in most cases, as seen
from our experiments.

6.6.1.2 Counterexample Families for Static-Fair Shields Being Not
Composable

We have already shown in Example 6.5 that traces can have zero bias in terms
of DP, and when composed have a bias arbitrarily close to 1. While the family
of counterexamples presented in Example 6.5 is quite degenerate in the sense
that acceptance rates are always either 0 or 1, we present here another family
of counterexamples that is less degenerate. We write these examples for demo-
graphic parity, but the same ideas can be applied to build counterexamples for
any DoR property.

Let T > 0 and 0 < K < T/2. The family of counterexamples will be parametrized
by (T,K). For a pair (T,K) consider traces τ1, τ2 such that (na1, na, nb1, nb)(τ1) =
(1,K, 1, T −K), and (na1, na, nb1, nb)(τ2) = (T −K − 1, T −K,K − 1,K).

In the trace τ1, exactly one element of each group was accepted, while in the
trace τ2, all but one element of each group were accepted. The values of demo-
graphic parity are:

DP(τ1)T,K =

∣∣∣∣ 1K − 1

T −K

∣∣∣∣ = T − 2K

(T −K)K
. (6.44)

DP(τ2)T,K =

∣∣∣∣T −K − 1

T −K
− K − 1

K

∣∣∣∣ = T − 2K

(T −K)K
. (6.45)

DP(τ1τ2)T,K =

∣∣∣∣T −K

T
− K

T

∣∣∣∣ = T − 2K

T
. (6.46)

6.6. DISCUSSION 135

These pairs of traces are not a counterexample for every pair (T,K). However,
we can observe that, once fixed K, the limit when T → ∞ of Equation (6.44)
and Equation (6.45) is 1/K, but the limit when T → ∞ of Equation (6.46) is
1. Therefore, for every ε, we can find K large enough such that 1/K < ε/2,
and then find T large enough such that the corresponding DP values are close
enough to the limit.

We now build a different family of counterexamples that show that the condition
for correctness of Static-Fair shields given in Theorem 6.2 is as tight as can be.

Theorem 6.5. For all κ > 0, there exists κ1 and κ2 κ1 ≤ κ ≤ κ2, such that
for i ∈ {1, 2}, there exists ti and traces τi, τ

′
i that are ⌊ ti−1

2 ⌋-balanced such that

DP(τi) ≤ κi, DP(τ
′
i) ≤ κi, and DP(τiτ

′
i) > κi.

Before we start the proof, let us unpack the meaning of this theorem: for any
value of κ, we can find traces that are just one value off of being (T/2)-balanced
where composability of Static-Fair shields yields a traces outside of the fairness
constraint. The reason why the result is in terms of κ1, κ2 surrounding κ is
because in the prove we have to use at some point values of κ that have a
certain rational form, so we cannot prove our result for all κ ∈ [0, 1], but for all
κ in a dense subset of [0, 1].

Proof. We prove this theorem by constructing families of counterexamples. For
this proof, we use the (slightly abusive) notation that a trace is composed by
its four counters, so τ = (na(τ), na1(τ), nb(τ), nb1(τ)).

Let t = 2T + 1 with T even. Consider the traces τ1 = (T + 1, T/2 + 1, T, T/2)
and τ2 = (T, T/2, T + 1, T/2). Both traces are T -balanced. Let’s compute
demographic parity:

DP(τ1) =
T/2 + 1

T + 1
− T/2

T
=

1

2(T + 1)

DP(τ2) =
T/2

T
− T/2

T + 1
=

1

2(T + 1)

DP(τ1τ2) =
T + 1

2T + 1
− T

2T + 1
=

1

2T + 1

It is clear that DP(τ1) = DP(τ2) < DP(τ1τ2). Ideally, we would choose T such
that 1

2(T+1) = κ, which can be rewritten to T = 1−2κ
2κ . However, this may not

be an integer. So, given κ, we take

T1 =

⌊
1− 2κ

2κ

⌋
, and T2 =

⌈
1− 2κ

2κ

⌉
,

and define κi =
1

2(Ti+1) .

This finishes the construction for an odd t. For an even t, we show a similar
construction. Let t = 2T . Consider the traces τ1 = (T + 1, 2, T − 1, 1), τ2 =

136 CHAPTER 6. ENFORCING FAIRNESS PROPERTIES

(T−1, 1, T+1, 1). Both traces are (T−1)-balanced. Let’s compute demographic
parity:

DP(τ1) =
2

T + 1
− 1

T − 1
=

T − 3

T 2 − 1

DP(τ2) =
1

T − 1
− 1

T + 1
=

2

T 2 − 1

DP(τ1τ2) =
T + 1

2T + 1
− T

2T + 1
=

1

2T + 1
.

This finishes the proof.

The construction proving the theorem is for time horizons t that are t ≡ 1(
mod 4). Similar constructions can be found for other congruence classes.

6.6.2 Limitations

Static vs. dynamic shielding in the periodic setting. Static shields
are computationally cheaper than Dynamic shields and have no runtime over-
head, making them ideal for fast decision-making applications like online ad-
delivery [Ali+19]. However, they can’t adjust decisions based on the actual
history, leading to overly restrictive and frequent interventions—particularly in
the long run. In contrast, Dynamic shields adapt to historical data, resulting in
fewer interventions over time, making them suitable for applications like banking
where decision-making can afford longer computation times [Liu+18].

On the assumptions in periodic shielding. All three periodic shielding
approaches come with assumptions on the numbers of individuals seen from the
two groups in each period. For Static-Fair shields, the assumption provides a
tight sufficient condition for the fairness guarantee to be satisfied. For Static-
BW and Dynamic shields, the assumptions (Assumption 6.1, 6.2) rule out “edge
cases” like in Example 6.5, to give the shield enough advantage to be able
to uphold fairness. We argue that in real-world scenarios and particularly for
longer time periods, such edge cases are indeed rare.

On the existence of periodic shields. The existence of the optimal T -
periodic shield, as defined in Definition 6.2, is left as an open question, but we
conjecture it will be true. First, the same argument of Section 6.6.1.1 applies to
show that Πfair-per is not empty because it contains a trivial “reject-all” shield.
We still need to prove that there actually exists a shield that minimizes the
expression in Equation (6.8).

A more interesting question is whether there exists an optimal T -periodic shield
that can be computed with finite resources. We conjecture that such shield does
not exist. Our best solution is in the form of dynamic shields, which we can
only synthesize on-the-go because a complete description would require infinite
memory. And even with dynamic shields, there are still some rare feasible
traces that fail the fairness constraint, so dynamic shields are technically not in
Πfair-per.

6.6. DISCUSSION 137

On the feedback effect in sequential decision-making. In the sequen-
tial setting, decisions that seem fair from a standalone perspective may create
biases in the population over time [Liu+18; D’A+20; Sun23]. This can be mod-
eled by making the input distribution θ be a function of the trace seen so far.
In this chapter, we assumed θ to remain constant, thereby leaving out such
feedback effects that are inherent in sequential decision-making. We point out
that our basic recursive synthesis algorithm from Section 6.3 could potentially
be adapted to trace-dependent θ by modifying Equation (6.11), although a de-
tailed extension is out of the scope of this work.

On considering unrealistic traces. As discussed in Section 6.6.1.1, our
shields consider the possibility of very skewed traces. This can be seen as overly
conservative, as we could safely assume in most realistic applications that such
degenerate traces will not occur, and optimize cost under such assumptions.
The price to pay, from a theoretical perspective, is that the probability of an
input would be different depending on the trace history. While this is out of the
scope of this thesis, we believe this restriction can be modelled using conditional
MDPs [Bai+14].

Fairness shields with humans in the loop. In some applications, decisions
are made by human experts, and AI-based systems (like classifiers) are deployed
to guide the decision-making process [GC19]. In these cases, shields may not
have the authority to make final decisions. But they can serve as a runtime
“fairness filter,” which would modify and de-bias the original outputs of the
decision-maker before passing them on to the human expert. This way they can
compliment the decision-making process from the fairness standpoint.

6.6.3 Related Work

Existing works on fairness address the question of how to specify, design, and
verify AI decision makers that are fair in their decisions. From the speci-
fication standpoint, several criteria have been proposed to quantify fairness
between groups [Fel+15; HPS16] and between individuals [Dwo+12]. From
the design standpoint, many approaches have been developed to ensure that
decision-makers are fair with respect to a given fairness objective [HPS16;
Gor+19; Zaf+19; Aga+18; WBT21]. From the verification standpoint, sev-
eral static [Alb+17; BZSL19; Sun+21; GBM21; MAD21; LWW23] and run-
time [AV19; Hen+23a; Hen+23b; HKM23] approaches have been invented for
verifying how fair or biased a given decision-maker is. Our fairness shielding
combines the design and verification aspects, as shields are verified to be fair by
design. Additionally, the design of our fairness shields do not require any knowl-
edge about the underlying decision-maker, and therefore they can be used as
trusted third-party intervention mechanisms to guarantee fairness of arbitrary
AI-based decision makers.

Traditionally, fairness is defined using the decision-maker’s output distribution.
However, it has been shown that a decision-maker that is fair according to
its output distribution may exhibit biases over short horizons, which could be
undesirable in many situations [Ala+24]. To mitigate this issue, we adopt the
recently proposed bounded-horizon fairness properties [Ala+24], which require

138 CHAPTER 6. ENFORCING FAIRNESS PROPERTIES

that decisions remain empirically fair over a given finite horizon. To the best of
our knowledge, our work is the first to provide systematic algorithmic support
for guaranteeing bounded-horizon fairness properties.

We consider the setting of sequential decision making, where a fairness shield
needs to make decisions without knowing the inputs from the future. Similar
problems has been extensively studied under the umbrella of optimal stopping
problems [Shi07; Ban+18; AKK19; BY24; PV17; Käl22]. The focus of these
works has been the analytical design of policies that are as close as possible to the
hypothetical policy having the perfect foresight about the future. Unfortunately,
statistical properties like fairness remain beyond the reach of existing algorithms
from the optimal stopping literature.

Our design algorithms for fairness shields are inspired by a recent work [Can+24a],
which proposed sequential decision making algorithms for the general class of
finite-horizon statistical properties. They showed that the standard dynamic
programming algorithm gets computationally significantly cheaper and produces
the same output if the statistically indistinguishable traces are combined to-
gether. This idea is mirrored in our design algorithm for finite horizon shields
as well, where traces with the same counter values remain indistinguishable.

Chapter 7

Analyzing Intentional
Behaviour in Autonomous
Agents

Guardeu-vos forces, bona gent, potser ens veurem un altre dia.
Sabem que voĺıeu fer més, però, què hi farem, aix́ı és la vida: t’equivoques
d’uniforme i dispares a qui més estimes; t’equivoques de remei i va i
s’infecta la ferida. 1 — Guillem Gisbert, El Miquel i l’Olga tornen.

7.1 Motivation and Outline

In this chapter, we focus on explaining the decisions of autonomous agents in
terms of intentional behaviour. Beyond explainability, understanding intention
is also key to accountability. Since formal verification of software for autonomous
agents is often infeasible, these agents may cause harm. In such instances, deter-
mining whether an agent acted intentionally, negligently, or accidentally helps
clarify accountability. The study of intention thus not only strengthens explain-
ability but also serves as an essential tool for assessing responsibility. Because
we cannot predict when harm may occur, examining the agent’s software after
the incident is necessary to address accountability questions. Although a com-
prehensive liability framework for autonomous agents has yet to be developed,
it is reasonable to hold manufacturers of agents that intentionally cause harm to
a higher standard than those whose agents cause harm negligently or acciden-
tally. Therefore, defining and understanding intention is crucial for establishing
accountability.

Historically, symbolic AI has produced a substantial body of work focused on
formally specifying and designing “rational” autonomous agents. Such agents
explicitly derive decisions based on their beliefs, desires, and intentions, in the

1Save your strength, good people, maybe we’ll see each other another day. We know you
wanted to do more, but what can we do, that’s life: you wear the wrong uniform and shoot
the one you love the most; you use the wrong remedy, and the wound gets infected.

139

140 CHAPTER 7. ANALYZING INTENTIONAL BEHAVIOUR

so-called BDI approach [Bra87; RG95]. Determining whether an autonomous
agent has acted with a given intention is straightforward for BDI agents. Their
intentions are explicitly encoded in their inner workings and can, therefore, be
readily examined. However, the statistical nature of modern machine-learning-
based agents makes interpreting their decision-making in probabilistic settings
a much greater challenge, since intentions are not explicitly present in such
models.

Traditionally, intention is connected to planning through either cognitive or
computational reasoning. Intention is a nuanced term in legal and philosophical
contexts; here, we use it in the restricted sense of the “state of the world”
the agent plans towards. Whether human or machine, a rational agent with
bounded resources must plan towards a goal to successfully achieve it [Bra87;
CL90]. Modern machine-learned agents plan implicitly through techniques like
reinforcement learning [SB18].

A sizeable portion of the literature on intention in AI relates to the internal
beliefs of an agent [RG95; HKW18]. Since we do not model the internal beliefs
or reasoning processes of the agent, we can only claim that an agent shows evi-
dence of intending something. While an intentional agent would behave in this
way, a random agent might also exhibit such behaviour by chance. We model
uncertainty arising from diverse sources as probabilistic behaviour, aligning with
modern machine-learning techniques for designing autonomous decision-makers.
Therefore, our definitions are inherently quantitative. Rather than stating that
an agent shows evidence of intending something, we provide concrete values
quantifying the amount of evidence and the confidence level in our assessment.

Quantitative assessment of agent intentions. We consider an autonomous
agent operating within a probabilistic environment. Specifically, we model the
environment as a Markov Decision Process (MDP), and the agent as a policy
within the MDP (recall Section 2.4). We express goals as reaching certain sets
of states in an unbounded time horizon. Our aim is to analyze whether the
agent’s decision-making policy shows evidence of intentional behaviour towards
a goal.

At the core of our methodology lie the concepts of agency and intention quotient.
From a given state of the world, an agent employing the optimal policy to
reach a goal would achieve it with a certain probability, which we call Pmax.
Conversely, an agent using the optimal policy to avoid the same goal would
reach it with a smaller probability, denoted as Pmin. We define the difference
between Pmax and Pmin as the agency – or scope of agency, or extent of agency –,
as it indicates how much the agent can affect the outcome in terms of reaching
the goal. If the difference is one, it means the agent has complete command
over the outcomes: it can ensure either reaching the goal or avoiding it with
certainty. If the difference is close to zero, it means the probability of reaching
the goal does not change significantly regardless of the agent’s actions.

Between Pmin and Pmax lies the probability that the agent, with its specific
policy, will reach the goal; we denote this probability as Pag. The relative
position of Pag with respect to Pmin and Pmax indicates the extent of effort
the agent is showing towards reaching the goal, always within the constraints

7.1. MOTIVATION AND OUTLINE 141

imposed by the extent of agency allowed to the agent. We call this relative
position the intention quotient (IQ). Whenever Pag is close to Pmax, we say
that the agent shows evidence of intentional behaviour, with IQ representing
the amount of evidence and the scope of agency representing the confidence
level of the assessment. We use probabilistic model checking to compute these
probabilities.

Using the concepts of agency and intention quotient, we can assess an agent’s
intention at a single state of the world. Extending to all relevant states of
the world, these concepts can be directly used for a quantitative analysis of
intentional behaviour in an agent.

Retrospective methodology for analyzing intentional behaviour. Mo-
tivated by the problem of accountability “after the fact”, we propose a method
to analyse intentional behaviour in a retrospective manner2. We assume a given
sequence of events has occurred and we aim to assess whether an agent would
show intentional behaviour toward reaching a certain goal along said sequence.

Given an agent, a goal, and a sequence of states of the world, which corresponds
to a trace, we start by computing the intention quotients at the states in the
trace, and aggregating them through a weighted average, where the weights
are proportional to the agency. If the aggregated intention quotient is not
sufficiently high or low, or if the confidence in the assessment (average agency
along the trace) is too low, we conclude that the given trace does not provide
enough evidence and that we need to analyze counterfactual scenarios.

If the evidence is not sufficient, we generate a diverse set of counterfactual traces
close to the original sequence of events under study and repeat our assessment
by aggregating results from all states in the counterfactual traces. This loop
of counterfactual generation and intention assessment can be repeated until the
confidence level of the assessment is sufficiently high or a threshold number of
iterations is reached.

This retrospective method is more involved, and it is intended for use in an
accountability process after harm has occurred, where the focus is not so much
to understand the agent in general but rather to understand the behaviour of
the agent in a concrete sequence of events leading to a harmful consequence.

Our framework is strongly inspired by methods for explainability and account-
ability using counterfactual analysis [WMR17; Gui24]. In computing the in-
tention quotient, we are asking “what could the agent do differently?”, and in
investigating counterfactual traces we are asking “what would the agent do in
different situations?”.

Contributions. The contributions of the work presented in this chapter are:

• We present a framework for studying intentional behaviour of agents in
MDPs directly from policies. Our method uses model checking to auto-
matically relate the agent’s policy to any other possible policy.

2For example, an autonomous driver crashes a car against a tree. After the harm has
occurred, we study the actions of the agent leading to that harm to determine accountability.

142 CHAPTER 7. ANALYZING INTENTIONAL BEHAVIOUR

• We propose a specific methodology for assessing evidence of intentional
behaviour after a concrete sequence of events has happened, designed to
be used as part of an accountability process. Furthermore, our method
applies counterfactual reasoning to increase the reliability of the assess-
ment.

• To showcase the usefulness of our retrospective method, we provide a case
study in which we analyze potential intentional behaviour in the same
scenario for different implementations of driving agents.

Outline. In Section 7.2, we describe the main concepts that we use to quan-
titatively assess intention throughout the paper and how they are grounded in
previous notions. In Section 7.3, we present our specific methodology for retro-
spective analysis of intention, which builds counterfactuals to a reference trace
and uses them to make an assessment. We report the results of a case study us-
ing our retrospective methodology in a traffic-related scenario in Section 7.4. We
conclude the chapter in Section 7.5 discussing potential limitations, extensions,
and relation to other work in the literature on intention analysis in AI.

Declaration of sources. This chapter is partially based and reuses material
from the following source previously published by the author of this thesis:

[CC+23a] Filip Cano Córdoba, Samuel Judson, Timos Antonopoulos,
Katrine Bjørner, Nicholas Shoemaker, Scott J Shapiro, Ruzica Piskac,
and Bettina Könighofer. “Analyzing Intentional Behavior in Autonomous
Agents under Uncertainty”. In: Proceedings of the International Joint Confer-
ence on Artificial Intelligence (IJCAI). ijcai.org, 2023, pp. 372–381.

7.2 Modelling Intentional Behaviour in Agents
on MDPs

In this section, we give the definitions for evidence of intentional behaviour of
policies in the presence of uncertainty. We use an MDP M = (S,A,P) to model
the interaction of the agent and the environment. In the following sections, we
will then propose and implement a method to analyze intentional behaviour
according to the definitions of this section.

7.2.1 Modelling Environment, Agents, and Intentions

Wemodel the environment as a Markov decision process (MDP) 3 M = (S,A,P),
together with a finite set of atomic propositions AP and a valuation function
Val : AP → 2S . A state represents “one way the world can exist”, so any infor-
mation available to the agent for deciding what to do is included in the state
of the MDP. The set A contains every possible action that can be taken by the
agent. As usual, given s, s′ ∈ S and a ∈ A, P(s, a, s′) represents the probability
to transition to state s′ from state s′ when executing action a. Also, for each
s ∈ S and a ∈ A,

∑
s′∈S P(s, a, s′) ∈ {0, 1}.

3Recall definitions in Section 2.4.

7.2. MODELLING INTENTIONAL BEHAVIOUR 143

The literals in AP indicate properties of interest of the MDP, like goal or
collision, and the valuation function Val indicates, for each property, which
states satisfy it. The valuation function can be extended to any Boolean formula
over AP with the standard conventions as follows. For any pair of formulae I,J :

• Val(I ∧ J) = V al(J) ∩Val(J),

• Val(I ∨ J) = V al(I) ∪Val(J), and

• Val(¬I) = S \Val(I).
Given a Boolean formula I, we denote the set of states where it is satisfied as
SI := Val(I).
The agent is modelled by a memoryless and deterministic policy π : S → A
over M that assigns an action to each state. In Section 7.5.3, we discuss how
our method can be extended to consider strategies with non-determinism and
memory.

We model potential goals as Boolean expressions over AP and express inten-
tions as reachability properties of goals with an unbounded horizon. Given I,
a Boolean expression over AP, and a state s ∈ S, we are interested in the
properties of the type φ = Reach(s, SI).

7.2.2 Intention of Agents with Perfect Information

Following classic works in BDI models [RG95], an intention of an agent is a
set of states the agent committed to reach. In our case, we model the set of
states with a Boolean formula I over AP, whose corresponding set of states is
SI = Val(I). Therefore, the agent that intends I should act towards reaching
SI to the best of its knowledge.

Let us assume that the agent has perfect knowledge about the environment and
is optimally implemented. For a formula I to be an intention of an agent, the
agent has to implement a policy π that maximizes the probability of reaching
SI . Formally, I is an intention of the agent π, if and only if for any s ∈ S

Pπ(Reach(s, SI)) = Pmax(Reach(s, SI)). (7.1)

The policies considered to compute Pmax can be restricted to a set of policies Π, if
there are policies that should be excluded for comparison. For example, we may
only be interested in policies for comparison that satisfy certain properties like
fairness or progress properties. In such cases, the right-hand side of Equation 7.1
transforms into Pmax|Π(Reach(s, SI)).

Definition 7.1 (Intention in perfect-information settings). An agent π shows
evidence of intentional behaviour in a state s towards I among policies in Π if
π maximizes the probability of reaching SI , i.e.,

Pπ(Reach(s, SI)) = Pmax|Π(Reach(s, SI)).

Note that we do not phrase Definition 7.1 in terms of the optimal policy πmax,
because there may not be a unique policy that maximizes reachability proba-
bilities.

144 CHAPTER 7. ANALYZING INTENTIONAL BEHAVIOUR

7.2.3 Intention of Agents Under Uncertainty

The definition of intention presented earlier assumes perfect knowledge of the
environment and that the agent implements an optimal policy for reaching SI .
However, our goal is to analyze intention quantitatively, recognizing that agents
acting intentionally do not necessarily follow the optimal policy.

An agent intending to reach SI may deviate from the optimal policy for various
reasons. We distinguish three primary categories of such deviations:

• Imperfect training. The agent is trained to reach SI , but training con-
cludes before convergence to an optimal policy.

• Trade-off among multiple goals. The agent is trained with several goals
simultaneously, with reaching SI being only one among these objectives.
Consequently, the learned policy might be suboptimal due to balancing
multiple conflicting goals.

• Imperfect environment modeling. The agent is trained to reach SI in an
MDP M′ that slightly differs from the actual environment model M.

In the third scenario, discrepancies between M′ and M might exist solely in
transition probabilities or extend to the action and state spaces. When M′

shares the same action and state sets as M but differs slightly in transition
probabilities, the resulting policy may be suboptimal due to either insufficiently
precise modeling of environmental uncertainty or distributional shifts occurring
between training and deployment. Such discrepancies naturally emerge from
attempts to model real-world uncertainties.

Alternatively, one of the models might represent an abstraction of the other. For
instance, an agent could be trained in a continuous environmentM′, which must
then be abstracted into a discrete model M for intention analysis. Although
abstraction generally preserves overall agent behavior, some fine-grained details
might be lost.

In all cases described, we assert that an agent still demonstrates intention
through policies that, while potentially suboptimal, remain close to optimal.
This observation motivates a relaxation of Definition 7.1, enabling a quantita-
tive measure of intention under conditions of uncertainty, irrespective of the
uncertainty’s origin.

7.2.3.1 Single State Analysis

In order to analyze an agent π under uncertainty, we first define the intention
quotient for a state s ∈ S, which represents how close π is to the policy optimal
for satisfying I from state s.

Definition 7.2 (Intention quotient). Given an agent π at a state s ∈ S and a
formula I over AP, the intention quotient is defined as follows:

ρπ(s, I) =
Pπ(Reach(s, SI))− Pmin|Π(Reach(s, SI))

Pmax|Π(Reach(s, SI))− Pmin|Π(Reach(s, SI))
.

7.2. MODELLING INTENTIONAL BEHAVIOUR 145

Whenever I is clear by context, we may drop it from the notation. In contrast
to the case of perfect information, the uncertainty in the agent’s knowledge and
resources implies uncertainty in the assessment of intentional behaviour.

In general, the higher the value of the intention quotient ρπ(s, I), the more
evidence the policy π shows of intentionally trying to satisfy I. The lower the
value of ρπ(s, I), the more evidence the policy π shows on acting without the
intention to satisfy I, although high values at a single state may be explained
by other means.

An additional source of uncertainty is introduced by the agency of a state. In
situations where the agent’s actions have little effect on satisfying I, there is not
enough evidence to support a claim of intentional behaviour. For this reason,
we take the agency into account for our assessment of intentional behaviour.

Definition 7.3 (Agency). Given a state s ∈ S and a formula I over AP, the
agency σ(s, I) at a state s is defined as the gap between the best and the worst
policy in terms of satisfying I. Formally, it is given by

σ(s, I) = Pmax|Π(Reach(s, SI))− Pmin|Π(Reach(s, SI)). (7.2)

7.2.3.2 Multiple-State Analysis

The concepts of agency and intention quotient apply to a single state in the
MDP. However, when studying an agent in particular, we are not only interested
in how the agent behaves in one state, but in many states. We extend the
definition of agency by averaging the value along a set of states.

Definition 7.4 (Agency for sets of states). For a set of states S ⊆ S and a
formula I, the agency of S is

σ(S, I) = 1

|S|
∑
s∈S

σ(s, I) (7.3)

Since the scope of agency indicates how important is a given state in assessing
the outcome of an agent’s actions, we aggregate the intention quotients of the
individual states using the agency as the weighting factor. This way, the weight
of the decision at each state is directly proportional to the impact that an agent
can have in that state towards satisfying I.

Definition 7.5 (Intention quotient for sets of states). For an agent π operating
around a set of states S ⊆ S, and a formula I over AP, the intention quotient
ρπ(S, I) is given as the weighted average

ρπ(S, I) =
1∑

s∈S σ(s, I)
∑
s∈S

σ(s, I)ρπ(s, I).

We consider two types of sets of states that are of interest from the point of
view of studying intentional behaviour: balls and traces.

146 CHAPTER 7. ANALYZING INTENTIONAL BEHAVIOUR

Balls. A ball around a set SI represents the states that are close to SI ,
according to some distance in M. Sometimes, instead of analysing the agent in
the whole environment, we are interested in how an agent behaves in the vicinity
of a set of states. For example, we may be interested in a car’s behaviour towards
crashing into a wall only when a wall is nearby. This may also be useful for
practical reasons: instead of trying to model and understand the agent in a large
environment with too many states, we can focus on a ball of a certain radius of
influence, where states outside of this radius can be considered unimportant.

Traces. A trace introduces an order and a concept of time passing to a set
of states, and we will especially focus on analyzing traces in the retrospective
method. Traces are also useful because we know that agents will follow valid
traces when deployed. In Figure 7.1 we depict the concepts of agency and inten-
tion quotient over a trace. In the hypothetical case represented in Figure 7.1,
we see an agent that behaves towards satisfying a certain formula I most of
the time, with most of the states, especially those with high agency, showing a
probability close to the maximum. The only exception is the last state, where
the probability is closer to the minimum at that state. Even in such a case, this
would be too little and too late to exonerate the agent.

This ordering in time allows us to define a notion of commitment. Since very
prominent existing theories of intention in autonomous systems take commit-
ment as a central concept [CL90; van+20], we give here our take, defining
commitment for traces in a quantitative way, using the concepts of agency and
intention quotient.

Definition 7.6 (Commitment along a trace). For an agent π, a trace τ =
(s1, . . . , sn), a threshold δB ∈ (0, 1), and a threshold δI ∈ (0, 1), we say that the
agent is commited towards satisfying I if there exists k ∈ [1, n] such that for all
i ≥ k,(
(Pmax|Π(Reach(si, SI)) > δB)∧(Pmin|Π(Reach(si, SI)) < 1−δB)

)
→ ρπ(si, I) ≥ δI .

The intuition behind this definition is that an agent shows evidence of being com-
mitted to satisfying I if its intention quotient exceeds a certain threshold (δI)
whenever the agent believes that satisfying I is still feasible (Pmax|Π(Reach(si, SI)) >
δB), and that I has not yet been achieved (Pmin|Π(Reach(si, SI)) < 1− δB).

For this definition, δI is assumed to be relatively high, while δB is close to
zero. By setting δB > 0, we allow the agent to “give up” if fulfilling I becomes
too unlikely, or to “focus on something else” if reaching SI is almost certainly
guaranteed. The definition can be made stricter by setting δB = 0.

7.3 Methodology for the Retrospective Analysis
of Intention

7.3.1 Setting and Problem Statement

Setting. We have a model of the environment in the form of an MDP M =
(S,A,P) that captures all relevant dynamics and possible interactions for an

7.3. RETROSPECTIVE ANALYSIS OF INTENTION 147

Figure 7.1: Example of the computation of agency and intention quotient. The
grey arrows represent agency, while the blue dots inside the 0 to 1 ruler indicates
the value of the intention quotient.

agent. We also have a concrete scenario to analyze in the form of a trace
τref = (s1, . . . , sn). The trace τref is a sequence of visited states in M that leads
to a state in SI , i.e., sn ∈ SI . The agents considered comparable are defined by
a set of allowed policies Π, and the implementation of the agent under study is
given in the form of a policy π ∈ Π. The underlying intentions of the agent are
unknown.

Problem statement. Given this setting, we want to analyze whether there
is evidence of intentional behaviour of the agent π towards satisfying I in the
scenario represented by τref, considering policies in Π.

Example 7.1. Let us consider a scenario in which an autonomous car collides
with a pedestrian crossing the road, as illustrated in Figure 7.2. To analyze
to which degree the car is accountable for the accident, we are interested in
whether causing harm was the intention of the car. In such an example, M
captures all relevant information necessary to analyze the accident, like positions
and velocities of car and pedestrian, car dynamics, road conditions, etc. The
scenario τref = (s1, . . . , sn) is defined via the sequence of states prior to the
collision. The set of states SI represents collisions. We want to analyze whether
the policy π shows evidence of intentional behaviour towards satisfying I. To
avoid unfair comparison with unrealistic policies, we define a set of policies Π
that excludes unreasonably slow-moving cars (e.g., cars that stop even though
there is no other road user close by).

Since both agency and intention quotient are quantitative tools, to determine
whether there is or there is not evidence of intentional behaviour, we define the
following thresholds that indicate how much evidence we need to give a positive
or a negative assessment.

Definition 7.7 (Evidence of intentional and non-intentional behaviour in traces).
Given lower and upper thresholds 0 ≤ δLρ < δUρ ≤ 1 for intention quotient and
an agency threshold 0 < δσ < 1, we say that there is evidence of intentional

148 CHAPTER 7. ANALYZING INTENTIONAL BEHAVIOUR

Figure 7.2: Illustration of the scenario in Example 7.1. The red line represents
the trajectory of the car, the green dot represents the pedestrian and the green
line the trajectory of the pedestrian. There is a water puddle in the road
that makes the floor slippery and a parked truck that blocks visibility of the
pedestrian.

behaviour towards satisfying I along a trace τ if

σ(τ) ≥ δσ and ρπ(τ) ≥ δUρ .

We say that there is evidence of non-intentional behaviour towards satisfying I
along a trace τ if

σ(τ) ≥ δσ and ρπ(τ) ≤ δLρ .

Otherwise, i.e., in the cases that

σ(τ) < δσ or δLρ < ρπ(τ) < δUρ , (7.4)

we say that we have not enough evidence for intentional behaviour.

The thresholds δLρ , δ
U
ρ , and δσ have to be defined using domain knowledge for

each concrete application, and make our method adaptable to different evidence
standards required for different accountability processes. For example, to con-
vict a person of a criminal offense, it is typically required to prove the person
committed the crime “beyond a reasonable doubt”, while in many systems,
civil litigations are resolved with the “preponderance of the evidence” standard,
which is much less stringent [CS02]. The evidence thresholds can be adapted to
suit different standards.

7.3.2 Evidence Augmentation through Counterfactual Gen-
eration

In this section, we propose a concrete methodology to analyze retrospectively
whether there is evidence an agent acted intentionally towards satisfying I. Our
method is illustrated in Figure 7.3.

As depicted in the figure, we start the analysis of the reference trace τref by
computing the intention quotient ρπ(τref) and the agency σ(τref). If σ(τref) ≥ δσ,
we may be able to draw conclusions about intentional behaviour:

• If ρπ(τref) ≥ δUρ , then we conclude that there is evidence of intentional
behaviour towards satisfying I.

• If ρπ(τref) ≤ δLρ , then we conclude that there is evidence of non-intentional
behaviour towards satisfying I.

7.3. RETROSPECTIVE ANALYSIS OF INTENTION 149

Figure 7.3: Overview of our approach for retrospective analysis of intentional
behaviour.

In cases without enough agency, i.e., where σ(τref) < δσ, or where the intention
quotient falls between the lower and upper thresholds, i.e., δLρ < ρπ(τref) < δUρ ,
we say that we do not have enough evidence to reach a conclusion. In such cases,
we propose to generate more evidence by analyzing counterfactual scenarios.

A counterfactual scenario τ is a scenario close to τref according to some distance
notion. Our method generates a set of counterfactual scenarios Tcf and computes
whether there is evidence for intentional or non-intentional behaviour for each
trace τ ∈ T = Tcf ∪ {τref}. We fix beforehand the number of counterfactual
scenarios to generate to some parameter N .

As before, we draw conclusions about intentional behaviour based on the ag-
gregated results of agency σ(T) and intention quotient ρπ(T). If σ(T) < δσ or
δLρ < ρπ(T) < δUρ , there is still not enough evidence for intentional or non-
intentional behaviour, with σ(T) being the agency averaged over all traces in
T , and ρπ(T) being the average intention quotient for the set of traces in T .

In such cases, our algorithm iterates back and extends the set Tcf by generating
N more counterfactual scenarios to be analyzed. The algorithm stops when
enough evidence has been generated to draw a conclusion or when the number
of generated counterfactual scenarios exceeds some user-defined limit. In the
following, we discuss the generation of counterfactual scenarios in detail.

In Figure 7.3 we show this augmentation loop, where at each iteration we may
stop if there is enough evidence to draw a conclusion.

7.3.3 Counterfactual Generation

To gather sufficient evidence for our assessment of intentional behaviour, we
generate scenarios that serve as counterfactuals for τref. There are various ap-
proaches to generating counterfactual traces, each requiring different levels of
domain knowledge. Here, we present three alternative methods, ordered by
decreasing reliance on expert knowledge and involvement. The first approach

150 CHAPTER 7. ANALYZING INTENTIONAL BEHAVIOUR

is highly dependent on human expertise, while the last operates with minimal
human intervention.

7.3.3.1 Counterfactual Generation via a Human Expert

Asking and analyzing counterfactual questions is a standard procedure in ac-
countability processes [MB20]. Usually, such counterfactual questions are pro-
posed by a domain expert. We transfer this concept to analyzing intentional
behaviour on MDPs. The counterfactual questions posed by the expert are
translated to counterfactual traces Tcf in the model M.

Example 7.2. Recall Example 7.1. Some counterfactual questions posed by an
expert in the traffic scenario could be: (Q1) What if the car had driven slower?
(Q2) What if the pedestrian had been visible earlier? (Q3) What if the road
conditions were different? Each of Q1-Q3 translates to a counterfactual trace,
which we can analyze in our framework.

The method of generating counterfactuals using a human expert imposes a heavy
burden of work on the expert. Next, we propose two methods to automatically
generate counterfactuals to mitigate the need for human effort.

7.3.3.2 Counterfactual Generation on a Factored MDP

Since M models the interactions of the agent with its environment, M is typi-
cally given in form of a factored MDP. In factored MDPs, the state space of M
is defined in terms of state variables S = X1 × · · · × Xm.

In this approach for counterfactual generation, we assume domain knowledge
about which variations of state variables generate interesting counterfactual sce-
narios. In particular, we assume that the state variables can be partitioned into
integral, which contain the most characteristic information about the sequence
of events, and environmental or peripheral state variables, which define environ-
mental characteristics and are fixed during the sequence of events under study4.

Example 7.3. In Example 7.1, integral state variables represent the position
and velocity of the car and the position, velocity, and visibility status of the
pedestrian. State variables that represent the position of the parked truck, the
location of the water puddle and the amount of water in it are properties of
the environment that stay fixed during the sequence of events, since they would
change at a much slower rate, so they would be tagged as peripheral state vari-
ables. Traces with the same sequence of values for the integral state variables
and different values for the peripheral state variables can effectively represent
the same sequence of events in a slighlty different world.

Studying agency and intention quotient in traces with modified values of the
peripheral state variables is our way of asking counterfactual questions such as
“What would you have done if you could see the pedestrian?”, or “What would
have happened if the road was not so slippery?”. To generate informative coun-
terfactuals, we are interested in traces that maintain the values of the integral
variables (i.e., maintain the characteristic sequence of events), while changing

4Note that the convention on which variables are integral and peripheral differs from that
it in [CC+23a].

7.3. RETROSPECTIVE ANALYSIS OF INTENTION 151

some values of the peripheral variables (i.e., changing some of the environmen-
tal factors). We do not provide a more formal or concrete definition of integral
and peripheral variables, because they have to be defined in each scenario from
domain knowledge.

We automatically generate counterfactual traces by exploring variations of the
peripheral variables. Let the state space be factored as S = X1×· · ·×Xm, where
variables X1, . . . ,Xk are integral and Xk+1, . . . , Xm are peripheral. For any state
s = (x1, . . . , xm), we write its factorization into integral and peripheral variables
as s = (sint||sper). Let sperref = (xk+1, . . . , xm) be the value of the peripheral
variables at any state of τref. This is well-defined since the values of peripheral
variables do not evolve along the trace. We define the set of counterfactual
values as:

Cfε(s
per
ref) = {(yk+1, . . . , ym) ∈ Xk+1 × · · · × Xm : ∀i, |xi − yi| < εi},

where ε = (εk+1, . . . , εm) contains, for each peripheral variable, the range of
variation that is still considered valid. For a given trace τref = (s1, . . . , sn), the
counterfactual traces that we consider are

TC(τref) = {(s′1, . . . , s′n) : ∃spercf ∈ Cfε(s
per
ref), ∀i = 1 . . . n :

s′i = (sinti ||spercf), (s′1, . . . , s
′
n) is valid, and s′n ∈ SI}.

To unpack this definition, a trace τ is in TC(τref) if the following conditions are
satisfied.

• At each stage of the trace τ , the value of the integral variables corresponds
to the value in τref.

• The value of the peripheral variables in τ is constant along the trace and
close to that of τref, as defined by a distance vector ε.

• The trace τ is still a valid trace of the MDP, meaning that for every pair
of consecutive states in s′i, s

′
i+1 in τ , there exists an action a such that the

transition s′i
a−→ s′i+1 has a non-zero probability.

Note that the search for counterfactual traces is limited to those peripheral
variables Xi for which εi > 0, thus by setting some of the εi to zero, we can fix
their value in the counterfactual generation process.

From TC , we sample N traces to be used for the counterfactual analysis. For
the trace selection, emphasis can be put on traces with higher scopes of agency.

7.3.3.3 Counterfactual Generation Using Distances on MDPs

This method for generating counterfactual scenarios requires to have given a
distance d : S ×S → R≥0 defined over states in the MDP. Given such a distance
metric d over the states, the set of counterfactual traces is given as

TC(τref) = {(s′1, . . . , s′n) : ∀i = 1 . . . n,

d(si, s
′
i) < η, (s′1, . . . , s

′
n) is valid, and sn ∈ SI},

152 CHAPTER 7. ANALYZING INTENTIONAL BEHAVIOUR

s1 s2 s3 s4 s5 s6
States

0

0.5

1.0

P
ro

b
ab

ili
ty

Pmin

Pmax

Pπ1

Figure 7.4: Probabilities associated with agency and intention quotient along
the reference trace τref in the experiments.

where η > 0 is a distance that represents states being ‘close enough’ to be
compared as counterfactuals.

In case there is no distance defined in the MDP, there are bisimulation dis-
tances that are well defined intrinsically in any MDP [Son+16; Fer+06; Fer03;
WDS19]. They depend on the intrinsic structure of the MDP, defined mainly
by similarities in terms of the transition function. The main caveat of this ap-
proach is that distances are expensive to compute, and the explanation of why
two states are assigned a given distance becomes more obscure to the user.

7.4 Experimental Validation

In this section, we showcase our retrospective method on a traffic-related sce-
nario related to Examples 1-2, and illustrated in Figure 7.2. In this scenario,
a car was driving on a road with a crosswalk. A pedestrian at the crosswalk
decided to cross. Close to the crosswalk, there was a parked truck that blocked
the visibility of the car. Furthermore, the previous rainy conditions generated a
water puddle that made the road slippery in the region covered by the puddle.
In this region, both braking and accelerating are less effective than normal, as
the friction between the tires and the road is weak. While crossing, the pedes-
trian was hit by the car. We want to study the behaviour of the car for signs of
the hit being intentional.

All experiments were executed on an Intel Core i5 CPU with 16GB of RAM
running Ubuntu 20.04. We use a modified version of Tempest [Pra+21a] as
our model-checking engine.

7.4.1 Model of Environment

The environment is modeled as an MDP M = (S,A,P). The set of states is
a triple S = Scar × Sped × Senv, where Scar models the position and velocity
of the car, Sped models the position of the pedestrian, and Senv models other
properties that do not change during a scenario. These properties include the
slipperiness factor of the road and the existence of the truck blocking the car’s
view of the pedestrian.

The car’s position is defined via the integers xc and yc with 0 ≤ xc ≤ 60 m and
3 ≤ yc ≤ 13 m. The velocity of the car is in {0, 1, . . . , 5} m/s. The position
of the car is updated at each step, assuming a uniform motion at the current

7.4. EXPERIMENTAL VALIDATION 153

velocity. The car has the following set of actions A: hitting the brakes, pressing
down on the accelerator, and coasting. If the car is on a non-slippery part of
the road, the action of accelerating increases the velocity stochastically (by 1
or 2 m/s), braking decreases the velocity stochastically (by 1 or 2 m/s) and
coasting maintains or decreases the velocity (by 1 m/s). If the car is on a
slippery part of the road, the probabilistic consequences of the selected action
on the velocity are different and include the possibility of no modification to the
current velocity for both the actions of braking and accelerating.

The pedestrian’s position is given via the integers xp and yp with 0 ≤ xp ≤
60 m and 0 ≤ yp ≤ 15 m. The pedestrian can move 1 m in any direction, or
not move at all. The probabilities of moving in each direction are given by a
stochastic model of the pedestrian, designed in such a way that the pedestrian
favours crossing the street through the crosswalk while avoiding being hit by
the car. The probabilities in the pedestrian’s position update can be influenced
by a hesitance factor, which captures how likely it is that the pedestrian puts
themselves at a hitting distance from the car. The resulting MDP consists of
about 120k states and 400k transitions, so the model-checking calls have a trivial
computational cost, generally under one second.

7.4.2 Analysis of a Trace

In the described environment, we are given a scenario τref as illustrated in Fig-
ure 7.2, and an agent π : S → A5. As thresholds to evaluate evidence of inten-
tion, we use δLρ = 0.25, δUρ = 0.75 and δσ = 0.5 as reasonable arbitrary choices.
In real-world scenarios, these thresholds should be adapted to concrete problem
and evidence standard, and ideally agreed upon beforehand by all stakeholders.

We restrict the set of policies Π to policies that do not stop the car if no
pedestrian is within a range of 15m of the car. The collision states are described
by the formula

I = (|xp − xc| ≤ 5) ∨ (|yp − yc| ≤ 5) .

Given this setting, we analyze τref for evidence of intentional behaviour towards
reaching the set of states SI . Therefore, we first compute the agency and
intention quotient along τref.

Results of analysing τref. In Figure 7.4, we show the results of the model
checking calls for reaching SI for states in τref. The lower line () represents
Pmin, the upper () represents Pmax and the line in the middle () represents
Pπ for every state in τref. The shaded area, between Pmin and Pmax, represents
the agency at each state. The figure shows the agent is close to the line of
Pmax, but the agency is very small, with ρπ(τref) = 0.73 and σ(τref) = 0.18.
Since σ(τref) < δσ, our method concludes that there is not enough evidence for
intentional behaviour yet and moves on to the step of generating counterfactual
scenarios.

5Both the trace and the agent are handcrafted for this experiment to illustrate our method.
The agent is programmed to get to the end of the street and opportunistically hit the pedes-
trian if possible. The trace has the car collisiding with the pedestrian. The same analysis
method would apply to different agents and any trace ending in a collision.

154 CHAPTER 7. ANALYZING INTENTIONAL BEHAVIOUR

slinit slend slfact hfact vis

Value τref 20 45 2.5 0.5 1
Range [10, 30] [35, 55] [1, 4] [0.1, 0.9] {0, 1}

Table 7.1: Ranges to use in counterfactual generation.

Counterfactual analysis. We generate counterfactual scenarios by exploit-
ing domain knowledge about integral and peripheral variables of the MDP. We
change the values of the following peripheral variables:

• Slipperiness range. The street is considered to be slippery between the
positions slinit and slend.

• Slipperiness factor. The strength of the slippery effect is measured by
the slippery factor slfact, which is analogous to the inverse of the friction
coefficient in classical dynamics. The effect of slipperiness is to make the
acceleration and brake less effective, increasing the probability that both
acceleration and brake have no effect on the speed of the car. The larger
the value of slfact, the more effect, with slfact = 1 being the minimum
value, where the road is considered to be ‘not slippery at all’.

• Hesitancy factor. The pedestrian, in general, tends to cross the street
through the crosswalk. The hesitancy factor modifies the probabilistic
model of the pedestrian, to make them more or less prone to put them-
selves at a hitting distance from the car. In the limit, a pedestrian with
hesitancy factor hfact = 0 is a completely cautious pedestrian, that under
no circumstance would put themself at a position where they could be hit
by the car. On the contrary, a pedestrian with hesitancy factor hfact = 1
completely disregards the position and velocity of the car, and would not
hesitate to cross even with a fast car approaching.

• Visibility. In the given scenario, there is a truck blocking the visibility of
the car, corresponding to vis = 1. In case vis = 0, the visibility block is
eliminated.

The variables and the ranges considered for generating counterfactuals are sum-
marized in Table 7.1.

Results of analyzing counterfactual scenarios. We build the counterfac-
tuals in batches of N = 5, by sampling uniformly on the ranges described in
Table 7.1. We show the results in terms of intention quotient and agency in
Table 7.2. We report the averaged values and standard deviations over 5 runs.
As we can see from the table, with 21 traces in T we have ρπ(T) > δUρ = 0.75
and σπ(T) > δσ = 0.5. Thus, our method concludes that the agent under study
does present evidence of intentional behaviour to hit the pedestrian.

7.4.3 Comparative Analysis of Several Agents

In this section, we illustrate how our method can be used to compare different
agents in terms of intentional behaviour. We compare three different agents
π1, π2, π3 in the same scenario τref. The agent π1 corresponds to the policy π

7.4. EXPERIMENTAL VALIDATION 155

|T | 6 11 16 21

ρπ(T) 0.78± 0.03 0.81± 0.02 0.83± 0.02 0.84± 0.01
σπ(T) 0.33± 0.02 0.44± 0.03 0.48± 0.01 0.50± 0.01
time (s) 53± 16 147± 42 227± 32 318± 64

Table 7.2: Results of the counterfactual evaluation.

s1 s2 s3 s4 s5 s6
States

0

0.5

1.0

P
ro

b
ab

ili
ty

Pmin

Pmax

Pπ1

Pπ2

Pπ3

s1 s2 s3 s4 s5 s6
States

0

0.5

1.0

P
ro

b
ab

ili
ty

Figure 7.5: Comparison of τref (left) with a high-agency counterfactual scenario
(right).

in Section 7.4.2. The agent π2 is designed as a reckless driver that completely
disregards the position of the pedestrian, while π3 is designed as a cautious
driver.

In Figure 7.5 we show the probabilities for reaching SI for the policies π1, π2, π3

for two different traces: left for τref, right for a counterfactual trace τ ∈ T with a
high agency. The figure illustrates how even a single counterfactual trace can be
a powerful tool for distinguishing between policies that seem impossible to dif-
ferentiate with any confidence in the original trace τref. In general, high agency
values are achieved by minimizing the slippery range and factor, increasing the
hesitancy of the pedestrian and eliminating the visibility block.

A second insight is illustrated in Table 7.3. In this table, for each agent π1, π2, π3,
we show the number of counterfactuals needed to generate enough evidence of
intentional behaviour, together with the final values of the intention quotient
and agency. Both π1 and π3 are clear-cut, but for π2 our algorithm reaches the
limit of |T | = 100 without finding enough evidence. In this case, the intention
quotient of the agent seems to converge to a value of about 0.53, sitting in the
middle of the lower and upper threshold.

Finally, in Figure 7.6, we show the values of intention quotient against the scope

π1 π2 π3

|T | 21 100 26
ρπ(T) 0.86 0.53 0.14
σπ(T) 0.52 0.64 0.50

Table 7.3: Final values of ρπ(T) and σπ(T) for different strategies.

156 CHAPTER 7. ANALYZING INTENTIONAL BEHAVIOUR

0 0.5 1
Scope-of-agency

0.5

1

In
te

nt
io

n
-q

u
ot

ie
nt

π1

π2

π3

Figure 7.6: Scatter plot of intention quotient vs agency for different agents.

of agency for 100 counterfactual traces sampled from the ranges in Table 7.1.
This serves as a visual representation of the same facts presented in Table 7.3,
concluding that π1 () is clearly showing evidence of intentionally hitting the
pedestrian, π2 () is showing evidence of intentionally hitting the pedestrian
in a lower magnitude, which would be considered enough or not depending on
the thresholds, and π3 () is showing clear evidence of acting without the
intention of hitting the pedestrian.

The results of these experiments are in agreement with the way we designed the
agents. This just serves to showcase our method. A more thorough validation
would require a human-subject experiment, where real users give their subjective
perception of the intention of different agents, and we measure how close their
perception is to our notion. This is, however, out of the scope of this thesis.

7.5 Discussion

7.5.1 Limitations

We believe that our approach has great potential. However, there are aspects
that need to be addressed to make the method applicable in challenging scenar-
ios.

Modelling the agent and the environment. Our method requires having
a correct model of the environment that captures everything relevant to analyze
a scenario. In many cases, such models are not available. Recent work on digi-
tal twin technologies [Jon+20] and the existence of realistic simulators [Dos+17]
provides optimism for more and more accurate models of agents and their envi-
ronment. Our method also requires the agent be given as a policy in an MDP.
In case we are given a different implementation, e.g., as a neural network, we
would need a sample-efficient method to translate the implementation into a
policy in the MDP, at least for the relevant parts of the state space.

Computational complexity. While current probabilistic model-checking en-
gines achieve impressive performance [Bud+21], computing exact probabilities
is costly (polynomial complexity). An alternative would be to use statistical

7.5. DISCUSSION 157

model checking [AP18], which is less demanding, albeit also less precise. Statis-
tical model checking has been successfully used to validate autonomous driving
modules [Bar+19].

Knowledge of the agent’s beliefs. An intrinsic limitation of studying poli-
cies in MDPs is the lack of knowledge of the agent’s beliefs about the world.
Belief plays a fundamental role in the study of intentions: an agent that intends
SI must act believing that their acts are a good strategy to reach SI [Bra87].
Belief is also central to the definitions of responsibility and blameworthiness in
structural causal models [CH04; HKW18]. Partially for this reason, together
with the uncertainties derived from a probabilistic setting, we can make claims
about evidence of intentional behaviour instead of supporting stronger claims
on the actual intention of the agent.

For example, an autonomous driving agent may have a faulty perception element
that confuses the numbers 30 and 80 in speed limit signals. Thus, when the agent
is in a low-speed area with a speed limit of 30 km/h, it accelerates to 80 km/h.
This agent may show evidence of intentionally overspeeding only in low-speed
areas with our definition, while an inspection of the internal belief system may
show that it is actually just trying to go as fast as the speed limit. While this is
an inherent limitation of our method, we still think our method is valuable for an
accountability process. From the perspective of other road users, overspeeding
does not happen by accident or in some failure cases, but it is rather a systematic
flaw that is functionally equivalent to intentional overspeeding. By functionally
equivalent we mean that the behaviour of our faulty agent and the behaviour
of an intentionally harmful agent are the same.

Distinction between negligence and intentional harm. As we have de-
scribed in the previous overspeeding example, our method may characterize
negligent or faulty systems as intentional when they are functionally equivalent
to intentionally harmful systems.

In our framework, negligence and recklessness can be expressed as mid-range
intention quotients towards a harmful set of states, especially in counterfactual
traces. In our running example studied in Section 7.4, an intentionally harmful
driver would behave very differently when the pedestrian is far from crossing
the street, waiting for them to be vulnerable, while a reckless or negligent driver
would not care about the state of the pedestrian. This difference is then reflected
in the values of the intention quotients.

7.5.2 Avoidance Properties

In our analysis, we have focused on reachability properties, answering questions
of the type “Does the agent show evidence of intending to reach a state that
satisfies I?”. A symmetric approach would be to consider avoidance properties,
as defined in Equation 2.8.

With this spirit, we could rephrase the definitions of agency and intention quo-

158 CHAPTER 7. ANALYZING INTENTIONAL BEHAVIOUR

tients from Definitions 7.3 and 7.2 as:

σ′(s, I) = Pmax|Π(Avoid(s, SI))− Pmin|Π(Avoid(s, SI)) and

ρ′π(s, I) =
Pπ(Avoid(s, SI))− Pmin|Π(Avoid(s, SI))

Pmax|Π(Avoid(s, SI))− Pmin|Π(Avoid(s, SI))
.

With the next result, we will show that the reachability and avoidance versions
are very much related to one another.

Proposition 7.1. Let M = (S,A,P) be an MDP, π : S → A be a policy, s ∈ S,
and I a formula over AP. The following holds:

• σ′(s, I) = σ(s, I), and

• ρ′π(s, I) = 1− ρπ(s, I).

Proof. By the definition of avoidance properties, we know that

Pmax|Π(Avoid(s, SI)) = 1− Pmin|Π(Reach(s, SI)) and

Pmin|Π(Avoid(s, SI)) = 1− Pmax|Π(Reach(s, SI)).

The agency result follows directly.

Similarly, for the intention quotient, we have

ρ′π(s, I) =
Pπ(Avoid(s, SI))− Pmin|Π(Avoid(s, SI))

σ(s, I)

=
1− Pπ(Reach(s, SI))− (1− Pmax|Π(Reach(s, SI)))

σ(s, I)

=
Pmax|Π(Reach(s, SI))− Pπ(Reach(s, SI))

σ(s, I) . (7.5)

On the other hand

1− ρπ(s, I) =
[
Pmax(Reach(s, SI))− Pmin|Π(Reach(s, SI))−(
Pπ(Reach(s, SI))− Pmin|Π(Reach(s, SI))

)]
/σ(s, I)

=
Pmax|Π(Reach(s, SI))− Pπ(Reach(s, SI))

σ(s, I) . (7.6)

The proof is concluded by observing that the expressions in Equations 7.5
and 7.6 are the same.

7.5.3 Generalized Policies

We briefly discuss how to treat policies with memory and non-determinism.
Our definitions naturally extend to non-deterministic policies with memory,
although it is not evident whether the probabilities required to measure intention
quotients (Definition 7.2) are easy to compute.

7.5. DISCUSSION 159

Computing extreme probabilities, i.e., Pmax and Pmin, is equally hard for gen-
eral policies, since the maximum and the minimum can be achieved with mem-
oryless deterministic policies. If the policy has a finite amount µ of memory,
Pπ(Reach(s, SI)) can be computed using probabilistic model checking, with a
cost of µ times that of the memoryless case [BK08]. In case the non-determinism
is unknown to us, to compute Pπ(Reach(s, SI)) we need to sample the decisions
of the agent often enough to get an accurate approximation of its decision-
making probabilities, making it more costly, although recent heuristics for de-
terminization may help [Ash+20].

7.5.4 Single-Agent Setting

In our framework, all relevant parts of the environment are modeled by an MDP,
and all the agency in the model is attributed to the agent, i.e., the only actor
choosing actions in the MDP is the agent. We argue that this decision is reason-
able to study the behaviour of an individual agent: from the perspective of an
agent, it makes no difference whether the decisions of other actors are governed
by a sophisticated policy or by random events in the environment, as long as
the MDP model contains accurate transition probabilities. The emergence of
intrinsically multi-agent phenomena, like shared intentions in cooperative set-
tings, would require a multi-agent extension of our framework and is out of the
scope of this thesis. In particular, we do not explore how to assign moral respon-
sibility to large groups of agents (the so-called “problem of many hands” [Tho80;
Poe15]). Another problem we do not explore is the existence of responsibility
voids [BH11], i.e., situations in which a group of agents should be held account-
able for an outcome, while at the same time, no individual agent intended that
outcome.

7.5.5 Related Work

Intention in artificial intelligence. The concept of intention is a contested
term in artificial intelligence. Since the early work from Bratman [Bra87], it
has been used in the design of rational agents [Woo03]. A consensus on a
formal definition remains, however, an open problem. In their seminal book
on multiagent systems [SLB08], Shoham and Leyton-Brown call the attempt
on a formal definition of intention the road to hell. We comment on some
relevant concepts of intention in artificial intelligence and how they relate to
our quantitative measure.

The work in [RG95; RG91] is the main conceptualization of agents with the
belief-desire-intention models, and BDI models have also been used to model
agency [Geo+98]. A good survey of the BDI literature can be found in [Woo03],
and a more recent one in [DSML20]. On a more specific note, [SP11] builds an
analogy between optimal BDI-based and MDP-based agents, that serves us as
our basis for the definition of intention in MPD agents under perfect information.

Cohen and Levesque’s work [CL90] is foundational to the concept of commit-
ment as part of intention. In simple terms, they define intention through the
notion of persistent goals. A persistent goal is a goal to which an agent re-
mains committed until it believes either the goal is unattainable or it has been
achieved. While we do not adopt their formalism, our concept of commitment

160 CHAPTER 7. ANALYZING INTENTIONAL BEHAVIOUR

aligns with this high-level idea: an agent demonstrates commitment to a goal if
its intention quotient remains persistently high from a certain point onward, and
only decreases significantly when the agent believes the goal has been accom-
plished or is no longer feasible. Since our approach is quantitative, we translate
the agent’s beliefs about goal achievement or feasibility into quantitative mea-
sures, using maximum and minimum probabilities to capture these judgments.
The formalism of [CL90] has been criticized for being too convoluted, and more
modern approaches include [Sin92; Wob95; HW03; DHJW07; HL04; Her+17;
van+20]. However, these modern approaches focus on providing a more usable
formalism and do not challenge the core idea of persistent goals.

More recent contributions include [Mot+23] on a formalization of a logic for in-
tention in probabilistic models, [Zha+23] on recognizing intentions when study-
ing multiple agents, and [War+24] on modelling intentions as instrumental goals.

Intention in philosophy. Characterizing and understanding the concept of
intention in rational agents, both humans and non-humans, is one of the fun-
damental problems in the philosophy of action [Pau20]. Most influential is the
work of G.E.M. Anscombe [Ans57], who poses the problem of intention present-
ing itself in three forms: (i) intention for the future, as I intend to finish this
thesis by the end of the year; (ii) intention with which someone acts, as in I
am typing these words in order to have my thesis finished; and (iii) intentional
action, as I am working on my thesis intentionally. Since these three forms are
distinct, but we use the same concept for them, a theory of intention has to be
such that it reconciles them. Much effort has been dedicated to the building of
theories that explain the unity of these facets, see [Set22] for a summary of the
main theories. While we get most of our inspiration in the planning theory of
intention [Bra87; Bra99], it is important to note that much of the debate circles
around beliefs and states of mind, which we do not model. Therefore, from
a functional perspective, our concept of intention quotient is consistent with
other theories [Vel07; Mel92; Dav63], since typical objections such as intending
something believed to be impossible, intending something while not doing it,
or intending A while believing that B is better; do not affect the functional
effect of intending something. The concept of agency has also been extensively
studied in this context [Lis21; Sha14; BH11; Geo+98], although most of the
problematization concentrates on the relation between individual and collective
agency.

There is an ongoing debate in the philosophy of mind, between those that con-
sider that an agent’s reasoning is sufficient to explain their actions [Qui69],
and those who maintain that extrinsic information must be imported through
a “Principle of Charity” [Dav63]. By building a model of the agent’s knowledge
(the MDP) to inquire about their behaviour, we are assuming the latter position.
Recent work attempts to answer similar questions from the former [Jud+24b;
Jud+24a].

Responsibility and accountability. The concepts of intention and agency
are also fundamental as they relate to concepts in moral responsibility [BH12;
Sca10]. The concept of agency is a necessary element in assigning respon-
sibility, leading to issues when the agency is diluted among many individu-

7.5. DISCUSSION 161

als [Sha14; BH11]. Intention and agency are also very important in the context
of accountability processes; both in criminal [Moo03; Moo10; Pau14] and civil
cases [GCC06; GJ91].

Causality and blame attribution. A basic element for a complete account-
ability process is the study of causality [HP05a; HP05b], which is also a neces-
sary condition for legal responsibility [Moo19; Moo09]. The foundational work
of [CH04] introduced a quantitative notion of causality, by studying degrees of
responsibility and blame. Responsibility and blame allocation have been exten-
sively developed in the context of non-probabilistic structures (see, e.g., [Ale+17]
for the characterization of complexity or [YD16] for a multi-agent framework).
More recent and more closely related to our approach is the work of [BFM21b;
BFM21a], studying responsibility allocation and blame attribution in Marko-
vian models. The study of harm from a causality perspective is also gaining
attention recently, with [BCH22; BCH23] studying harm from an actual causal-
ity perspective, and [RBT22] studying harm from a probabilistic perspective,
heavily relying on counterfactuals. Counterfactual analysis [Lew13] is a key con-
cept in causality [Pea09; LGZ13], used in an analogous way to our generation
of counterfactual scenarios. We go one step further by relating the implementa-
tion of the agent to the best and worst implementation for reaching an intended
event.

Another recent approach to blame attribution is [TSR21], which studies multi-
agent Markov decision processes from a game-theoretic perspective, and [Dat+15],
which builds on actual causes as a theory for accountability.

Policy-discovery methods. Since the popularization of reinforcement learn-
ing, there exist several methods for obtaining representations of a black-box
agent, by studying traces of such agents. In inverse reinforcement learning
(IRL) [NR00; AD21], the agent is assumed to be maximizing an unknown re-
ward function, and the objective is to find the reward function that best ex-
plains the agent’s performance over a set of traces [BJD23; Big+21]. A similar
approach is imitation learning, where an agent has to learn to perform a task
from successful demonstrations. The demonstrations can either be provided by
a human, by an expert autonomous agent, or be the result of filtering the best
traces from random execution [Hus+17]. These methods could potentially be
used as a pre-processing step to apply our framework to black box agents. In
any case, the obtained representations must be accurate enough before using
them for any accountability process.

There is also literature on RL methods that hide their true goals or intentions,
generally known as deceptive RL methods [MS17; LM23], so IRL methods could
be vulnerable to deceptive RL agents.

Explainability. Explainability in machine learning has gained much traction
in recent years [DVK17; LL17; DLH19; MCB20; Bai+21c] as a useful tool
for both development and accountability. One of the most influential works
in explainability of AI is [Mil19], which studies how explainability should rely
on concepts from social sciences. More recently [Win+21] uses the built-in
notions of desire, beliefs, and intentions to study explainability of BDI models,

162 CHAPTER 7. ANALYZING INTENTIONAL BEHAVIOUR

relying on concepts from the sociology literature. While the main paradigm
in explainable reinforcement learning is applying techniques from explainable
machine learning [PV20], our analysis of intentional behaviour can be used as a
method to aid the interpretability of agents operating in MDPs, using concepts
from the philosophy of action [Bra87].

Chapter 8

Conclusion

S’ha acabat el bròquil. 1 — Catalan popular saying.

8.1 Future Work

There are many avenues for future endeavours that are ripe for exploring.

8.1.1 Shields for Safety.

Shielding in the deterministic setting has been recently extended for specifica-
tions in the safety fragment of LTL modulo theories [Rod+25] and with ab-
stracted MDPs [CBG25], which offer the potential to study the delayed setting
in new shielding use-cases.

Another natural extension is to develop shields for models with continuous time
and states, using tools like control barrier functions [Ame+19].

Shielding is mainly thought of as a method that is agnostic to the controller.
However, learning performance and safety cooperatively is an approach that has
had some recent success [Cha+23], and it would be enlightening to explore how
the shield can improve the training process of the agent, or how the agent can
inform the shield on more efficient interventions.

From the user perspective, the shield is a sort of black box that decides on
the safety of a given action to follow a certain specification. However, there is
no more information to the user on why a given action may be unsafe. Self-
explainable shields could include a language model layer that would explain a
concrete decision in terms of potential transitions by the environment, or could
abstract shields into more succinct representations like decision trees, maybe
trading minimality of intervention for a more understandable shield.

1The broccoli is over.

163

164 CHAPTER 8. CONCLUSION

8.1.2 Fairness in Bounded Horizons.

Similarly to shields for safety, shields for fairness are considered agnostic to the
agent, and we want to explore how such shields can be used to improve the
learning process, effectively turning our post-processing fairness intervention
into an in-processing one.

In this thesis we leave open the question of whether optimal T -periodic shields
exist and can be described with finite resources. We believe they do exist,
but cannot be described with finite resources. However, it may be possible to
still obtain T -periodic shields sacrificing some of the cost-optimality with hard
fairness guarantees. Our closest solution is that of dynamic shields, but they
are still limited in the sense that they cannot guarantee fairness for some traces.

As we have described them now, fairness shields operate in windows of T deci-
sions. While this is natural in some use cases, it is unnatural in others, and we
want to explore ways to eliminate this window-like constraint in future work.

Finally, our T -periodic shields guarantee fairness in the sense that the bias is
smaller than a certain threshold. Typically, fairness properties are defined as
the bias tending to zero as the sequence gets longer. Therefore, there are traces
that satisfy fairness in the periodic sense but not in the more classical long-run
average sense. Understanding these traces and modifying our shielding methods
to prevent them would go a long way toward unifying the concepts of fairness
for bounded, periodic, and unbounded horizons.

8.1.3 Intention Analysis

In future work, we want to extend our current analysis by considering a multi-
tude of possibly conflicting intentions of the agent, as has been done with other
intention approaches [Zha+23].

Another interesting line of work is to extend the study of intentional behaviour
to multi-agent systems, in which cooperative or competitive intentions may
arise, and study the emergence of responsibility voids [BH11].

We also want to study long executions, where the agent has time for reconsid-
eration, and where it would be very helpful to use the notion of commitment
that is so central in many theories of intention [CL90; van+20].

Furthermore, we want to transcend the simple toy example shown in this thesis
and implement our framework to study reinforcement learning agents in chal-
lenging application areas.

8.2 Concluding Remarks

The rapid advancement of AI technologies has brought both immense opportu-
nities and significant challenges. This thesis has explored key issues in ensuring
AI systems operate safely, fairly, and transparently. By focusing on formal meth-
ods, verification techniques, and reinforcement learning safety mechanisms, we
have contributed to the development of more robust AI systems that align with
ethical and legal standards.

8.2. CONCLUDING REMARKS 165

One of the central themes of this thesis has been shielding mechanisms, which
provide runtime guarantees to AI systems by enforcing constraints on their be-
haviour. Our work on deterministic shielding in the presence of delayed observa-
tions demonstrates how real-world uncertainties can be systematically addressed
to ensure safety. Similarly, our contributions to probabilistic shielding illustrate
the potential of balancing safety guarantees with the need for flexible and effi-
cient AI decision-making, particularly in applications such as autonomous valet
parking.

Beyond safety, this thesis has examined fairness in AI decision-making, partic-
ularly in sequential settings. We introduced fairness shields as a mechanism for
enforcing group fairness constraints over finite and periodic horizons. By for-
mulating fairness as an optimization problem with hard fairness constraints and
soft intervention costs, we developed shields that can correct biased decision-
making processes while minimizing unnecessary alterations.

Transparency and accountability remain crucial for AI systems, particularly
those operating in high-stakes environments. Our proposed framework for mea-
suring intentional behaviour in reinforcement learning agents provides a novel
approach to evaluating AI decision-making processes. By quantifying agency
and intention quotient, we offer a methodology that aids in both explainability
and accountability, enabling better assessments of AI responsibility in cases of
failure or harm.

Looking ahead, the intersection of neurosymbolic AI, reinforcement learning
safety, and algorithmic fairness presents exciting opportunities to further ad-
vance the field. Additionally, as regulatory landscapes evolve, the need for
robust and interpretable AI systems will only grow, reinforcing the importance
of the work presented in this thesis.

In conclusion, responsible deployment of AI systems is a multifaceted challenge
that requires a combination of theoretical insights and practical implementa-
tions. By leveraging formal methods, we take a step towards AI systems that
not only perform effectively but also uphold critical societal values. This thesis
contributes to this broader goal, laying the groundwork for future advancements
in trustworthy AI.

166 CHAPTER 8. CONCLUSION

List of Publications

Publications the thesis is based on

[CC+23a] Filip Cano Córdoba, Samuel Judson, Timos Antonopou-
los, Katrine Bjørner, Nicholas Shoemaker, Scott J Shapiro, Ruzica
Piskac, and Bettina Könighofer. “Analyzing Intentional Behavior in Au-
tonomous Agents under Uncertainty”. In: Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI). ijcai.org, 2023, pp. 372–381.

[CC+23b] Filip Cano Córdoba, Alexander Palmisano,Martin Fränzle,
Roderick Bloem, and Bettina Könighofer. “Safety Shielding under De-
layed Observation”. In: Proceedings of the International Conference on Auto-
mated Planning and Scheduling (ICAPS) 33.1 (2023), pp. 80–85.

[Can+25a] Filip Cano, Thomas A. Henzinger, Bettina Könighofer,
Konstantin Kueffner, andKaushik Mallik. “Fairness Shields: Safeguard-
ing against Biased Decision Makers”. In: Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI). AAAI Press, 2025.

Other peer-reviewed publications

[Tap+22] Martin Tappler, Filip Cano Córdoba, Bernhard K. Aich-
ernig, and Bettina Könighofer. “Search-Based Testing of Reinforcement
Learning”. In: Proceedings of the International Joint Conference of Artificial
Intelligence (IJCAI). ijcai.org, 2022, pp. 503–510.

[Bjø+23] Katrine Bjørner, Samuel Judson, Filip Cano, Drew Gold-
man, Nick Shoemaker, Ruzica Piskac, and Bettina Könighofer. “For-
mal XAI via Syntax-Guided Synthesis”. In: Bridging the Gap Between AI and
Reality (AISoLA). 2023.

[Ben+23] Saddek Bensalem, Panagiotis Katsaros,Dejan Nickovic, Brian
Hsuan-Cheng Liao, Ricardo Ruiz Nolasco, Mohamed Abd El Salam
Ahmed, Tewodros A. Beyene, Filip Cano, Antoine Delacourt, Hasan
Esen, Alexandru Forrai, Weicheng He, Xiaowei Huang, Nikolaos
Kekatos, Bettina Könighofer,Michael Paulitsch,Doron Peled,Matthieu
Ponchant, Lev Sorokin, Son Tong, and Changshun Wu. “Continu-
ous Engineering for Trustworthy Learning-Enabled Autonomous Systems”. In:
Bridging the Gap Between AI and Reality (AISoLA). 2023.

167

168 LIST OF PUBLICATIONS

[Jud+24a] Samuel Judson,Matthew Elacqua, Filip Cano, Timos Antonopou-
los, Bettina Könighofer, Scott J. Shapiro, and Ruzica Piskac. “’Put
the Car on the Stand’: SMT-based Oracles for Investigating Decisions”. In:
Proceedings of the Symposium on Computer Science and Law (CSLAW). ACM,
2024, pp. 73–85.

[Jud+24b] Samuel Judson,Matthew Elacqua, Filip Cano, Timos Antonopou-
los, Bettina Könighofer, Scott J. Shapiro, and Ruzica Piskac. “soid:
A Tool for Legal Accountability for Automated Decision Making”. In: Proceed-
ings of the International Conference on Computer Aided Verification (CAV).
Lecture Notes on Computer Science. Springer, 2024, pp. 233–246.

[Can+24a] Filip Cano, Thomas A. Henzinger, Bettina Könighofer,
Konstantin Kueffner, and Kaushik Mallik. “Abstraction-Based Decision
Making for Statistical Properties”. In: International Conference on Formal
Structures for Computation and Deduction (FSCD). vol. 299. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2024, 2:1–2:17.

Preprints and technical reports

[Can+25b] Filip Cano, Fabio Rutter, Bernhard Ramsauer,Oliver Hof-
mann, and Bettina Könighofer. “Building Ensembles of Molecules via Deep
Reinforcement Learning”. In: Preprint pending review (2025).

[K+̈24]Bettina Könighofer, Joshua A. Kroll, Ruzica Piskac,Michael
Veale, and Filip Cano Córdoba. “Accountable Software Systems (Dagstuhl
Seminar 23411)”. In: Dagstuhl Reports 13.10 (2024), pp. 24–49.

[Des+24] Jyotirmoy Deshmukh, Bettina Könighofer, Dejan Ničković,
and Filip Cano. “Safety Assurance for Autonomous Mobility (Dagstuhl Sem-
inar 24071)”. In: Dagstuhl Reports 14.2 (2024), pp. 95–119.

Bibliography

If I have seen further it is by standing on the shoulders of Giants.
a — Isaac Newton

[Ach+17] Joshua Achiam,David Held,Aviv Tamar, andPieter Abbeel.
“Constrained policy optimization”. In: Proceedings of the Inter-
national Conference on Machine Learning (ICML). PMLR. 2017,
pp. 22–31.

[AD21] Saurabh Arora and Prashant Doshi. “A survey of inverse re-
inforcement learning: Challenges, methods and progress”. In: Ar-
tificial Intelligence 297 (2021), p. 103500.

[Aga+18] Alekh Agarwal,Alina Beygelzimer,Miroslav Dud́ık, John
Langford, andHannaWallach. “A reductions approach to fair
classification”. In: Proceedings of the International Conference on
Machine Learning (ICML). PMLR. 2018, pp. 60–69.

[AKK19] Stefan Ankirchner, Maike Klein, and Thomas Kruse. “A
verification theorem for optimal stopping problems with expec-
tation constraints”. In: Applied Mathematics & Optimization 79
(2019), pp. 145–177.

[Ala+24] Parand A. Alamdari, Toryn Q. Klassen, Elliot Creager,
and Sheila A.Mcilraith. “Remembering to Be Fair: Non-Markovian
Fairness in Sequential Decision Making”. In: Proceedings of the In-
ternational Conference on Machine Learning (ICML). Vol. 235.
PMLR, 2024, pp. 906–920.

[Alb+17] Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and
Aditya V Nori. “Fairsquare: probabilistic verification of program
fairness”. In: Proceedings of the ACM on Programming Languages
(OOPSLA) 1 (2017), pp. 1–30.

[Alb21] Aws Albarghouthi. Introduction to Neural Network Verification.
2021. arXiv: 2109.10317.

[Ale+17] Gadi Aleksandrowicz,Hana Chockler, Joseph Y. Halpern,
andAlexander Ivrii. “The computational complexity of structure-
based causality”. In: Journal of Artificial Intelligence Research 58
(2017), pp. 431–451.

169

https://arxiv.org/abs/2109.10317

170 BIBLIOGRAPHY

[Ali+19] Muhammad Ali, Piotr Sapiezynski, Miranda Bogen, Alek-
sandra Korolova, Alan Mislove, and Aaron Rieke. “Dis-
crimination through optimization: How Facebook’s Ad delivery can
lead to biased outcomes”. In: Proceedings of the ACM on Human-
Computer Interaction (HCI) 3.CSCW (2019), pp. 1–30.

[Als+18] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers,
Bettina Könighofer, Scott Niekum, andUfuk Topcu. “Safe
Reinforcement Learning via Shielding”. In: Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI). AAAI Press, 2018,
pp. 2669–2678.

[Alt21] Eitan Altman. Constrained Markov Decision Processes. Rout-
ledge, 2021.

[Ame+19] Aaron D. Ames, Samuel Coogan,Magnus Egerstedt,Gen-
naro Notomista, Koushil Sreenath, and Paulo Tabuada.
“Control Barrier Functions: Theory and Applications”. In: Pro-
ceedings of the European Control Conference (ECC). IEEE, 2019,
pp. 3420–3431.

[Ans57] Gertrude Elizabeth Margaret Anscombe. Intention. Har-
vard University Press, 1957.

[AP18] Gul Agha and Karl Palmskog. “A Survey of Statistical Model
Checking”. In: ACM Transactions on Modeling and Computer Sim-
ulation 28.1 (2018), pp. 1–39.

[Ash+20] Pranav Ashok,Mathias Jackermeier, Pushpak Jagtap, Jan
Křet́ınský, Maximilian Weininger, and Majid Zamani. “dt-
Control: decision tree learning algorithms for controller represen-
tation”. In: Proceedings of the International Conference on Hybrid
Systems: Computation and Control (HSCC). ACM, 2020, 17:1–
17:7.

[AV19] Aws Albarghouthi and Samuel Vinitsky. “Fairness-aware pro-
gramming”. In: Proceedings of the Conference on Fairness, Ac-
countability, and Transparency (FAccT). 2019, pp. 211–219.

[Bai+14] Christel Baier, Joachim Klein, Sascha Klüppelholz, and
SteffenMärcker. “Computing Conditional Probabilities in Marko-
vian Models Efficiently”. In: Proceedings of the Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS).
Springer Berlin Heidelberg, 2014, pp. 515–530.

[Bai+21a] Tao Bai, Jinqi Luo, Jun Zhao, Bihan Wen, and Qian Wang.
“Recent Advances in Adversarial Training for Adversarial Robust-
ness”. In: Proceedings of the International Joint Conference on Ar-
tificial Intelligence (IJCAI). Survey Track. ijcai.org, 2021, pp. 4312–
4321.

[Bai+21b] Yunjun Bai,Ting Gan, Li Jiao, Bican Xia, Bai Xue, andNai-
jun Zhan. “Switching controller synthesis for delay hybrid systems
under perturbations”. In: Proceedings of the International Confer-
ence on Hybrid Systems: Computation and Control (HSCC). ACM,
2021, 3:1–3:11.

BIBLIOGRAPHY 171

[Bai+21c] Christel Baier, Clemens Dubslaff, Florian Funke, Simon
Jantsch, Rupak Majumdar, Jakob Piribauer, and Robin
Ziemek. “From Verification to Causality-Based Explications”. In:
Proceedings of the International Colloquium on Automata, Lan-
guages, and Programming (ICALP). Vol. 198. Leibniz International
Proceedings in Informatics (LIPIcs). Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2021, 1:1–1:20.

[Bal92] Silvano Balemi. “Communication delays in connections of in-
put/output discrete event processes”. In: Proceedings of the Con-
ference on Decision and Control (CDC). 1992, pp. 3374–3379.

[Ban+18] Elena Bandini,Andrea Cosso,Marco Fuhrman, andHuyên
Pham. “Backward SDEs for optimal control of partially observed
path-dependent stochastic systems: a control randomization ap-
proach”. In: The Annals of Applied Probability 28.3 (2018), pp. 1634–
1678.

[Bar+19] Mathieu Barbier, Alessandro Renzaglia, Jean Quilbeuf,
Lukas Rummelhard, Anshul Paigwar, Christian Laugier,
Axel Legay, Javier Ibañez-Guzmán, and Olivier Simonin.
“Validation of Perception and Decision-Making Systems for Au-
tonomous Driving via Statistical Model Checking”. In: Proceed-
ings of the IEEE Intelligent Vehicles Symposium (IV). IEEE, 2019,
pp. 252–259.

[BCH22] Sander Beckers, Hana Chockler, and Joseph Y. Halpern.
“A Causal Analysis of Harm”. In: Advances in Neural Information
Processing Systems (NeurIPS). Vol. 35. Curran Associates, Inc.,
2022, pp. 2365–2376.

[BCH23] Sander Beckers, Hana Chockler, and Joseph Y. Halpern.
“Quantifying Harm”. In: Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI). ijcai.org, 2023, pp. 363–
371.

[Bee+24] Maurice H ter Beek, Rod Chapman, Rance Cleaveland,
Hubert Garavel,RongGu, Ivo ter Horst, Jeroen JAKeiren,
Thierry Lecomte,Michael Leuschel,Kristin Yvonne Rozier,
et al. “Formal methods in industry”. In: Formal Aspects of Com-
puting 37.1 (2024), pp. 1–38.

[Beh+07] Gerd Behrmann, Agnès Cougnard, Alexandre David, Em-
manuel Fleury, Kim Guldstrand Larsen, and Didier Lime.
“UPPAAL-Tiga: time for playing games!” In: Proceedings of the
International Conference on Computer Aided Verification (CAV).
Vol. 4590. Lecture Notes in Computer Science. Springer, 2007,
pp. 121–125.

[Ben+23] Saddek Bensalem, Panagiotis Katsaros, Dejan Nickovic,
Brian Hsuan-Cheng Liao,Ricardo Ruiz Nolasco,Mohamed
Abd El Salam Ahmed, Tewodros A. Beyene, Filip Cano,
Antoine Delacourt, Hasan Esen, Alexandru Forrai, We-
icheng He, Xiaowei Huang, Nikolaos Kekatos, Bettina
Könighofer, Michael Paulitsch, Doron Peled, Matthieu

172 BIBLIOGRAPHY

Ponchant, Lev Sorokin, Son Tong, and Changshun Wu.
“Continuous Engineering for Trustworthy Learning-Enabled Au-
tonomous Systems”. In: Bridging the Gap Between AI and Reality
(AISoLA). 2023.

[Ber+08] Dietmar Berwanger,Krishnendu Chatterjee, Laurent Doyen,
Thomas A. Henzinger, and Sangram Raje. “Strategy Con-
struction for Parity Games with Imperfect Information”. In: Pro-
ceedings of the International Conference on Concurrency Theory
(CONCUR). Vol. 5201. Lecture Notes in Computer Science. 2008,
pp. 325–339.

[Ber+17] Richard Berk, Hoda Heidari, Shahin Jabbari, Matthew
Joseph, Michael Kearns, Jamie Morgenstern, Seth Neel,
and Aaron Roth. A convex framework for fair regression. 2017.
arXiv: 1706.02409.

[Ber+21] Richard Berk,Hoda Heidari, Shahin Jabbari,Michael Kearns,
and Aaron Roth. “Fairness in criminal justice risk assessments:
The state of the art”. In: Sociological Methods & Research 50.1
(2021), pp. 3–44.

[BFM21a] Christel Baier, Florian Funke, and Rupak Majumdar. “A
Game-Theoretic Account of Responsibility Allocation”. In: Pro-
ceedings of the International Joint Conference on Artificial Intel-
ligence (IJCAI). ijcai.org, 2021, pp. 1773–1779.

[BFM21b] Christel Baier, Florian Funke, andRupakMajumdar. “Re-
sponsibility Attribution in Parameterized Markovian Models”. In:
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).
AAAI Press, 2021, pp. 11734–11743.

[BH11] Matthew Braham andMartin van Hees. “Responsibility voids”.
In: The Philosophical Quarterly 61.242 (2011), pp. 6–15.

[BH12] Matthew Braham and Martin van Hees. “An Anatomy of
Moral Responsibility”. In: Mind 121.483 (2012), pp. 601–634.

[BHN23] Solon Barocas, Moritz Hardt, and Arvind Narayanan.
Fairness and Machine Learning Limitations and Opportunities.
MIT Press, 2023.

[Big+21] Ariyan Bighashdel, Panagiotis Meletis, Pavol Jancura,
and Gijs Dubbelman. “Deep adaptive multi-intention inverse re-
inforcement learning”. In: Proceedings of the European Conference
on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML PKDD). Springer, 2021, pp. 206–
221.

[BIP88] Michael E. Bratman, David J. Israel, and Martha E. Pol-
lack. “Plans and resource-bounded practical reasoning”. In: Com-
putational Intelligence 4 (1988), pp. 349–355.

[BJD23] Ariyan Bighashdel, Pavol Jancura, and Gijs Dubbelman.
“Model-free inverse reinforcement learning with multi-intention,
unlabeled, and overlapping demonstrations”. In: Machine Learn-
ing 112.7 (2023), pp. 2263–2296.

https://arxiv.org/abs/1706.02409

BIBLIOGRAPHY 173

[Bjø+23] Katrine Bjørner, Samuel Judson, Filip Cano,Drew Gold-
man,Nick Shoemaker,Ruzica Piskac, andBettina Könighofer.
“Formal XAI via Syntax-Guided Synthesis”. In: Bridging the Gap
Between AI and Reality (AISoLA). 2023.

[BK08] Christel Baier and Joost-Pieter Katoen. “Principles of Model
Checking”. In: MIT Press, 2008.

[BK96] Barry Becker and Ronny Kohavi. Adult. UCI Machine Learn-
ing Repository. DOI: https://doi.org/10.24432/C5XW20. 1996.

[Blo+15] Roderick Bloem,Bettina Könighofer,Robert Könighofer,
and Chao Wang. “Shield Synthesis: - Runtime Enforcement for
Reactive Systems”. In: Proceedings of the International Conference
on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS). Springer, 2015, pp. 533–548.

[BLS24] Asger Horn Brorholt,Kim Guldstrand Larsen, andChris-
tian Schilling. Compositional Shielding and Reinforcement Learn-
ing for Multi-Agent Systems. 2024. arXiv: 2410.10460.

[Blu+18] Avrim Blum, Suriya Gunasekar, Thodoris Lykouris, and
Nati Srebro. “On preserving non-discrimination when combin-
ing expert advice”. In: Advances in Neural Information Processing
Systems (NeurIPS) 31 (2018).

[Bou+19] Maxime Bouton, Jesper Karlsson,Alireza Nakhaei,Kikuo
Fujimura, Mykel J. Kochenderfer, and Jana Tumova. Re-
inforcement Learning with Probabilistic Guarantees for Autonomous
Driving. 2019. arXiv: 1904.07189.

[Bra87] Michael E. Bratman. Intention, Plans, and Practical Reason.
Harvard University Press, 1987.

[Bra99] Michael E. Bratman. Faces of Intention: Selected Essays on In-
tention and Agency. Cambridge Studies in Philosophy. Cambridge
University Press, 1999.

[Bud+21] Carlos E. Budde, Arnd Hartmanns, Michaela Klauck,
Jan Křet́ınskỳ,David Parker,TimQuatmann,Andrea Tur-
rini, and Zhen Zhang. “On Correctness, Precision, and Perfor-
mance in Quantitative Verification”. In: Proceedings of the Interna-
tional Symposium on Leveraging Applications of Formal Methods
(ISoLA). Springer, 2021, pp. 216–241.

[But01] Giorgio Buttazzo. “Artificial consciousness: Utopia or real pos-
sibility?” In: Computer 34.7 (2001), pp. 24–30.

[BY24] Erhan Bayraktar and Song Yao. “Optimal stopping with ex-
pectation constraints”. In: The Annals of Applied Probability 34.1B
(2024), pp. 917–959.

[BZSL19] Osbert Bastani, Xin Zhang, and Armando Solar-Lezama.
“Probabilistic verification of fairness properties via concentration”.
In: Proceedings of the ACM on Programming Languages (OOP-
SLA) 3 (2019), pp. 1–27.

https://arxiv.org/abs/2410.10460
https://arxiv.org/abs/1904.07189

174 BIBLIOGRAPHY

[Can+24a] Filip Cano, Thomas A. Henzinger, Bettina Könighofer,
Konstantin Kueffner, and Kaushik Mallik. “Abstraction-
Based Decision Making for Statistical Properties”. In: Interna-
tional Conference on Formal Structures for Computation and De-
duction (FSCD). Vol. 299. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2024, 2:1–2:17.

[Can+24b] Filip Cano, Thomas A. Henzinger, Bettina Könighofer,
Konstantin Kueffner, andKaushik Mallik. Fairness Shields:
Safeguarding against Biased Decision Makers (extended version).
2024. arXiv: 2412.11994.

[Can+25a] Filip Cano, Thomas A. Henzinger, Bettina Könighofer,
Konstantin Kueffner, andKaushikMallik. “Fairness Shields:
Safeguarding against Biased Decision Makers”. In: Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI). AAAI Press,
2025.

[Can+25b] Filip Cano, Fabio Rutter, Bernhard Ramsauer, Oliver
Hofmann, and Bettina Könighofer. “Building Ensembles of
Molecules via Deep Reinforcement Learning”. In: Preprint pending
review (2025).

[Car+23] Steven Carr, Nils Jansen, Sebastian Junges, and Ufuk
Topcu. “Safe reinforcement learning via shielding under partial
observability”. In: AAAI Press, 2023. isbn: 978-1-57735-880-0.

[CBG25] Edwin Hamel-De le Court, Francesco Belardinelli, and
Alexander W. Goodall. “Probabilistic Shielding for Safe Re-
inforcement Learning”. In: Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI). 2025.

[CC+23a] Filip Cano Córdoba, Samuel Judson, Timos Antonopou-
los,Katrine Bjørner,Nicholas Shoemaker, Scott J Shapiro,
Ruzica Piskac, and Bettina Könighofer. “Analyzing Inten-
tional Behavior in Autonomous Agents under Uncertainty”. In:
Proceedings of the International Joint Conference on Artificial In-
telligence (IJCAI). ijcai.org, 2023, pp. 372–381.

[CC+23b] Filip Cano Córdoba,Alexander Palmisano,Martin Fränzle,
Roderick Bloem, and Bettina Könighofer. “Safety Shielding
under Delayed Observation”. In: Proceedings of the International
Conference on Automated Planning and Scheduling (ICAPS) 33.1
(2023), pp. 80–85.

[CD+17] Sam Corbett-Davies, Emma Pierson, Avi Feller, Sharad
Goel, and Aziz Huq. “Algorithmic decision making and the cost
of fairness”. In: Proceedings of the International Conference on
Knowledge Discovery and Data Mining (KDD). ACM, 2017, pp. 797–
806.

[CH04] Hana Chockler and Joseph Y. Halpern. “Responsibility and
Blame: A Structural-Model Approach”. In: Journal of Artificial
Intelligence Research 22 (2004), pp. 93–115.

[CH20] Simon Caton and Christian Haas. “Fairness in machine learn-
ing: A survey”. In: ACM Computing Surveys (2020).

https://arxiv.org/abs/2412.11994

BIBLIOGRAPHY 175

[Cha+23] Krishnendu Chatterjee, Thomas A Henzinger, Mathias
Lechner, and Dorde Žikelić. “A learner-verifier framework for
neural network controllers and certificates of stochastic systems”.
In: Proceedings of the International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS).
Springer. 2023, pp. 3–25.

[Che+16] M. Chen, M. Fränzle, Y. Li, P. Mosaad, and N. Zhan. “Val-
idated Simulation-Based Verification of Delayed Differential Dy-
namics”. In: Proceedings of the International Symposium on For-
mal Methods (FM). Vol. 9995. Lecture Notes in Computer Science.
2016, pp. 137–154.

[Che+18] Mingshuai Chen,Martin Fränzle,Yangjia Li, Peter Nazier
Mosaad, and Naijun Zhan. “What’s to Come is Still Unsure -
Synthesizing Controllers Resilient to Delayed Interaction”. In: Pro-
ceedings of the International Symposium on Automated Technology
for Verification and Analysis (ATVA). Springer, 2018, pp. 56–74.

[Che+19] Richard Cheng, Gábor Orosz, Richard M. Murray, and
Joel W. Burdick. “End-to-End Safe Reinforcement Learning
through Barrier Functions for Safety-Critical Continuous Control
Tasks”. In: Proceedings of the AAAI Conference on Artificial In-
telligence (AAAI) 33.01 (2019), pp. 3387–3395.

[Che+20] Yifang Chen, Alex Cuellar, Haipeng Luo, Jignesh Modi,
Heramb Nemlekar, and Stefanos Nikolaidis. “Fair contex-
tual multi-armed bandits: Theory and experiments”. In: Proceed-
ings of the Conference on Uncertainty in Artificial Intelligence
(UAI). PMLR. 2020, pp. 181–190.

[Che+21] Mingshuai Chen, Martin Fränzle, Yangjia Li, Peter N.
Mosaad, and Naijun Zhan. “Indecision and delays are the par-
ents of failure—taming them algorithmically by synthesizing delay-
resilient control”. In: Acta Informatica 58.5 (2021), 497–528.

[CL90] Philip R. Cohen and Hector J. Levesque. “Intention is choice
with commitment”. In: Artificial Intelligence 42.2 (1990), pp. 213–
261.

[CM13] Antonio Chella andRiccardoManzotti.Artificial conscious-
ness. Andrews UK Limited, 2013.

[CM21] Ching-Yao Chuang and Youssef Mroueh. “Fair Mixup: Fair-
ness via Interpolation”. In: Proceedings of the International Confer-
ence on Learning Representations (ICLR). OpenReview.net, 2021.

[Com19] European Commission. Ethics guidelines for trustworthy AI. Pub-
lications Office, 2019. doi: doi/10.2759/346720.

[Cre+07] Tanya L. Crenshaw, Elsa L. Gunter, Craig L. Robinson,
Lui Sha, and P. R. Kumar. “The Simplex Reference Model: Lim-
iting Fault-Propagation Due to Unreliable Components in Cyber-
Physical System Architectures”. In: Proceedings of the Interna-
tional Real-Time Systems Symposium (RTSS). IEEE, 2007, pp. 400–
412.

https://doi.org/doi/10.2759/346720

176 BIBLIOGRAPHY

[CS02] Kevin M Clermont and Emily Sherwin. “A comparative view
of standards of proof”. In: The American Journal of Comparative
Law 50 (2002), p. 243.

[CŽ13] Toon Calders and Indrė Žliobaitė. “Why unbiased compu-
tational processes can lead to discriminative decision procedures”.
In: Discrimination and Privacy in the Information Society: Data
mining and profiling in large databases (2013), pp. 43–57.

[D’A+20] Alexander D’Amour, Hansa Srinivasan, James Atwood,
Pallavi Baljekar, David Sculley, and Yoni Halpern. “Fair-
ness is not static: deeper understanding of long term fairness via
simulation studies”. In: Proceedings of the Conference on Fairness,
Accountability, and Transparency (FAccT). 2020, pp. 525–534.

[Dat+15] AnupamDatta,Deepak Garg,Dilsun Kaynar,Divya Sharma,
andArunesh Sinha. “Program Actions as Actual Causes: A Build-
ing Block for Accountability”. In: Proceedings of the Computer Se-
curity Foundations Symposium (CSF). IEEE. 2015, pp. 261–275.

[Dav+13] Alexandre David,Kim G. Larsen,MariusMikucionis,Omer
Nguena-Timo, andAntoine Rollet. “Remote Testing of Timed
Specifications”. In: Proceedings of the International Conference on
Testing Software and Systems (ICTSS). Vol. 8254. Lecture Notes
in Computer Science. Springer, 2013, pp. 65–81.

[Dav63] Donald Davidson. “Actions, Reasons, and Causes”. In: The Jour-
nal of Philosophy 60.23 (1963), pp. 685–700.

[Deb19] Jan Debille. Good digital twins don’t lie. Visited on 31/01/2025.
2019. url: https://blogs.sw.siemens.com/simcenter/good-
digital-twins-dont-lie/.

[Des+24] Jyotirmoy Deshmukh,Bettina Könighofer,Dejan Ničković,
and Filip Cano. “Safety Assurance for Autonomous Mobility (Dagstuhl
Seminar 24071)”. In: Dagstuhl Reports 14.2 (2024), pp. 95–119.

[DF18] Julia Dressel and Hany Farid. “The accuracy, fairness, and
limits of predicting recidivism”. In: Science advances 4.1 (2018),
eaao5580.

[DG+19] Giuseppe De Giacomo, Luca Iocchi, Marco Favorito, and
Fabio Patrizi. “Foundations for restraining bolts: Reinforcement
learning with LTLf/LDLf restraining specifications”. In: Proceed-
ings of the International Conference on Automated Planning and
Scheduling (ICAPS). Vol. 29. AAAI Press, 2019, pp. 128–136.

[DG+20] Giuseppe De Giacomo, Luca Iocchi, Marco Favorito, and
Fabio Patrizi. “Restraining bolts for reinforcement learning agents”.
In: Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI). Vol. 34. 09. 2020, pp. 13659–13662.

[DHJW07] Wiebe van Der Hoek, Wojciech Jamroga, and Michael
Wooldridge. “Towards a theory of intention revision”. In: Syn-
these 155 (2007), pp. 265–290.

[DI19] Cynthia Dwork andChristina Ilvento. “Fairness Under Com-
position”. In: 2019.

https://blogs.sw.siemens.com/simcenter/good-digital-twins-dont-lie/
https://blogs.sw.siemens.com/simcenter/good-digital-twins-dont-lie/

BIBLIOGRAPHY 177

[DLH19] Mengnan Du, Ninghao Liu, and Xia Hu. “Techniques for In-
terpretable Machine Learning”. In: Communications of the ACM
63.1 (2019), pp. 68–77.

[Dos+17] Alexey Dosovitskiy, German Ros, Felipe Codevilla, An-
tonio Lopez, and Vladlen Koltun. “CARLA: An Open Urban
Driving Simulator”. In: Proceedings of the Conference on Robot
Learning (CoRL). PMLR, 2017.

[DSML20] Lavindra De Silva, Felipe Rech Meneguzzi, and Brian Lo-
gan. “BDI agent architectures: A survey”. In: Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI).
ijcai.org, 2020, pp. 4914–4921.

[Dur19] Rick Durrett. Probability: theory and examples. Vol. 49. Cam-
bridge university press, 2019.

[DVK17] Finale Doshi-Velez andBeen Kim. Towards a Rigorous Science
of Interpretable Machine Learning. 2017. arXiv: 1702.08608.

[Dwo+12] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer
Reingold, and Richard Zemel. “Fairness through awareness”.
In: Proceedings of the 3rd Innovations in Theoretical Computer
Science Conference (ITCS). ACM, 2012, 214–226.

[Els+21] Ingy Elsayed-Aly, Suda Bharadwaj, Christopher Amato,
Rüdiger Ehlers, Ufuk Topcu, and Lu Feng. “Safe Multi-
Agent Reinforcement Learning via Shielding”. In: Proceedings of
the International Conference on Autonomous Agents and Multia-
gent Systems (AAMAS). ACM, 2021, pp. 483–491.

[Elz+19] Hadi Elzayn, Shahin Jabbari, Christopher Jung, Michael
Kearns, Seth Neel, Aaron Roth, and Zachary Schutzman.
“Fair algorithms for learning in allocation problems”. In: Proceed-
ings of the Conference on Fairness, Accountability, and Trans-
parency (FAccT). 2019, pp. 170–179.

[Eur21] European Commission. Proposal for a Regulation of the Eu-
ropean Parliament and of the Council Laying Down Harmonised
Rules on Artificial Intelligence (Artificial Intelligence Act) and
Amending Certain Union Legislative Acts. https://eur- lex.
europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206.
Accessed: 2024-08-01. 2021.

[Fel+15] Michael Feldman, Sorelle A Friedler, JohnMoeller,Car-
los Scheidegger, and Suresh Venkatasubramanian. “Certi-
fying and removing disparate impact”. In: Proceedings of the In-
ternational Conference on Knowledge Discovery and Data Mining
(KDD). 2015, pp. 259–268.

[Fer03] Norman Francis Ferns. “Metrics for Markov Decision Processes”.
In: (2003).

[Fer+06] Norm Ferns, Pablo Samuel Castro, Doina Precup, and
Prakash Panangaden. “Methods for Computing State Similar-
ity in Markov Decision Processes”. In: Proceedings Conference in
Uncertainty in Artificial Intelligence (UAI). 2006.

https://arxiv.org/abs/1702.08608
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206

178 BIBLIOGRAPHY

[Fis+21] Michael Fisher,VivianaMascardi,Kristin Yvonne Rozier,
Bernd-Holger Schlingloff, Michael Winikoff, and Neil
Yorke-Smith. “Towards a framework for certification of reliable
autonomous systems”. In: Autonomous Agents and Multi-Agent
Systems 35 (2021), pp. 1–65.

[FJW11] Joan Feigenbaum,Aaron D. Jaggard, andRebecca N.Wright.
“Towards a Formal Model of Accountability”. In: Proceedings of the
New Security Paradigms Workshop (NSPW). 2011, pp. 45–56.

[FJW20] Joan Feigenbaum,Aaron D. Jaggard, andRebecca N.Wright.
“Accountability in Computing: Concepts and Mechanisms”. In:
Foundations and Trends in Privacy and Security 2.4 (2020), pp. 247–
399.

[FP19] Yliès Falcone and Srinivas Pinisetty. “On the Runtime En-
forcement of Timed Properties”. In: Proceedings of the Interna-
tional Conference on Runtime Verification (RV). Vol. 11757. Lec-
ture Notes on Computer Science. Springer, 2019, pp. 48–69.

[GBA21] Ather Gattami, Qinbo Bai, and Vaneet Aggarwal. “Rein-
forcement Learning for Constrained Markov Decision Processes”.
In: Proceedings of the International Conference on Artificial Intel-
ligence and Statistics (AISTATS). PMLR. 2021, pp. 2656–2664.

[GBM21] Bishwamittra Ghosh,Debabrota Basu, andKuldeep SMeel.
“Justicia: A stochastic SAT approach to formally verify fairness”.
In: Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI). Vol. 35. 2021, pp. 7554–7563.

[GC19] Ben Green and Yiling Chen. “The principles and limits of
algorithm-in-the-loop decision making”. In: Proceedings of the ACM
on Human-Computer Interaction (HCI) 3.CSCW (2019), pp. 1–24.

[GCC06] Peter Z. Grossman,Reed W. Cearley, andDaniel H. Cole.
“Uncertainty, Insurance and the Learned Hand Formula”. In: Law,
Probability and Risk 5.1 (2006), pp. 1–18.

[Ge+21] Yingqiang Ge, Shuchang Liu, Ruoyuan Gao, Yikun Xian,
Yunqi Li, Xiangyu Zhao, Changhua Pei, Fei Sun, Junfeng
Ge, Wenwu Ou, et al. “Towards long-term fairness in recommen-
dation”. In: Proceedings of the International Conference on Web
Search and Data Mining (WSDM). ACM, 2021, pp. 445–453.

[Geo+98] Michael Georgeff,Barney Pell,Martha Pollack,Milind
Tambe, and Michael Wooldridge. “The belief-desire-intention
model of agency”. In: Proceedings of the International Workshop on
Agent Theories, Architectures, and Languages (ATAL). Springer.
1998, pp. 1–10.

[Gia+21] Mirco Giacobbe,Mohammadhosein Hasanbeig,Daniel Kroen-
ing, and Hjalmar Wijk. “Shielding Atari Games with Bounded
Prescience”. In: Proceedings of the International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS). ACM, 2021,
pp. 1507–1509.

BIBLIOGRAPHY 179

[GJ91] Thomas C. Galligan Jr. “Strict Liability in Action: The Trun-
cated Learned Hand Formula”. In: Lousiana Law Review 52 (1991),
p. 323.

[GK21] Swati Gupta and Vijay Kamble. “Individual fairness in hind-
sight”. In: The Journal of Machine Learning Research 22.1 (2021),
pp. 6386–6420.

[Gor+19] Paula Gordaliza, Eustasio Del Barrio, Gamboa Fabrice,
and Jean-Michel Loubes. “Obtaining fairness using optimal trans-
port theory”. In: International Conference on Machine Learning.
PMLR. 2019, pp. 2357–2365.

[Gra+22] Riccardo Grazzi,Arya Akhavan, John I.F. Falk, Leonardo
Cella, and Massimiliano Pontil. “Group meritocratic fairness
in linear contextual bandits”. In: Advances in Neural Information
Processing Systems (NeurIPS) 35 (2022), pp. 24392–24404.

[Gro+22a] Timo P. Gros,Holger Hermanns, Jörg Hoffmann,Michaela
Klauck, Maximilian A. Köhl, and Verena Wolf. “MoGym:
Using Formal Models for Training and Verifying Decision-making
Agents”. In: Proceedings of the International Conference on Com-
puter Aided Verification (CAV). Ed. by Sharon Shoham and
Yakir Vizel. Springer International Publishing, 2022, pp. 430–
443.

[Gro+22b] Dennis Gross,Nils Jansen, Sebastian Junges, andGuillermo
A. Pérez. “COOL-MC: A Comprehensive Tool for Reinforcement
Learning and Model Checking”. In: Proceedings of the Interna-
tional Symposium on Dependable Software Engineering. Theories,
Tools, and Applications (SETTA). Vol. 13649. Lecture Notes in
Computer Science. Springer, 2022, pp. 41–49.

[GSS15] Ian J. Goodfellow, Jonathon Shlens, andChristian Szegedy.
“Explaining and Harnessing Adversarial Examples”. In: Proceed-
ings of the International Conference on Learning Representations
(ICLR). 2015.

[Gui24] Riccardo Guidotti. “Counterfactual explanations and how to
find them: literature review and benchmarking”. In: Data Mining
and Knowledge Discovery 38.5 (2024), pp. 2770–2824.

[Han+24] Xiaotian Han, Jianfeng Chi, Yu Chen, Qifan Wang, Han
Zhao, Na Zou, and Xia Hu. “FFB: A Fair Fairness Benchmark
for In-Processing Group Fairness Methods”. In: Proceedings of the
International Conference on Learning Representations (ICLR). 2024.

[Har09] John Harrison. Handbook of practical logic and automated rea-
soning. Cambridge University Press, 2009.

[He+23] Xiangkun He, Jingda Wu, Zhiyu Huang, Zhongxu Hu, Jun
Wang,Alberto Sangiovanni-Vincentelli, andChen Lv. “Fear-
Neuro-Inspired Reinforcement Learning for Safe Autonomous Driv-
ing”. In: IEEE Transactions on Pattern Analysis and Machine In-
telligence (2023), pp. 1–13.

180 BIBLIOGRAPHY

[Hen+22] Christian Hensel, Sebastian Junges, Joost-Pieter Katoen,
Tim Quatmann, and Matthias Volk. “The probabilistic model
checker Storm”. In: International Journal on Software Tools for
Technology Transfer 24.4 (2022), pp. 589–610.

[Hen+23a] Thomas A. Henzinger, Mahyar Karimi, Konstantin Ku-
effner, and Kaushik Mallik. “Monitoring Algorithmic Fair-
ness”. In: Proceedings of the International Conference on Computer
Aided Verification (CAV). Springer-Verlag, 2023, 358–382.

[Hen+23b] Thomas A. Henzinger, Mahyar Karimi, Konstantin Ku-
effner, and Kaushik Mallik. “Runtime Monitoring of Dynamic
Fairness Properties”. In: Proceedings of the Conference on Fair-
ness, Accountability, and Transparency (FAccT). ACM, 2023, pp. 604–
614.

[Her+17] Andreas Herzig, Emiliano Lorini, Laurent Perrussel, and
Zhanhao Xiao. “BDI logics for BDI architectures: old problems,
new perspectives”. In: KI-Künstliche Intelligenz 31 (2017), pp. 73–
83.

[HFM17] Zhenqi Huang, Chuchu Fan, and Sayan Mitra. “Bounded in-
variant verification for time-delayed nonlinear networked dynam-
ical systems”. In: Nonlinear Analysis: Hybrid Systems 23 (2017),
pp. 211–229.

[HH14] Arnd Hartmanns andHolger Hermanns. “The Modest Toolset:
An Integrated Environment for Quantitative Modelling and Ver-
ification”. In: Proceedings of the International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS).
Vol. 8413. Lecture Notes in Computer Science. Springer, 2014,
pp. 593–598.

[HKM23] Thomas A. Henzinger, Konstantin Kueffner, and Kaushik
Mallik. “Monitoring algorithmic fairness under partial observa-
tions”. In: Proceedings of the International Conference on Runtime
Verification (RV). Springer, 2023, pp. 291–311.

[HKW18] Joseph Y. Halpern andMax Kleiman-Weiner. “Towards For-
mal Definitions of Blameworthiness, Intention, and Moral Respon-
sibility”. In: Proceedings of the AAAI Conference on Artificial In-
telligence (AAAI). AAAI Press, 2018, pp. 1853–1860.

[HL04] Andreas Herzig and Dominique Longin. “C&L Intention Re-
visited”. In: vol. 4. 2004, pp. 527–535.

[HL72] Frederick A. Hosch and Lawrence H. Landweber. “Finite
Delay Solutions for Sequential Conditions”. In: Proceedings of the
International Colloquium on Automata, Languages, and Program-
ming (ICALP). North-Holland, Amsterdam, 1972, pp. 45–60.

[Hof94] Hans Hofmann. Statlog (German Credit Data). UCI Machine
Learning Repository. DOI: https://doi.org/10.24432/C5NC77. 1994.

[HP05a] Joseph Y. Halpern and Judea Pearl. “Causes and Expla-
nations: A Structural-Model Approach. Part I: Causes”. In: The
British Journal for the Philosophy of Science 56.4 (2005), pp. 843–
887.

BIBLIOGRAPHY 181

[HP05b] Joseph Y. Halpern and Judea Pearl. “Causes and Explana-
tions: A Structural-Model Approach. Part II: Explanations”. In:
The British Journal for the Philosophy of Science 56.4 (2005),
pp. 889–911.

[HPS16] Moritz Hardt, Eric Price, and Nati Srebro. “Equality of
Opportunity in Supervised Learning”. In: Advances in Neural In-
formation Processing Systems (NeurIPS). 2016, pp. 3315–3323.

[Hus+17] Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and
Chrisina Jayne. “Imitation learning: A survey of learning meth-
ods”. In: ACM Computing Surveys 50.2 (2017), pp. 1–35.

[HW03] Wiebe Van der Hoek and Michael Wooldridge. “Towards a
logic of rational agency”. In: Logic Journal of IGPL 11.2 (2003),
pp. 135–159.

[HWL24] Pierre Haritz, David Wanke, and Thomas Liebig. “Enhanc-
ing Safety for Autonomous Agents in Partly Concealed Urban
Traffic Environments Through Representation-Based Shielding”.
In: Proceedings of the Intelligent Vehicles Symposium (IV). IEEE.
2024, pp. 1758–1763.

[HZ22] Yaowei Hu and Lu Zhang. “Achieving long-term fairness in se-
quential decision making”. In: Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI). Vol. 36. 2022, pp. 9549–9557.

[Jag+09] Radha Jagadeesan,Alan Jeffrey,Corin Pitcher, and James
Riely. “Towards a Theory of Accountability and Audit”. In: Eu-
ropean Symposium on Research in Computer Security (ESORICS).
Springer. 2009, pp. 152–167.

[Jan+20] Nils Jansen, Bettina Könighofer, Sebastian Junges, Alex
Serban, and Roderick Bloem. “Safe Reinforcement Learning
Using Probabilistic Shields (Invited Paper)”. In: Proceedings of
the International Conference on Concurrency Theory (CONCUR).
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 3:1–3:16.

[Jon+20] David Jones, Chris Snider, Aydin Nassehi, Jason Yon, and
Ben Hicks. “Characterising the Digital Twin: A systematic lit-
erature review”. In: CIRP Journal of Manufacturing Science and
Technology 29 (2020), pp. 36–52.

[Jud+24a] Samuel Judson,Matthew Elacqua, Filip Cano,Timos Antonopou-
los, Bettina Könighofer, Scott J. Shapiro, and Ruzica
Piskac. “’Put the Car on the Stand’: SMT-based Oracles for In-
vestigating Decisions”. In: Proceedings of the Symposium on Com-
puter Science and Law (CSLAW). ACM, 2024, pp. 73–85.

[Jud+24b] Samuel Judson,Matthew Elacqua, Filip Cano,Timos Antonopou-
los, Bettina Könighofer, Scott J. Shapiro, and Ruzica
Piskac. “soid: A Tool for Legal Accountability for Automated De-
cision Making”. In: Proceedings of the International Conference on
Computer Aided Verification (CAV). Lecture Notes on Computer
Science. Springer, 2024, pp. 233–246.

182 BIBLIOGRAPHY

[Jum+21] John Jumper,Richard Evans,Alexander Pritzel,TimGreen,
Michael Figurnov,Olaf Ronneberger,Kathryn Tunyasu-
vunakool, Russ Bates, Augustin Ž́ıdek, Anna Potapenko,
et al. “Highly accurate protein structure prediction with AlphaFold”.
In: Nature 596.7873 (2021), pp. 583–589.

[K+̈24] Bettina Könighofer, Joshua A. Kroll,Ruzica Piskac,Michael
Veale, and Filip Cano Córdoba. “Accountable Software Sys-
tems (Dagstuhl Seminar 23411)”. In:Dagstuhl Reports 13.10 (2024),
pp. 24–49.

[Käl22] Sigrid Källblad. “A dynamic programming approach to distribution-
constrained optimal stopping”. In: The Annals of Applied Proba-
bility 32.3 (2022), pp. 1902–1928.

[Kam+12] Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and
Jun Sakuma. “Fairness-aware classifier with prejudice remover
regularizer”. In: Proceedings of the European Conference on Ma-
chine Learning and Knowledge Discovery in Databases (ECML
PKDD). Springer. 2012, pp. 35–50.

[Kat16] Joost-Pieter Katoen. “The Probabilistic Model Checking Land-
scape”. In: Proceedings of the Symposium on Logic in Computer
Science (LICS). ACM, 2016, pp. 31–45.

[KB15] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for
Stochastic Optimization”. In: Proceedings of the International Con-
ference on Learning Representations (ICLR). 2015.

[KC12] Faisal Kamiran and Toon Calders. “Data preprocessing tech-
niques for classification without discrimination”. In: Knowledge
and Information Systems 33.1 (2012), pp. 1–33.

[Kir+16] Lauren Kirchner, Surya Mattu, Jeff Larson, and Julia
Angwin. “Machine Bias”. In: ProPublica (2016). url: https://
www.propublica.org/article/machine-bias-risk-assessments-

in-criminal-sentencing (visited on 06/04/2024).

[Kir+21] B. Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick
Mannion, Ahmad A. Al Sallab, Senthil Yogamani, and
Patrick Pérez. “Deep reinforcement learning for autonomous
driving: A survey”. In: IEEE Transactions on Intelligent Trans-
portation Systems 23.6 (2021), pp. 4909–4926.

[Kno16] Geert-Jan Alexander Knoops. Mens Rea at the International
Criminal Court. Brill Academic Publishers, 2016.

[KNP11] Marta Kwiatkowska, Gethin Norman, and David Parker.
“PRISM 4.0: Verification of Probabilistic Real-time Systems”. In:
Proceedings of the International Conference on Computer Aided
Verification (CAV). Springer, 2011, pp. 585–591.

[Koc+23] Niklas Kochdumper, Hanna Krasowski, Xiao Wang, Stan-
ley Bak, and Matthias Althoff. “Provably Safe Reinforce-
ment Learning via Action Projection using Reachability Analysis
and Polynomial Zonotopes”. In: IEEE Open Journal of Control
Systems 2 (2023), pp. 79–92.

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

BIBLIOGRAPHY 183

[Kön+17] Bettina Könighofer,Mohammed Alshiekh,Roderick Bloem,
Laura Humphrey, Robert Könighofer, Ufuk Topcu, and
Chao Wang. “Shield synthesis”. In: Formal Methods in System
Design 51.2 (2017), pp. 332–361.

[Kön19] Bettina Könighofer. “Shield synthesis: runtime enforcement
for reactive systems”. PhD thesis. Graz University of Technology,
2019.

[Kro+17] Joshua A. Kroll, Joanna Huey, Solon Barocas, Edward
W. Felten, Joel R. Reidenberg, David G. Robinson, and
Harlan Yu. “Accountable Algorithms”. In: University of Penn-
sylvania Law Review 165.3 (2017), p. 633.

[KTV10] Ralf Küsters,Tomasz Truderung, andAndreas Vogt. “Ac-
countability: Definition and Relationship to Verifiability”. In: Pro-
ceedings of Conference on Computer and Communications Security
(CCS). ACM, 2010, pp. 526–535.

[KWA20] Hanna Krasowski,XiaoWang, andMatthias Althoff. “Safe
Reinforcement Learning for Autonomous Lane Changing Using
Set-Based Prediction”. In: Proceedings of the International Con-
ference on Intelligent Transportation Systems (ITSC). 2020, pp. 1–
7.

[KZ15a] Felix Klein and Martin Zimmermann. “How Much Lookahead
is Needed to Win Infinite Games?” In: Proceedings of the Inter-
national Colloquium on Automata, Languages, and Programming
(ICALP). Vol. 9135. Lecture Notes in Computer Science. Springer,
2015, pp. 452–463.

[KZ15b] Felix Klein and Martin Zimmermann. “What are strategies
in delay games? Borel determinacy for games with lookahead”. In:
Proceedings of the Conference on Computer Science Logic (CSL).
Vol. 41. Schloss Dagstuhl-Leibniz-Zentrum für Informatik. 2015,
pp. 519–533.

[Lew13] David Lewis. Counterfactuals. Originally published in 1973. John
Wiley & Sons, 2013.

[LGZ13] David A. Lagnado, Tobias Gerstenberg, and Ro’i Zultan.
“Causal responsibility and counterfactuals”. In: Cognitive Science
37.6 (2013), pp. 1036–1073.

[Li+23] Bo Li, Peng Qi, Bo Liu, Shuai Di, Jingen Liu, Jiquan Pei,
Jinfeng Yi, and Bowen Zhou. “Trustworthy AI: From principles
to practices”. In: ACM Computing Surveys 55.9 (2023), pp. 1–46.

[Lin+24] Haohong Lin,Wenhao Ding, Zuxin Liu,Yaru Niu, Jiacheng
Zhu, Yuming Niu, and Ding Zhao. “Safety-aware causal rep-
resentation for trustworthy offline reinforcement learning in au-
tonomous driving”. In: IEEE Robotics and Automation Letters
(2024).

[Lis21] Christian List. “Group agency and artificial intelligence”. In:
Philosophy & Technology 34.4 (2021), pp. 1213–1242.

184 BIBLIOGRAPHY

[Liu+18] Lydia T Liu, Sarah Dean, Esther Rolf, Max Simchowitz,
and Moritz Hardt. “Delayed impact of fair machine learning”.
In: Proceedings of the International Conference on Machine Learn-
ing (ICML). PMLR. 2018, pp. 3150–3158.

[LL17] Scott M Lundberg and Su-In Lee. “A unified approach to in-
terpreting model predictions”. In: Advances in Neural Information
Processing Systems (NeurIPS) 30 (2017).

[LM23] Alan Lewis and Tim Miller. “Deceptive Reinforcement Learn-
ing in Model-Free Domains”. In: Proceedings of the International
Conference on Automatic Planning and Scheduling (ICAPS). AAAI
Press, 2023, pp. 587–595.

[LWW23] Yannan Li, Jingbo Wang, and Chao Wang. “Certifying the
Fairness of KNN in the Presence of Dataset Bias”. In: Proceedings
of the International Conference on Computer Aided Verification
(CAV). Springer, 2023.

[Mad+18] DavidMadras, Elliot Creager,Toniann Pitassi, andRichard
Zemel. “Learning adversarially fair and transferable representa-
tions”. In: Proceedings of the International Conference on Machine
Learning (ICML). PMLR, 2018, pp. 3384–3393.

[MAD21] AnnaMeyer,Aws Albarghouthi, and Loris D’Antoni. “Cer-
tifying Robustness to Programmable Data Bias in Decision Trees”.
In: Advances in Neural Information Processing Systems (NeurIPS)
34 (2021), pp. 26276–26288.

[MB20] Peter Menzies and Helen Beebee. “Counterfactual Theories
of Causation”. In: The Stanford Encyclopedia of Philosophy. Meta-
physics Research Lab, Stanford University, 2020.

[MCB20] Christoph Molnar, Giuseppe Casalicchio, and Bernd Bis-
chl. “Interpretable Machine Learning – A Brief History, State-of-
the-Art and Challenges”. In: Proceedings of the European Confer-
ence on Machine Learning and Knowledge Discovery in Databases
(ECML PKDD). Springer. 2020, pp. 417–431.

[MCR12] Sérgio Moro, Paulo Cortez, and Paulo Rita. Bank Market-
ing. UCI Machine Learning Repository. DOI: https://doi.org/10.24432/C5K306.
2012.

[Mel92] Alfred R. Mele. Springs of Action: Understanding Intentional
Behavior. Oxford University Press, 1992.

[Mil19] Tim Miller. “Explanation in artificial intelligence: Insights from
the social sciences”. In: Artificial Intelligence 267 (2019), pp. 1–38.

[Mni+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, An-
drei A Rusu, Joel Veness,Marc GBellemare,Alex Graves,
Martin Riedmiller, Andreas K Fidjeland, Georg Ostro-
vski, et al. “Human-level control through deep reinforcement learn-
ing”. In: Nature 518.7540 (2015), pp. 529–533.

[Moo03] Michael S. Moore. “For What Must We Pay-Causation and
Counterfactual Baselines”. In: San Diego Law Review 40 (2003),
pp. 1181–1272.

BIBLIOGRAPHY 185

[Moo09] Michael S. Moore. Causation and Responsibility: An Essay in
Law, Morals, and Metaphysics. Oxford University Press, 2009.

[Moo10] Michael S. Moore. Act and Crime: The Philosophy of Action
and its Implications for Criminal Law. Oxford University Press,
2010.

[Moo19] Michael Moore. “Causation in the Law”. In: The Stanford En-
cyclopedia of Philosophy. Ed. by Edward N. Zalta. Winter 2019.
Metaphysics Research Lab, Stanford University, 2019.

[Mot+23] Nima Motamed, Natasha Alechina, Mehdi Dastani, Dra-
gan Doder, and Brian Logan. “Probabilistic Temporal Logic
for Reasoning about Bounded Policies”. In: Proceedings of the In-
ternational Joint Conference on Artificial Intelligence (IJCAI). ij-
cai.org, 2023, pp. 3296–3303.

[MS17] PetaMasters and Sebastian Sardina. “Deceptive Path-Planning.”
In: Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI). 2017, pp. 4368–4375.

[MW24] Tobias Meggendorfer and Maximilian Weininger. “Playing
Games with Your PET: Extending the Partial Exploration Tool to
Stochastic Games”. In: Proceedings of the International Conference
on Computer Aided Verification (CAV). Ed. by Arie Gurfinkel
and Vijay Ganesh. Springer Nature Switzerland, 2024, pp. 359–
372.

[NHR99] Andrew Y. Ng, Daishi Harada, and Stuart Russell. “Policy
invariance under reward transformations: Theory and application
to reward shaping”. In: Proceedings of the International Conference
on Machine Learning (ICML). Vol. 99. Citeseer. 1999, pp. 278–287.

[Nil98] Johan Nilsson. “Real-time control systems with delays”. In: De-
partment of Automatic Control 1049 (1998).

[NR00] Andrew Y. Ng and Stuart Russell. “Algorithms for Inverse
Reinforcement Learning”. In: Proceedings of the International Con-
ference on Machine Learning (ICML). 2000, pp. 663–670.

[Obe+19] Ziad Obermeyer,Brian Powers,Christine Vogeli, and Send-
hil Mullainathan. “Dissecting racial bias in an algorithm used
to manage the health of populations”. In: Science 366.6464 (2019),
pp. 447–453.

[O’k+20] Matthew O’kelly, Hongrui Zheng, Dhruv Karthik, Rahul
Mangharam,Hugo Jair Escalante, andRaia Hadsell. “F1TENTH:
An Open-source Evaluation Environment for Continuous Control
and Reinforcement Learning”. In: Proceedings of the NeurIPS 2019
Competition and Demonstration Track. Vol. 123. PMLR, 2020,
pp. 77–89.

[Pan+17] Xinlei Pan, Yurong You, Ziyan Wang, and Cewu Lu. “Vir-
tual to Real Reinforcement Learning for Autonomous Driving”. In:
Proceedings of the British Machine Vision Conference (BMVC).
BMVA Press, 2017.

186 BIBLIOGRAPHY

[Pau14] Sarah Paul. “Embarking on a Crime”. In: Law and the Philos-
ophy of Action. Ed. by Enrique Villanueva V. Rodopi, 2014,
pp. 101–24.

[Pau20] Sarah Paul. Philosophy of Action: A Contemporary Introduction.
Routledge, 2020.

[Pea09] Judea Pearl. Causality. Cambridge University Press, 2009.

[PJ05] Stephen Prajna and Ali Jadbabaie. “Methods for Safety Veri-
fication of Time-Delay Systems”. In: Proceedings of the Conference
on Decision and Control (CDC). IEEE, 2005, pp. 4348–4353.

[Poe15] Ibo Van de Poel. “The problem of many hands”. In: Moral
responsibility and the problem of many hands. Routledge, 2015,
pp. 50–92.

[Pra+21a] Stefan Pranger, Bettina Könighofer, Lukas Posch, and
Roderick Bloem. “TEMPEST - Synthesis Tool for Reactive Sys-
tems and Shields in Probabilistic Environments”. In: Proceedings
of the International Symposium on Automated Technology for Ver-
ification and Analysis (ATVA). Vol. 12971. Lecture Notes in Com-
puter Science. Springer, 2021, pp. 222–228.

[Pra+21b] Stefan Pranger, Bettina Könighofer, Martin Tappler,
Martin Deixelberger, Nils Jansen, and Roderick Bloem.
“Adaptive Shielding under Uncertainty”. In: Proceedings of the
American Control Conference (ACC). IEEE, 2021, pp. 3467–3474.

[PS+17] Adrián Pérez-Suay,Valero Laparra,GonzaloMateo-Garćıa,
Jordi Muñoz-Maŕı, Luis Gómez-Chova, and Gustau Camps-
Valls. “Fair Kernel Learning”. In: Proceedings of the European
Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML PKDD). Springer, 2017,
pp. 339–355.

[PT20] Ana Pereira and Carsten Thomas. “Challenges of machine
learning applied to safety-critical cyber-physical systems”. In: Ma-
chine Learning and Knowledge Extraction 2.4 (2020), pp. 579–602.

[PV17] Aaron Zeff Palmer and Alexander Vladimirsky. “Optimal
stopping with a probabilistic constraint”. In: Journal of Optimiza-
tion Theory and Applications 175 (2017), pp. 795–817.

[PV20] Erika Puiutta and Eric Veith. “Explainable Reinforcement
Learning: A Survey”. In: Proceedings of the International Cross-
Domain Conference for Machine Learning and Knowledge Extrac-
tion (CD-MAKE). Springer. 2020, pp. 77–95.

[Qui69] Willard Van Orman Quine. Ontological Relativity and Other
Essays. Columbia University Press, 1969.

[RBT22] Jonathan Richens, Rory Beard, and Daniel H. Thompson.
“Counterfactual harm”. In: Advances in Neural Information Pro-
cessing Systems (NeurIPS). Vol. 35. 2022, pp. 36350–36365.

BIBLIOGRAPHY 187

[Ren+19] Matthieu Renard, Yliès Falcone, Antoine Rollet, Srini-
vas Pinisetty, Thierry Jéron, and Hervé Marchand. “En-
forcement of (Timed) Properties with Uncontrollable Events”. In:
International Colloquium on Theoretical Aspects of Computing (IC-
TAC). Lecture Notes on Computer Science. 2019, pp. 542–560.

[RG91] Anand S. Rao and Michael P. Georgeff. “Modeling Rational
Agents within a BDI-Architecture”. In: Proceedings of the Interna-
tional Conference on Principles of Knowledge Representation and
Reasoning (KR). Morgan Kaufmann, 1991, pp. 473–484.

[RG95] Anand S. Rao and Michael P. Georgeff. “BDI Agents: From
Theory to Practice”. In: Proceedings of the International Confer-
ence on Multiagent Systems (ICMAS). MIT Press, 1995, pp. 312–
319.

[Rod+25] Andoni Rodriguez,Guy Amir,Davide Corsi,Cesar Sanchez,
and Guy Katz. “Shield Synthesis for LTL Modulo Theories”.
In: Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI). 2025.

[Sax+19] Dhruv Mauria Saxena, Sangjae Bae,Alireza Nakhaei,Kikuo
Fujimura, and Maxim Likhachev. “Driving in Dense Traffic
with Model-Free Reinforcement Learning”. In: Proceedings Inter-
national Conference on Robotics and Automation (ICRA) (2019),
pp. 5385–5392.

[SB18] Richard S. Sutton and Andrew G. Barto. Reinforcement
learning: An introduction. MIT press, 2018.

[Sca10] Thomas Michael Scanlon. Moral Dimensions: Permissibility,
Meaning, Blame. Harvard University Press, 2010.

[Sch+15] John Schulman, Sergey Levine, Pieter Abbeel, Michael
Jordan, and Philipp Moritz. “Trust Region Policy Optimiza-
tion”. In: Proceedings of the International Conference on Machine
Learning (ICML). Vol. 37. PMLR, 2015, pp. 1889–1897.

[Set22] Kieran Setiya. “Intention”. In: The Stanford Encyclopedia of
Philosophy. Ed. by Edward N. Zalta and Uri Nodelman. Win-
ter 2022. Metaphysics Research Lab, Stanford University, 2022.

[Set+98] Danbing Seto,Bruce Krogh, Lui Sha, andAlongkrit Chuti-
nan. “The Simplex architecture for safe online control system up-
grades”. In: Proceedings of the American Control Conference (ACC).
IEEE, 1998, pp. 3504–3508.

[SG21] Harini Suresh and John Guttag. “A Framework for Under-
standing Sources of Harm throughout the Machine Learning Life
Cycle”. In: Proceedings of the ACM Conference on Equity and
Access in Algorithms, Mechanisms, and Optimization (EAAMO).
ACM, 2021.

[SGD23] Meirav Segal, Anne-Marie George, and Christos Dimi-
trakakis. “Policy Fairness and Unknown Bias Dynamics in Se-
quential Allocations”. In: Proceedings of the Conference on Equity
and Access in Algorithms, Mechanisms, and Optimization (EAAMO).
ACM, 2023, pp. 1–10.

188 BIBLIOGRAPHY

[Sha14] Scott J. Shapiro. “Massively Shared Agency”. In: Rational and
Social Agency: The Philosophy of Michael Bratman (2014), pp. 257–
293.

[Shi07] Albert N. Shiryaev. Optimal stopping rules. Vol. 8. Springer
Science & Business Media, 2007.

[Sil+16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez,
Laurent Sifre,George Van Den Driessche, Julian Schrit-
twieser, Ioannis Antonoglou,Veda Panneershelvam,Marc
Lanctot, et al. “Mastering the game of Go with deep neural net-
works and tree search”. In: Nature 529.7587 (2016), pp. 484–489.

[Sin+21] Maulshree Singh, Evert Fuenmayor, Eoin P. Hinchy,Yuan-
song Qiao, Niall Murray, and Declan Devine. “Digital twin:
Origin to future”. In: Applied System Innovation 4.2 (2021), p. 36.

[Sin92] Munindar P. Singh. “A critical examination of the Cohen-Levesque
theory of intention”. In: Proceedings of the European Conference
on Artificial Intelligence (ECAI). 1992, pp. 364–368.

[SJS21] Thiago D. Simão, Nils Jansen, and Matthijs T. J. Spaan.
“AlwaysSafe: Reinforcement Learning without Safety Constraint
Violations during Training”. In: Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems (AA-
MAS). ACM, 2021, pp. 1226–1235.

[SLB08] Yoav Shoham and Kevin Leyton-Brown. Multiagent systems:
Algorithmic, game-theoretic, and logical foundations. Cambridge
University Press, 2008.

[Son+16] Jinhua Song, Yang Gao, Hao Wang, and Bo An. “Measuring
the Distance between Finite Markov Decision Processes”. In: Pro-
ceedings of the International Conference on Autonomous Agents
and Multiagent Systems (AAMAS). ACM, 2016, pp. 468–476.

[SP11] Gerardo I. Simari and Simon D. Parsons. Markov Decision
Processes and the Belief-Desire-Intention Model: Bridging the Gap
for Autonomous Agents. New York: Springer, 2011.

[SPB19] Morgan Klaus Scheuerman, Jacob MPaul, and Jed R Brubaker.
“How computers see gender: An evaluation of gender classification
in commercial facial analysis services”. In: Proceedings of the ACM
on Human-Computer Interaction (HCI) 3.CSCW (2019), pp. 1–33.

[SPC23] Ashish Kumar Shakya,Gopinatha Pillai, and Sohom Chakrabarty.
“Reinforcement learning algorithms: A brief survey”. In: Expert
Systems with Applications 231 (2023), p. 120495.

[Sun+21] Bing Sun, Jun Sun, Ting Dai, and Lijun Zhang. “Probabilis-
tic verification of neural networks against group fairness”. In: Pro-
ceedings of the International Symposium on Formal Methods (FM).
Springer. 2021, pp. 83–102.

[Sun23] Yi Sun. “Algorithmic Fairness in Sequential Decision Making”.
PhD thesis. Massachusetts Institute of Technology, 2023.

BIBLIOGRAPHY 189

[Tap+22] Martin Tappler, Filip Cano Córdoba, Bernhard K. Aich-
ernig, and Bettina Könighofer. “Search-Based Testing of Re-
inforcement Learning”. In: Proceedings of the International Joint
Conference of Artificial Intelligence (IJCAI). ijcai.org, 2022, pp. 503–
510.

[Tho80] Dennis F. Thompson. “The Moral Responsibility of Public Offi-
cials: The Problem of Many Hands”. In: American Political Science
Review 74.4 (1980), pp. 905–916.

[Tho95] Wolfgang Thomas. “On the synthesis of strategies in infinite
games”. In: Proceedings of the Symposium on Theoretical Aspects
of Computer Science (STACS). Springer, 1995, pp. 1–13.

[Tow+24] Mark Towers,Ariel Kwiatkowski, Jordan Terry, John U.
Balis,Gianluca De Cola,Tristan Deleu,Manuel Goulão,
Andreas Kallinteris, Markus Krimmel, Arjun KG, Ro-
drigo Perez-Vicente, Andrea Pierré, Sander Schulhoff,
Jun Jet Tai, Hannah Tan, and Omar G. Younis. Gymnasium:
A Standard Interface for Reinforcement Learning Environments.
2024. arXiv: 2407.17032.

[Tri04] Stavros Tripakis. “Decentralized control of discrete-event Sys-
tems With bounded or Unbounded Delay communication”. In:
IEEE Transactions on Automatic Control 49.9 (2004), pp. 1489–
1501.

[TSR21] Stelios Triantafyllou,Adish Singla, andGoran Radanovic.
“On Blame Attribution for Accountable Multi-Agent Sequential
Decision Making”. In: Advances in Neural Information Process-
ing Systems (NeurIPS). Vol. 34. Curran Associates, Inc., 2021,
pp. 15774–15786.

[van+20] Marc van Zee, Dragan Doder, Leendert van der Torre,
Mehdi Dastani, Thomas Icard, and Eric Pacuit. “Intention
as commitment toward time”. In: Artificial Intelligence 283 (2020),
p. 103270.

[VDL24] Fabian Vu, Jannik Dunkelau, and Michael Leuschel. “Val-
idation of Reinforcement Learning Agents and Safety Shields with
ProB”. In: Proceedings of the NASA Formal Methods Symposium
(NFM). Springer. 2024, pp. 279–297.

[Vel07] J. David Velleman. “What good is a will?” In: Action in context
(2007), pp. 193–215.

[Wan+23] Yifan Wang, Weizhi Ma, Min Zhang, Yiqun Liu, and Shaop-
ing Ma. “A survey on the fairness of recommender systems”. In:
ACM Transactions on Information Systems 41.3 (2023), pp. 1–43.

[War+24] Francis Rhys Ward, Matt MacDermott, Francesco Be-
lardinelli, Francesca Toni, andTom Everitt. “The Reasons
that Agents Act: Intention and Instrumental Goals”. In: Proceed-
ings of the International Conference on Autonomous Agents and
Multiagent Systems (AAMAS). 2024, pp. 1901–1909.

https://arxiv.org/abs/2407.17032

190 BIBLIOGRAPHY

[WBT21] Min Wen, Osbert Bastani, and Ufuk Topcu. “Algorithms for
fairness in sequential decision making”. In: International Confer-
ence on Artificial Intelligence and Statistics (AISTATS). PMLR.
2021, pp. 1144–1152.

[WD92] Christopher J.C.H.Watkins andPeter Dayan. “Q-learning”.
In: Machine Learning 8 (1992), pp. 279–292.

[WDS19] HaoWang, Shaokang Dong, and Ling Shao. “Measuring Struc-
tural Similarities in Finite MDPs”. In: Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI). ijcai.org,
2019, pp. 3684–3690.

[Whi22] White House OSTP. Blueprint for an AI Bill of Rights: Making
Automated Systems Work for the American People. https://www.
whitehouse.gov/ostp/ai-bill-of-rights/. Accessed: 2024-08-
01. 2022.

[Wie+23] PatrickWienhöft,Marnix Suilen,Thiago D. Simão,Clemens
Dubslaff, Christel Baier, and Nils Jansen. “More for Less:
Safe Policy Improvement with Stronger Performance Guarantees”.
In: Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI). ijcai.org, 2023, pp. 4406–4415.

[Wil+22] Olivia Wiles, Sven Gowal, Florian Stimberg, Sylvestre-
Alvise Rebuffi, Ira Ktena, Krishnamurthy Dj Dvijotham,
and Ali Taylan Cemgil. “A Fine-Grained Analysis on Distri-
bution Shift”. In: Proceedings of the International Conference on
Learning Representations. 2022.

[Win+21] Michael Winikoff, Galina Sidorenko, Virginia Dignum,
and Frank Dignum. “Why bad coffee? Explaining BDI agent
behaviour with valuings”. In: Artificial Intelligence 300 (2021),
p. 103554.

[WMR17] Sandra Wachter, Brent Mittelstadt, and Chris Russell.
“Counterfactual Explanations Without Opening the Black Box:
Automated Decisions and the GDPR”. In: Harvard Journal of Law
& Technology 31.2 (2017), pp. 841–887.

[Wob95] Wayne Wobcke. “Plans and the revision of intentions”. In: Aus-
tralian Workshop on Distributed Artificial Intelligence (DAI). Springer.
1995, pp. 100–114.

[Woo03] Michael Wooldridge. Reasoning about rational agents. MIT
press, 2003.

[Woo+09] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and
John Fitzgerald. “Formal methods: Practice and experience”.
In: ACM Computing Surveys 41.4 (2009), pp. 1–36.

[WS20] Akifumi Wachi and Yanan Sui. “Safe reinforcement learning
in constrained Markov decision processes”. In: Proceedings of the
International Conference on Machine Learning (ICML). PMLR.
2020, pp. 9797–9806.

[WT18] Min Wen and Ufuk Topcu. “Constrained cross-entropy method
for safe reinforcement learning”. In: Advances in Neural Informa-
tion Processing Systems (NeurIPS) 31 (2018).

https://www.whitehouse.gov/ostp/ai-bill-of-rights/
https://www.whitehouse.gov/ostp/ai-bill-of-rights/

BIBLIOGRAPHY 191

[WZ20] Sarah Winter and Martin Zimmermann. “Finite-state strate-
gies in delay games”. In: Information and Computation 272 (2020),
p. 104500.

[XZL22] Chengbin Xuan, Feng Zhang, and Hak-Keung Lam. “SEM:
Safe exploration mask for q-learning”. In: Engineering Applications
of Artificial Intelligence 111 (2022), p. 104765.

[Yan+23a] Qisong Yang, Thiago D. Simão, Nils Jansen, Simon H. Tin-
demans, and Matthijs T. J. Spaan. “Reinforcement Learning
by Guided Safe Exploration”. In: Proceedings of the European Con-
ference on Artificial Intelligence (ECAI). Vol. 372. IOS Press, 2023,
pp. 2858–2865.

[Yan+23b] Wen-Chi Yang, Giuseppe Marra, Gavin Rens, and Luc De
Raedt. “Safe Reinforcement Learning via Probabilistic Logic Shields”.
In: Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI). ijcai.org, 2023, pp. 5739–5749.

[YD16] Vahid Yazdanpanah and Mehdi Dastani. “Distant group re-
sponsibility in multi-agent systems”. In: Proceedings of the Inter-
national Conference on Principles of Practice in Multi-Agent Sys-
tems (PRIMA). Springer, 2016, pp. 261–278.

[Zaf+19] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-
Rodriguez, and Krishna P. Gummadi. “Fairness constraints: A
flexible approach for fair classification”. In: The Journal of Ma-
chine Learning Research 20.1 (2019), pp. 2737–2778.

[Zem+13] Rich Zemel, YuWu,Kevin Swersky, Toni Pitassi, and Cyn-
thia Dwork. “Learning fair representations”. In: Proceedings of
the International Conference on Machine Learning (ICML). PMLR.
2013, pp. 325–333.

[Zha+23] Zhang Zhang, Yifeng Zeng, Wenhui Jiang, Yinghui Pan,
and Jing Tang. “Intention recognition for multiple agents”. In:
Information Sciences 628 (2023), pp. 360–376.

[Zim17] Martin Zimmermann. “Finite-State Strategies in Delay Games”.
In: Proceedings of the International Symposium on Games, Au-
tomata, Logics, and Formal Verification (GandALF). Vol. 256.
2017, pp. 151–165.

[ZL21] Xueru Zhang and Mingyan Liu. “Fairness in learning-based se-
quential decision algorithms: A survey”. In: Handbook of Reinforce-
ment Learning and Control. Springer, 2021, pp. 525–555.

[ZLM18] Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell.
“Mitigating unwanted biases with adversarial learning”. In: Pro-
ceedings of the Conference on AI, Ethics, and Society (AIES).
ACM, 2018, pp. 335–340.

[ZMS23] Quan Zhou, Jakub Mareček, and Robert Shorten. “Fairness
in Forecasting of Observations of Linear Dynamical Systems”. In:
Journal of Artificial Intelligence Research 76 (2023), pp. 1247–
1280.

192 BIBLIOGRAPHY

Nomenclature

But Taborlin knew the name of all things, and so all things were
his to command. — Patrick Rothfuss, The Name of the Wind.

Symbol Usage

a
generic action, a ∈ A
generic number a ∈ R

b
generic action when a is already in use, b ∈ A, for example in
Fig. 2.1
generic number b ∈ R
generic element of B, b ∈ B

c generic cost, c ∈ C, Chap. 6

cost(τ ; s)
cost incurred by a fairness shield on a trace τ up to a certain time
s ≤ |τ |, Eq. 6.2, Chap. 6

d
used to denote a generic probability distribution, Sec 2.2
when computing maximally permissive strategies under delay, the
value of the intermediate delay, Sec. 2.3.2, Alg. 1
used to denote a generic distance function in MDPs, Sec. 2.4,
Chap. 7

f
used to denote a generic function f : X → Y
in classification problems, used to denote an ML-based classifier,
Chap. 6

g
used to denote a generic group in group fairness, typically g ∈
{a, b}, Chap. 6

i, j used as generic counters

k
used to indicate the length of a trace in reachability and avoidance
properties in MDPs, Eq. 2.6
used as a generic counter

l
lower bound on welfare for bounded welfare shields, Sec. 6.4.1.2,
Chap. 6

m
when computing maximally permissive strategies under delay, the
value of the intermediate memory, m = min(d, µ), Alg. 1

Notation index, lowercase latin alphabet, part 1.

193

194 NOMENCLATURE

Symbol Usage

n used in general to denote lengths of traces or sequences

nA
in group fairness measures, number of candidates in a tracce of
group A, Chap. 6

nB
in group fairness measures, number of candidates in a tracce of
group B, Chap. 6

n1
A

in group fairness measures, number of accepted candidates in a
tracce of group A, Chap. 6

n1
B

in group fairness measures, number of accepted candidates in a
tracce of group B, Chap. 6

o
used to denote a generic observation in the reactive decision mak-
ing framework, o ∈ O, Chap. 3

p
in fairness shield, the number of counters required by the statistic
to compute the fairness property, Sec. 6.2.2, Thm. 6.1, Chap. 6

r
a generic radius of a ball, Sec. 2.4
recommendation of the ML-based classifier, Chap. 6

s
generic state of a state set, s ∈ S
used to denote a point or time in the trace in Eq. 6.2

s0
initial state of a safety game, Sec. 2.3, 3.2.1, Chap. 4
when it is unique, initial state of an MDP, Sec. 2.4

t used as a generic time or length of a trace

u
upper bound on welfare for bounded welfare shields, Sec. 6.4.1.2,
Chap. 6

uk
i,j

k-th velocity datapoint for reference action αi and reference ve-
locity vj , Eq. (5.1), Chap. 5

v used to indicate a generic velocity, Chaps. 4, 5, 7
v(τ) value function associated with trace τ , Sec. 6.3, Eq. 6.9
w sometimes used to refer to a generic word of an alphabet, Sec. 2.1

x
generic element of a set x ∈ X
used to denote a generic input in fairness shields, Chap. 6

y
used to denote a generic action in the action register for safety
games under delay, Sec. 2.3.2, Chap. 4
in fairness shields indicates the final accept/reject decision of
the shield, y ∈ Y, Chap. 6

Notation index, lowercase latin alphabet, part 2.

NOMENCLATURE 195

Symbol Usage

A
in group fairness, abstract groups are typically names groups A
and B, used mostly in Chap. 6

Acc
winning condition of a two-player game, given by a set of accepting
traces, Sec. 2.3

Ag agent in the reactive decision making framework, Chap. 3
AP set of atomic propositions to label an MDP, Chap. 7

B
in group fairness, abstract groups are typically names groups A
and B, used mostly in Chap. 6

Br(x) ball of radius r centered at point x, Sec. 2.4
Beh Set of behaviours of a strategy in a safety game, Eq. (2.2)
Cyl cylinder set construction, Sec. 2.4.1
D “down” action in gridworlds, Chap. 4

F
generic cummulative distribution function of a random variable,
Sec. 2.2

Fk(s, σ) k-forward multiset of states, Def. 4.1, Chap. 4

FTtθ,π
set of feasible traces of length t sampling inputs from distribution
θ and using shield π, Sec. 6.2.1, Chap. 6

G
discounted return in RL, Sec. 2.4.3
random variable representing group membership of a candidate in
fairness classification problems, Sec. 2.5, Chap. 6

L “left” action in gridworlds, Chap. 4

N
number of samples used to build the transition probability func-
tion for the car model in Chap. 5

N “neutral” or “no operation” action in gridworlds, Chap. 4
Pag set of positions of the ego car, Sec. 4.5

Penv
set of positions of the environment, either other car or pedestrian,
Sec. 4.5

R “right” action in gridworlds, Chap. 4

Rµ,T
when µ is a fairness statistic and T is a time horizon, Rµ,T is
the range of values that µ can take on traces of length up to T ,
Theorem 6.1, Chap. 6

S
set of states of a deterministic two-player game, Sec. 2.3, 3.2.1,
Chap. 4

Sag
set of states controlled by the agent of a deterministic two-player
game, Sec. 2.3, 3.2.1, Chap. 4

Sag∗
set of states controlled by the agent of a deterministic two-player
game, plus an extra void state ε, used for defining strategies in
delayed games, Sec. 2.3.2, Chap. 4

Senv
set of states controlled by the environment of a deterministic two-
player game, Sec. 2.3, 3.2.1, Chap. 4

Supp(f) support of a function f , Sec. 2.1

Notation index, uppercase latin alphabet, part 1.

196 NOMENCLATURE

Symbol Usage

T
set of target states in reachability properties, Sec. 2.4.2
time horizon when computing fairness shields, Chap. 6

U “up” action in gridworlds, Chap. 4
V
Vag set of velocities of the ego car, Sec. 4.5
Venv set of velocities of the environment’s car, Sec. 4.5
Val valuation function in a labelled MDP, Val : AP → 2S , Chap. 7
W winning region of a safety game, Eq. (2.3), Chaps. 2-4
WFg welfare function of group g ∈ G, Chap. 6
X

used to denote a generic set
used to denote a generic random variable

Notation index, uppercase latin alphabet, part 2.

Symbol Usage

A Set of actions available to the agent in all formalisms

Aenv
Set of actions of the environment in safety games, Sec. 2.3,
Eq. (2.1)

B Borel σ-algebra, Sec. 2.2

D set of probability distributions, given a set X, D(X) is the set of
distributions over X, defined in Sec. 2.2, and used through all the
thesis

F
generic σ-algebra, Sec. 2.2
set of safe states of a safety game, Sec. 2.3, Sec. 3.4.1, Sec. 3.4.2,
Chap. 4
in classification problems, the input is factored as G ×F , where G
is the space of the protected features, and F is that of the other
features, Sec. 2.5

G game graph of a two-player determinisitc game, Sec. 2.3, Chap. 4
protected feature (a.k.a. group membership) in fairness for clas-
sification problems, Sec. 2.5, Chap. 6

Gδ,µ
game graph, emphasizing that the plays are with delay δ and the
strategies are allowed a memory µ, Sec. 2.3, Chap. 4

Notation index, mathcal latin alphabet, part 1.

NOMENCLATURE 197

Symbol Usage

I generic Boolean formula over the set of atomic propositions asso-
ciated with the MDP, that defines a potential intention in Chap. 7

Is auxiliary set of states used in Alg. 1
Is,y auxiliary set of states used in Alg. 1

J set of reachable states from s0, Algorithm 2
generic Boolean formula over the set of atomic propositions asso-
ciated with the MDP, that defines a potential intention in Chap. 7

L Loss function of a classification problem, Sec. 2.5
set of correct traces, Chap. 3, Def. 3.9

LT,λ,k
set of correct traces for probabilistic shields in MDPs, where T is
a subset of states to reach, λ ∈ (0, 1) is the safety threshold and
k is the step horizon, Sec. 3.4.3

M used throughout the thesis to indicate a Markovian model, either
a Markov chain or a Markov decision process, depending on the
context

Mcar MDP model of the car, Chap. 5
Mped Markov chain model of the pedestrian, Chap. 5

O “Big O” notation for stating complexity results
observation space in reactive decision making framework, Chap. 3

P transition probability function of a Markovian model, either an
MDP or a Markov chain, depending on the context, defined in
Sec. 2.4, used throughout

R reward function in an RL problem, Sec. 2.4.3

S set of states of a Markovian model, either an MDP or a Markov
chain, depending on the context, defined in Sec. 2.4, used through-
out

T transition relation of a safety game, Sec. 2.3, Sec. 3.2.1

T
environment transition function in the reactive decision making
framework, Chap. 3

X input space in fairness shields, Chap. 6
Y output (or decision) space in fairness shields, |Y| = 2, Chap. 6

Z in classification problems with a protected feature, Z represents
the set of non-protected features, Chap. 6

Notation index, mathcal latin alphabet, part 2.

198 NOMENCLATURE

Symbol Usage

B Boolean domain, B = {⊥,⊤}, sometimes equivalently B = {0, 1},
Sec. 2.1, Chap. 6

C Set of costs in Chapter 6. It is understood that C is finite.
E Expected value, defined in Sec. 2.2, used throughout Chap. 6

E[cost ; θ, π, t] expected cost of a trace of length t produced sampling inputs from
θ ∈ D(X) and using the shield π, Chap. 6, Eq. (6.3)

E[cost | τ ; θ, π, t] expected cost of a trace of length t produced sampling inputs from
θ ∈ D(X), and using the shield π with τ as a prefix, Chap. 6,
Eq. (6.4)

J interference set of a shield, Def. 3.10, Chap. 3
N Set of natural numbers, N = {0, 1, 2, . . . }
P probability measure in a probability space, Sec. 2.2

probability measure over sets of finite traces, Chap. 6
PM probability measure associated with the Markov chainM, Sec. 2.2

PM
π /Pπ

probability measure associated with the MDP M and the policy
π. Whenever M is clear from context, we may drop it from the
notation, Sec. 2.2, Chap. 5, Chap. 7

PM
max

probability measure associated with the MDP M and the policy
that maximizes a certain property, Chap. 5, Chap. 7

PM
min

probability measure associated with the MDP M and the policy
that minimizes a certain property, Chap. 5, Chap. 7

PM
max|Π/Pmax|Π

probability measure associated with the MDP M and the policy
that maximizes a certain property among policies in the set Π,
Chap. 5, Chap. 7

PM
min|Π/Pmin|Π

probability measure associated with the MDP M and the policy
that minimizes a certain property among policies in the set Π,
Chap. 5, Chap. 7

R Set of real numbers.
R≥0 Set of non-negative real numbers.

Z Set of integer numbers.

Table 1: Notation index, mathbb latin alphabet.

NOMENCLATURE 199

Symbol Usage

α each of the individual actions in the available set of actions, A =
{α1, . . . , αn}, Chap. 5

γ
discount factor in RL, Sec. 2.4.3
experimental proportionality factor between ∆x and u, Equa-
tion 5.1

δ
delay in safety games, Sec. 2.3.2, Chap. 4
delay in reactive decision making, Sec. 3.2.4, Sec. 3.4.2

δmax
cutoff value of the delay when computing controllability values,
Chap. 4

δLρ , δ
U
ρ

thresholds for intention quotient, used in the retrospective method
for assessing intentional behaviour Sec. 7.3, Def. 7.7

δσ threshold for agency, Sec. 7.3, Def. 7.7

δB , δI
thresholds on “belief” and intention quotient to define a notion of
commitment, Def. 7.6

ε
representation of a general unobserved state in safety games under
delay, Sec. 2.3.2
used to indicate a generic small number, Ex. 4.2
ε = (εk+1, . . . , εm) indicates, for each integral variable, the range
of variation to consider counterfactuals valid when generating
counterfactuals on a factored MDP, Sec. 7.3.3.2

η
distance between two traces to consider a counterfactual valid,
Sec. 7.3.3.3

θ
probability distribution of the input in classification problems,
θ ∈ D(X), Sec. 2.5, Chap. 6

ι distribution of initial states of an MDP, Sec. 2.4

κ
threshold on the fairness metric, as part of the specification of
fairness shields, Chap. 6, Eq. (6.5)

λ
safety threshold in probabilistic shields, Sec. 3.4.3, Chap. 5
parameter that regulates fairness interventions in different in-
processing fairness algorithms, Sec. 6.5.1

µ
generic probability measure, Sec. 2.2
memory in a strategy for a safety game with delay, Sec. 2.3.2,
Chap. 4
statistic that maps a trace to the relevant counters used to com-
pute a fairness property, defined in Sec. 6.2.2, used throughout
Chap. 6

µpos
multiplier to convert positions between local-continuous and local-
discrete coordinates, Chap. 5

µvel
multiplier to convert velocities between local-continuous and local-
discrete coordinates, Chap. 5

ν used as a counter in the proof of Thm. 3.3

ξ
a generic strategy in a safety game, Sec. 2.3, Chap. 3
sometimes, when clear from context, especially in Chap. 4, ξ de-
notes the maximally permissive winning strategy

ξmax.perm. maximally permissive winning strategy of a safety game, Eq. (2.4)

ξδ,µ
in Chap. 4, to specify that the strategy works with delay δ and
memory µ

π
policy in an MDP, Sec. 2.4, Sec. 2.4.3, Chap. 7
agent policy function, Chap. 3. Sometimes π is used to refer to
the agent Ag = (O,A, π) following π

Notation index, lowercase greek alphabet, part 1.

200 NOMENCLATURE

Symbol Usage

σ
elements of a word, Sec. 2.1
generic action in a safety game, usually to denote actions of the
action memory, Sec. 2.3, Sec. 3.2.1, Sec. 3.4.2, Chap. 4
agency of a state or a set of states, Chap 7, Def. 7.3

σ action memory or register, σ = (σ1, . . . , σµ), Chap. 4

σped
parameter of the model of the pedestrian in Chap. 5, indicating
how volatile is their behaviour

τ
trace (a.k.a. path) in a safety game, Sec. 2.3, Sec. 3.2.1, Chap. 4
trace in reactive decision making, τ ∈ (O ×A)∗, Chap. 3
trace of a fairness shield, τ ∈ (X × Y)∗, Chap. 6
trace of states of the MDP, Chap. 7

τA action trace, τA ∈ A∗, Chap. 3
τO observation trace, τO ∈ O∗, Chap. 3

τref
reference trace in the retrospective method to analyze intention,
Sec. 7.3, Sec. 7.4

φ
fitness function, Chap. 4
fairness metric, Chap. 6
a generic reachability property, Chap. 7

φc controllability fitness function, Sec. 4.3, Chap. 4
φr robustness fitness function, Sec. 4.3, Chap. 4
χ a deterministic winning strategy, usually to build a post-shield,

Sec. 3.4.1, Sec. 3.4.2, Chap 4

ω
sample of a probability space ω ∈ Ω, Sec. 2.2, Sec. 3.2
finite trace prefix in the cylinder set construction, Sec. 2.4.1
used to denote infinite repetitions, e.g., Xω is the set of infinite
sequences of elements in X

Notation index, lowercase greek alphabet, part 2.

NOMENCLATURE 201

Symbol Usage

∆ increment of a variable, e.g., ∆t, Sec. 4.5, Chap. 5
Θ distribution of input ΘX ∈ D(O), Sec. 3.2.3

Π
Subset of available policies when computing maximum and mini-
mum reachability properties in MDPs, Sec. 2.4.2, Chap. 7
Set of agents to which a shield is restricted to work with, Chap. 3
set of all fairness shields, Chap. 6

Πt
fair set of all fairness shields with bounded horizon t

Πfair set of fair shields for a given specification, Chap. 6

Πfair-per
set of all periodic fair shields for a given specification, Chap 6,
Eq. (6.7)

ΠBW
set of all fair shields with respect to a bounded welfare specifica-
tion, Chap. 6

Πfair-dyn set of all dynamic fair shields for a given specification, Chap. 6
Π(G) set of plays in a deterministic two player game G, Sec. 2.3
ΠU (s)

set of paths or traces in a safety game starting from s that end
outside of the winning region in exactly δ + k transitions, in the
proof of Thm. 4.2

Σ
generic alphabet, Sec. 2.1
subset of actions in a safety game, Σ ∈ 2A, Sec. 2.3

ΣΠ set of shields associated with a set of agents Π, Chap. 3, Eq. (3.3)
Ω sample set of a measurable space or a probability space, Sec. 2.2

ΩM
π

sample space of the probability measure associated with an MDP
M and a policy π, Sec. 2.4

ΩE ,Ag set of all observation-action traces associated with an environment
E and an agent Ag , Sec. 3.2

ΩE ,Ag
k

set of all observation-action traces of length k associated with an
environment E and an agent Ag , Sec. 3.2

Notation index, uppercase greek alphabet.

202 NOMENCLATURE

Symbol Usage
Shield, Chap. 3

pre
Ag

pre-shield induced by an agent Ag , defined to follow the actions
of the agent, Def. 3.5, Chap. 3

pos
Ag,Agdet

post-shield induced by an agent Ag and a determinization of the
agent, Agdet, Def. 3.6, Chap. 3

1
Indicator function, for subset set X ⊆ X , 1X : X → {0, 1} is
defined as 1X(x) = 1 if x ∈ X, and 1X(x) = 0 if x /∈ X, Sec. 2.1

2X
when X is a set, 2X denotes the power set of X, that is, the set
of subsets of X, Sec. 2.1

f(X), f−1(Y)
when f : X → Y is a function and X ⊆ X , f(X) is the image set
of X; for Y ⊆ Y, f−1(Y) is the antiimage set, Sec. 2.1

≫, ≪ much greater / much smaller than, Sec. 2.1, Sec. 6.2.1

⌊a⌋ floor of a, i.e., the greatest integer that is smaller or equal to a,
Sec. 2.1

⌈a⌉ ceiling of a, i.e., the smallest integer that is greater or equal to a,
Sec. 2.1

⌊a⌉ rounded of a, i.e., the closest integer to a, and the ceiling of a if
a is equidistant to ⌊a⌋ and ⌈a⌉, Sec. 2.1

|a| when a is a number, |a| denotes the absolute value of a
|v| when v is a vector, |v| denotes the magnitude of the vector

|τ | when τ is a word, a trace, or a sequence of some kind, |τ | denotes
its length

|X| when X is a set, |X| denotes the cardinality of the set, i.e., the
number of elements

u−→
in safety games, when s ∈ Senv and s′ ∈ Sag, we use s

u−→ s′

to denote that there is an environment transition from s to s′,
without specifying an action of the environment; where u stands
for “undefined”, Sec. 2.3, 3.2.1, Chap. 4

∅ the empty set

Notation index, special symbols.

	Introduction
	Motivation
	Safety
	Background
	Safe Reinforcement Learning
	Deterministic Shielding Resilient to Delayed Observations
	Probabilistic Shielding for Autonomous Valet Parking

	Fairness
	Background
	Fairness in Sequential Decision-Making Problems.
	Fairness Shielding

	Transparency and Accountability
	Background
	The Role of Intention in Accountability
	Intentional Behaviour in Agents operating on MDPs

	Formal Methods
	The Reactive Decision Making Framework

	Outline of the Thesis

	Preliminaries
	Basic Notation
	Probability Theory
	Deterministic Two-Player Games
	Games with Perfect Information
	Games Under Delay

	Markov Decision Process
	Cylinder Set Construction
	Reachability Properties
	Reinforcement Learning

	Classification Problems and Fairness

	Reactive Decision Making Framework
	Motivation and Outline
	Reactive Decision-Making
	Deterministic Two-player Games
	Markov Decision Processes
	Classification Problems
	Delayed Observations

	Shielding
	Definitions
	Shielding Induced by Agents
	Correctness
	Interference
	Minimal Correctness

	Classical Shielding
	Shielding in Safety Games with Perfect Information
	Shielding in Safety Games with Delayed Observations
	Probabilistic Shielding in Markov Decision Processes

	Delay-resilient Shielding
	Motivation and Outline
	Shields as Safety Games
	Maximally Permissive Winning Strategies

	Determinization of Strategies
	Determinization Maximizing a Fitness Function
	Post-Shields that Maximise Controllability
	Post-Shields that Maximise Robustness

	Relation between Robustness and Controllability
	Memory-Restricted Strategies
	Strategies with Full Memory

	Experimental Evaluation
	Shielding in a Gridworld
	Shielded Driving in Carla

	Discussion
	Limitations
	Related Work

	Probabilistic Shielding
	Motivation and Outline
	Methodology
	Modeling Scenarios as Markov Decision Processes
	MDP Structure and State Discretisation
	Model of the Car
	Model of the Pedestrian
	Shield Computation

	Experimental Evaluation
	Validation of the Car Model
	Safety Shielding vs. AEB

	Discussion
	Limitations
	Related Work

	Enforcing Fairness Properties
	Motivation and Outline
	Fairness Shielding Setting
	Environment and Shielding Setting
	Fairness Enforcement with Minimal Cost
	Relation to the Reactive Decision Making Framework

	Algorithm for Finite Horizon Shield Synthesis
	Recursive Computation of the Value Function
	Efficient Value Function Computation

	Algorithms for Periodic Shield Synthesis
	Periodic Shielding: The Static Approach
	Periodic Shielding: The Dynamic Approach

	Experimental Evaluation
	Experimental Setup
	Shield Synthesis Computation Times
	Performance of Finite Horizon Shields
	Periodic Shielding

	Discussion
	Existence and Composability of Finite Horizon Shields
	Limitations
	Related Work

	Analyzing Intentional Behaviour
	Motivation and Outline
	Modelling Intentional Behaviour
	Modelling Environment, Agents, and Intentions
	Intention of Agents with Perfect Information
	Intention of Agents Under Uncertainty

	Retrospective Analysis of Intention
	Setting and Problem Statement
	Evidence Augmentation Loop
	Counterfactual Generation

	Experimental Validation
	Model of Environment
	Analysis of a Trace
	Comparative Analysis of Several Agents

	Discussion
	Limitations
	Avoidance Properties
	Generalized Policies
	Single-Agent Setting
	Related Work

	Conclusion
	Future Work
	Shields for Safety.
	Fairness in Bounded Horizons.
	Intention Analysis

	Concluding Remarks

	List of Publications
	Bibliography
	Nomenclature

