
Shields for Safe Reinforcement Learning
BETTINA KOENIGHOFER, Graz University of Technology, Austria

RODERICK BLOEM, Graz University of Technology, Austria

NILS JANSEN, Ruhr-University Bochum, Germany, and Radboud University Nijmegen, The Netherlands

SEBASTIAN JUNGES, Radboud University Nijmegen, The Netherlands

STEFAN PRANGER, Graz University of Technology, Austria

Reinforcement learning is a prominent machine learning technique used
to optimize an agent’s performance in potentially unknown environments.
Despite its popularity and success, reinforcement learning lacks safety guar-
antees, both during the learning phase and deployment. This paper reviews
a runtime enforcement method called shielding that ensures provable safety
for reinforcement learning. We describe the underlying models, the types
of guarantees that can be delivered, and the process of computing shields.
Furthermore, we describe several techniques for integrating shields into
reinforcement learning, discuss the advantages and potential drawbacks of
this integration, and highlight the current challenges in shielded learning.

CCS Concepts: • Computing methodologies→ Reinforcement learn-
ing; Planning under uncertainty; • General and reference→ Surveys
and overviews.

Additional Key Words and Phrases: Reinforcement Learning, Safe Learning,
Shielding, Runtime Enforcement, Game Theory, Model Checking

ACM Reference Format:
Bettina Koenighofer, Roderick Bloem, Nils Jansen, Sebastian Junges, and Ste-
fan Pranger. 2024. Shields for Safe Reinforcement Learning. In CACM. ACM,
New York, NY, USA, 9 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Machine learning has revolutionized computer science and its im-
pact on society. Reinforcement learning [39] is a prominent machine
learning technique that solves decision-making problems under un-
certainty. Figures 1 and 2 illustrate the standard setting of reinforce-
ment learning (RL) at a high level: An agent chooses an action that
is executed in an environment. In response to the action, the envi-
ronment provides a reward and an observation of the current state.
Over a number of learning episodes, the agent infers a policy that
describes how to behave to meet its learning objective, which usually
means that the learned policy maximizes the expected reward in
the environment. A core concept in reinforcement learning is the
balance between exploration and exploitation. Exploration involves
trying new actions to gather information, while exploitation uses
the best-known actions to maximize rewards based on experience.
Deep reinforcement learning has elevated reinforcement learn-

ing to complex environments by employing neural network rep-
resentations of policies [1]. It has received significant attention in
the public when AlphaGo solved the board game Go using rein-
forcement learning techniques. AlphaGo’s successor AlphaZero is

CACM, 2024, CACM
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in CACM , https:
//doi.org/XXXXXXX.XXXXXXX.

Fig. 1. The agent operates an unmanned aerial vehicle (UAV) tasked with
delivering a package without any collisions. Factors such as wind and other
aerial vehicles add complexity to this mission.

Fig. 2. The reinforcement learning setting.

completely self-taught. Reinforcement learning has also been suc-
cessfully applied in domains like autonomous driving, intelligent
manufacturing, trading, finance, and healthcare [31].
Reinforcement learning does not provide safety guarantees dur-

ing learning or deployment [9]. One reason is that the agent needs
to explore its environment to understand the consequences of its
actions. During exploration, uncertainty about the environment
can lead reinforcement learning to choose unsafe actions with po-
tentially harmful consequences [37, 39]. One approach to increase
safety is to penalize unsafe actions during learning. However, even
during exploitation, when the agent makes the best decisions based
on current knowledge, there is no guarantee that the agent will
never choose unsafe actions.

Consequently, safe reinforcement learning has attracted significant
research effort [16] over the last years and comes in three categories:
(1) shaping (“engineering”) the reward function to encourage the
agent to choose safe actions [25], (2) adding a second cost function
(“constraining”) [30], and (3) blocking (“shielding”) unsafe actions at
runtime [24]. In this article, we focus on the third category. Shielding
provides formal safety guarantees and is thus a particular approach
towards verified Artificial Intelligence (AI) [38].

Integrating shields with reinforcement learning. Shields are mecha-
nisms that provide formal safety guarantees by preventing unsafe
actions from being executed at runtime. Such a procedure is often
referred to as runtime enforcement. Integrated into a reinforcement

1

HTTPS://ORCID.ORG/0000-0001-5183-5452
HTTPS://ORCID.ORG/0000-0002-1411-5744
HTTPS://ORCID.ORG/0000-0003-1318-8973
HTTPS://ORCID.ORG/0000-0003-0978-8466
HTTPS://ORCID.ORG/0009-0000-6011-9925
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

CACM, 2024, CACM Koenighofer et al.

Fig. 3. Left: Post-Shielding – the shield prevents unsafe actions from being
executed. Right: Pre-Shielding – the shield restricts the choices of the agent.

learning setting, a shield prevents unsafe behavior of the learn-
ing agent during both the learning and deployment phases, while
restricting the agent as little as possible.
The main approaches to integrating a shield into reinforcement

learning are pre-shielding and post-shielding. They differ in how
they intervene. Figure 3 (Left) shows post-shielding: The shield is
positioned between the agent and the environment, continuously
monitoring the state of the environment and the actions selected by
the agent. It evaluates the risk associated with the selected action,
classifies the action as safe or unsafe, and replaces any unsafe action
with a safe one. Figure 3 (Right) illustrates pre-shielding, in which the
shield provides a list of all safe actions, allowing the agent to select
the best available option. Note that it is formally not possible to
compute a shield if no safe action exists. In such cases, the practical
solution is to lower the safety requirements, if possible.

Both options have their advantages and disadvantages. Several re-
inforcement learning algorithms such as Proximal Policy Optimiza-
tion [37] and Deep Q-learning [29] have masked versions [40] that
take a list of forbidden actions as extra input, making pre-shielding
simple to integrate. In this case, the final decision on which safe
action to take remains with the learning algorithm. However, if no
masked version of a learning algorithm exists, pre-shielding can be
challenging to integrate.
The advantage of a post-shield is that it is generally easy to

integrate, as it simply overwrites unsafe actions. However, a naive
integration can negatively impact learning performance for two
reasons. First, by overwriting the agent’s actions, the shield may
slow down the exploration of the environment. To mitigate this, the
post-shielding algorithm can often select a “good” alternative for
the agent, such as choosing an action similar to the one originally
selected. Additionally, some learning algorithms provide a ranked
list of actions, allowing the shield to choose the second-best option.
Second, a post-shield can disrupt the association between an action
and its reward. To address this, the reward should be tied to the
action chosen by the shield rather than the agent’s original choice.

Shield computation and safety guarantees. The essential property
of a shield is its ability to provide provable safety guarantees during
learning and deployment. To that end, shields are rigorously com-
puted from a formal specification of safety-critical properties and an
abstract model of the environment. This specification distinguishes
permitted (safe) and forbidden (unsafe) behaviors and is independent
of the agent’s learning objective. Thus, a shield maintains a clear
separation between an agent’s safety and performance. Many for-
mal approaches exist to derive shields, leveraging techniques from

reactive synthesis [5], supervisory control [35], theorem proving
[15], or model checking [3, 11].
The guarantees that a shield provides may be absolute or prob-

abilistic (see Section 3 and Section 4, respectively). When using
deterministic models, the resulting shields treat safety as a qualita-
tive, absolute, measure. By taking only actions classified as safe,
the specified safety-critical properties are guaranteed to never be
violated, regardless of what may occur in the environment in the
future. If this condition is not met, an action is deemed unsafe.

In real-world scenarios, absolute safety guarantees may be unreal-
istic. For example, a UAV may not be able to rule out the possibility
of colliding with other aerial vehicles when they behave highly
irregularly. Thus, a low risk of a collision may be acceptable. For
these situations, probabilistic models are used to compute shields
that consider safety as a quantitative measure. An action is deemed
unsafe if it induces an unacceptably high risk of compromising safety.
To classify an action as safe or unsafe, a shield computes the proba-
bility of an action violating safety. Actions are classified as safe if
this probability is below some threshold. By adjusting this thresh-
old, shields can be generated that are either more liberal or more
restrictive towards the agent.

Promise and limitations of shielding as an approach to combine
symbolic and sub-symbolic AI. Shielded reinforcement learning com-
bines model-based methods with deep reinforcement learning, pro-
viding provable safety guarantees and high performance. Shielding
thus combines the benefits of sub-symbolic and symbolic AI. Neu-
ral networks can process large amounts of data to learn excellent
approximations of ill-understood functions inductively and offer
performance that cannot be matched by other methods. On the other
hand, symbolic AI offers deductive, data-independent approaches
that are less performant but provide guarantees. However, shielding
suffers inherently from the limitations of model-based verification.
To provide safety guarantees, one has to employ techniques like
model checking. While state-of-the-art shielding approaches are
able to handle environments with billions of states [19], real-world
applications may demand far larger scalability.

Core questions of shielded reinforcement learning. We will discuss
the following core questions of shielded reinforcement learning:

(1) What types of safety guarantees can be provided by a shield under
which assumptions?

(2) How can shields be computed?
(3) How can shields be integrated in reinforcement learning?
(4) What are the challenges in shielded reinforcement learning?

The purpose of this paper is to discuss these questions and to shed
light on the current state of the art of shielded learning.

2 MODELING
Shielding requires a formal model of the environment. In this paper,
we assume that the environment consists of a finite number of states
and that time is discrete. We model an environment as a Markov
decision process (MDP) [8, Chapter 28], which is the standard model
used in reinforcement learning. MDPs have a probabilistic transition
function that captures uncertainties in the environment, including
the consequences of the agent’s actions and the behavior of other

2

Shields for Safe Reinforcement Learning CACM, 2024, CACM

Fig. 4. A snippet of the discrete model for the UAV example. The gray-shaded
squares represent buildings. The UAV can move from cell to cell. The blue
arrows indicate one possible path to the target location.

Fig. 5. Markov decision process of the environment depicted in Fig. 4.

Fig. 6. 2-player game representing the adversarial view of the MDP in Fig. 5.

agents acting within the same environment. We discuss relaxations
of these assumptions in Section 7.

Example 2.1. Figure 4 shows a discrete representation of the en-
vironment of the UAV, depicted as a two-dimensional grid. Figure 5
shows part of the MDP for this example, where the states corre-
spond to the cells in the grid and the actions are the labels of the
transitions that connect the states. The specification for this exam-
ple is simple: do not crash into a building. The red states, labeled
5A and 5B, indicate collisions of the UAV and a building, and thus
violations of the safety specification.

The agent’s actions label the edges: north (N), east (E), south
(S), and west (W). The outcome of an action is uncertain due to the
southwest wind, captured by the probabilistic transition function.
For example, if the UAV chooses Action N in Cell 4A, it will move
to Cell 4B with probability 𝑝 and to Cell 5B with probability 1 − 𝑝 .

Deterministic models. MDP models represent the environment
probabilistically. Using deterministic models, one can prevent unsafe
behavior regardless of the behavior of the environment by adopting
a worst-case view of its behavior. One reason to use such a deter-
ministic model is that not enough data may be available to derive
probabilities. Adversarial interaction between the environment and

the agent can be modeled as a 2-player game, where the next state
is determined by the actions chosen by both the agent player and
the environment player. By removing the probabilities from the
edges and replacing them with the environment’s choices, we can
transform an MDP into a 2-player game.

Example 2.2. Figure 6 depicts the 2-player game graph derived
from the MDP in Fig. 5. The agent-player first selects an action,
followed by the environment choosing its action. These decisions
determine the subsequent state. For instance, when the agent selects
Action N from Cell 3A, the environment can either move the UAV to
Cell 3B by choosing Action N’ or to Cell 4B by selecting Action NE’.

States and features. The rigor required to compute shields affects
the scalability of the approach. Fortunately, shields can often be com-
puted using models with a reduced feature space. By disregarding
any features irrelevant to safety, the original model can be pruned
to a much smaller model [19]. In the UAV example, such features
may include temperature or the designated goal position. Retain-
ing the safety-relevant dynamics of the environment allows the
use of model-based techniques to compute the shield, even when
the performance-optimal policy cannot be computed with these
model-based techniques.

3 SHIELDS WITH ABSOLUTE SAFETY GUARANTEES
In this section, we discuss how to construct shields that consider
safety as an absolute measure using deterministic 2-player games
in which the environment is treated adversarially (see Fig. 6). We
will classify actions without any risk as safe, and all other actions
as unsafe. This worldview, which does not distinguish between im-
probable and likely events, may be overly conservative. However, it
offers absolute safety guarantees, which can be essential for certain
safety-critical applications. It is important to note that future conse-
quences are considered when classifying an action as safe or unsafe:
An action taken by an agent is considered safe only if the agent
can continue to stay in safe states, regardless of the environment’s
future actions. Consequently, an action may be deemed unsafe even
if a safety-critical state is entered much later in the future.

Safety guarantees. There is a rich body of literature on how to
express properties of systems, for instance, using logics such as
Linear Temporal Logic [8, Chapter 2]. Shielding is typically used
to enforce safety properties, which state that something bad never
happens. In the UAV setting, a safety property could state “The
UAV never collides with another moving or static obstacle.” Safety
properties can also encompass temporal aspects, such as “The UAV
must reach the target within 30 minutes.”
For this paper, it suffices to note that such properties can be

converted to automata and combined with the model via standard
product constructions [8]. Without loss of generality, we can assume
that the resulting model has at least one unsafe state that indicates
a violation of the safety guarantee. A shield with absolute safety
guarantees ensures that such an unsafe state is never visited, thereby
ensuring that no safety property is violated.

Shield computation. The specification of the safety properties
that the reinforcement learning agent must fulfill can easily be
converted into a specification for the shield: The shield must (1)

3

CACM, 2024, CACM Koenighofer et al.

Fig. 7. Categorization of the state space in unsafe (red), dangerous (shaded),
and safe (white) states. The numbers show the steps unsafe states. The blue
path shows the states traversed when the UAV selects the action N starting
from Cell 2A, while the environment diverts this action to the northeast.

ensure that the agent satisfies the safety specification, and (2) allow
the agent to select any action that is safe for any future actions
of the environment. These requirements can be met by solving a
safety game on the model of the environment. Solving a safety game
involves computing a non-deterministic strategy that defines, for
each state, all actions the agent can choose to ensure that an unsafe
state is never reached. The methods for solving safety games are
well established [8, Chapter 27]. We call a state dangerous if there
exist actions that the environment may choose in the future such
that visiting an unsafe state becomes unavoidable, regardless of
the actions the agent takes. Vice-versa, a state is safe if it is not
dangerous: the agent can always avoid an unsafe state, no matter
what the environment does. In game theory, the set of safe states
is referred to as the winning region. This set is inductive, meaning
that from any safe state, the agent can select an action that leads to
another safe state, regardless of the choice taken by the environment.
A shield ensures that the agent remains within the winning region
by permitting only those actions that maintain this condition.
The set of dangerous states can be computed recursively by a

backward traversal of the graph in time linear in its size. The algo-
rithm keeps a set of dangerous states, which is initialized to the set of
unsafe states. At each step, the algorithm adds all states from which
regardless of the action of the agent, there is an environment action
that leads to a dangerous state. From such states, the environment
can enforce that a dangerous state will be visited. The algorithm
continues until a fixpoint is reached.

Example 3.1. Figure 7 illustrates the safe (white), the dangerous
(shaded red), and the unsafe (red) states for the UAV example. The
boxes surrounding the dangerous states illustrate the intermediate
steps of the algorithm for computing the winning region. Initially,
the dangerous states in Box 1 are identified, representing states from
which the environment can force a transition to an unsafe state in a
single step. For instance (referring back to Fig. 6), State 4A is danger-
ous because both for Action N and for Action E, the environment
can choose to visit to State 5B, which is an unsafe state. Similarly,
the dangerous states in Box 2 and Box 3 represent states from which
the environment can force a transition to an unsafe state in two and
three steps, respectively.

Fig. 8. The example MDP used for the Gedankenexperiment.

4 SHIELDING WITH PROBABILISTIC GUARANTEES
So far, we have used a simple deterministic model of the environ-
ment. This ensures absolute safety when successful, but it fails when
it is not possible to guarantee safety for any environment behavior.
Sensors and actuators are examples of systems that fail infre-

quently, but whose failure may lead to catastrophic results. Not
modeling that they can be faulty is overly optimistic, while the
worst-case assumption that sensors always fail is too pessimistic
to yield useful results. A realistic middle ground is to adopt a prob-
abilistic worldview, assuming that sensors and actuators fail with
some probability while ensuring that the probability of reaching
bad states remains low.

Finite horizons. In the previous section, we required the agent
to remain in the winning region forever. This requirement is not
applicable to all probabilistic systems. Since events that happen
with a very low probability at any time will happen eventually
with probability one, given enough time, restricting ourselves to an
infinite horizon would make the definition (almost) as conservative
as shields with absolute safety guarantees. Consequently, we often
consider a finite horizon of ℎ steps. The horizon can be chosen to be
the mission time, the expected battery life, or the time that a safety
procedure requires.

Permissive policies versus probabilistic shields. Lifting shielding
towards probabilistic guarantees comes with some design choices
that we illustrate with the following example.

Example 4.1. Consider the MDP shown in Fig. 8. As a safety spec-
ification, we want to ensure that the probability of reaching a bad
(red) state does not exceed 0.1within, say, 4 steps. This specification
is satisfied by any policy that takes action 𝐵 at most once.

The design choice can be exemplified by the following Gedanken-
experiment: When an agent is in state 𝑆1, should the shield allow
taking action 𝐵? Option (1) is to allow taking action 𝐵, as afterwards
always taking action 𝐴 will ensure that the specification is satisfied.
Option (2) is to only allow taking action 𝐵 if the agent did not choose
action 𝐵 in state 𝑆0. Option (3) is to not allow taking action 𝐵.

Option (2) is the perspective that permissive policies [11, 22] take.
Permissive schedulers tend to be conservative and hard to compute.
They prevent actions based on previously taken risks, even when
those risks were successfully averted. We focus on Option (1), which
aligns with the idea of Section 3: A shield allows any action for which
it can keep ensuring that it is possible to satisfy a given specification.
The clear downside of following Option (1) is best observed in the
previous example: The shield will, in every step, allow taking action
𝐵, and thus, a shielded policy may take 𝐵 in every step and thereby

4

Shields for Safe Reinforcement Learning CACM, 2024, CACM

not meet the given specification. Finally, Option (3) is feasible in the
given MDP but generally leads to situations in which every action
is prevented, even when there are safe policies.

Probabilistic shields. In line with Option (1), we call an action
safe if, after taking that action, the minimal probability of reaching
an unsafe state within ℎ steps is at most 𝜀. Otherwise, an action is
called unsafe. The winning region is the set of all states for which
at least one safe action exists.

Shield computation. To construct the shield, we must compute the
probability that something bad happens within ℎ steps, assuming
that the agent acts optimally in terms of safety in the future. Thus,
we are interested in the minimal reachability probabilities across all
possible behaviors of the shielded agent. If the exact computation
of these probabilities is not feasible, we must obtain upper bounds.

Computing (upper bounds on) the optimal reachability probability
in an MDP is a standard problem, often also referred to as stochastic
shortest path problem [3]. This task requires solving a dynamic
program. The minimal reachability probability when taking action
𝑎 in state 𝑠 is the expected minimal reachability probability over
the successors. The set of dangerous states is then determined by
computing the minimal probability of reaching a bad state within ℎ
steps.
The resulting dynamic program can be solved in time linear in

the number of states, actions, and the horizon. As mentioned above,
similar queries have also been defined for more intricate temporal
properties and can be solved via adaptions of value iteration, policy
iteration, or linear programming.

Example 4.2. The following equations give a fragment of a dy-
namic program to define the minimal probability to reach bad states
in Fig. 5, where 𝑥𝑖 𝑗,ℎ describes the minimum probability to reach a
bad state from Cell ⟨𝑖, 𝑗⟩ within ℎ steps:

𝑥5A,ℎ = 𝑥5B,ℎ = 𝑥5A,ℎ−1 = 𝑥5B,ℎ−1 = . . . = 1,
𝑥4A,ℎ = min{𝑝 · 𝑥5A,ℎ−1 + (1 − 𝑝)𝑥5B,ℎ−1︸ ︷︷ ︸

E

, 𝑝 · 𝑥4B,ℎ−1 + (1 − 𝑝)𝑥5B,ℎ−1︸ ︷︷ ︸
N

, . . . },

𝑥3A,ℎ = min{𝑝 · 𝑥4A,ℎ−1 + (1 − 𝑝)𝑥4B,ℎ−1︸ ︷︷ ︸
E

, 𝑝 · 𝑥3B,ℎ−1 + (1 − 𝑝)𝑥4B,ℎ−1︸ ︷︷ ︸
N

, . . . } .

Given thewinning region and the set of safe actions, the shield can
be directly deployed. In case a state outside of the winning region
is entered during runtime, a fallback strategy needs to be defined,
such as selecting a predefined action (e.g., braking or landing), or
allowing only the safest possible action.

5 BENEFITS AND DRAWBACKS
In this section, we discuss the main benefits and potential draw-
backs of shielded reinforcement learning. Compared to standard
reinforcement learning without any mechanism to ensure safety,
shielding provides two main advantages:
Safety assurance. When using shields with absolute safety guar-
antees, a shielded learning agent will never violate the critical spec-
ification, whether during training or deployment.

Improved sample efficiency. Shielding often reduces the number
of samples needed to learn an optimal policy by preventing the agent
from taking unsafe actions, especially when rewards are sparse [7].
Basically, the agent avoids exploring unsafe parts of the state space,
allowing it to gather more experiences in the safe states.

Shielding features the following additional characteristics:

Shields are permissive. Shields do not hinder the execution of
safe actions. Safe actions will not be masked during pre-shielding,
and will not be overwritten during post-shielding. As long as the
agent does not attempt to choose unsafe actions, it acts as if there
is no shield.
Convergence. Reinforcement learning algorithms that converge
on MDPs also converge in the presence of a shield. Essentially, the
joint behavior of the shield and the environment MDP can again
be modeled as an MDP, as long as the corrections (post-shielding)
and restrictions (pre-shielding) from the shield are fixed and do not
change over time [12].
Dynamic adaptation. Shields with probabilistic guarantees may
adapt their probability threshold dynamically based on the agent’s
performance and the state of the environment. For example, if the
agent learns new behaviors that approach unsafe regions, the shield
can tighten its safety constraints. Conversely, as the agent becomes
more proficient, the shield can gradually relax the constraints to
allow for more exploration [7].

Shielding is a flexible approach and can be combined with other
approaches to enhance safety or efficiency while learning:

Guided learning via reward shaping. In addition to preventing
unsafe actions, the shield can modify the reward function to incor-
porate safety considerations. It can add negative rewards to risky
actions or provide additional rewards for actions that maintain
safety with high probability. This encourages the agent to learn
policies that are both effective and safe.
Incorporating prior knowledge. Shields can incorporate expert
knowledge about the task to be learned. Since any objective incor-
porated into the shield is enforced during runtime, the agent does
not necessarily need to learn these properties. Consequently, the
agent’s reward function can be simpler, potentially accelerating the
learning process [2].

The following considerations should be taken into account when
performing shielding.

Shielding depends on a model. As with any formal method, the
problem must be well understood and articulated. While a shield
ensures that a state marked “collision” is never reached, it cannot
ensure, for instance, that an object is correctly classified by a vision
system. Also, the shield’s correctness depends on the model being
correct. If the model incorrectly states that a state is not problematic,
the shield will not protect against reaching it.
Possible reduced learning performance. Although shields often
speed up learning, they may also do the opposite, as exploring un-
safe states can help the agent to generalize and understand its task.
A restrictive shield may hinder thorough exploration of the environ-
ment, which is crucial for discovering optimal policies. In particular,
changes made by post-shielding may decrease learning performance.

5

CACM, 2024, CACM Koenighofer et al.

Fig. 9. A gridworld containing two UAVs. The learning agent controls UAV-1
to deliver a package while avoiding collisions with UAV-2.

Computational effort. An MDP describing a realistic environ-
ment may have a very large number of states and transitions, even
when it includes only safety-relevant features. Consequently, it may
be challenging to efficiently compute a shield from the MDP. These
computational aspects remain an ongoing area of research.

6 SHIELDING DEMONSTRATIONS
In this section, we demonstrate the effects of shielding using our
running example of a UAV delivering packages. In the first example,
discussed in Section 6.1, we model the environment as adversarial
and deploy a pre-shield that provides absolute safety guarantees. In
contrast, we use pre-shields with probabilistic safety guarantees in
Section 6.2 and discuss the results.1

6.1 Collision Avoidance with Absolute Safety Guarantees
Figure 9 illustrates the grid world for the first demonstration. The
agent’s task is to control UAV-1 to deliver packages to a designated
target position. The safety objective is to avoid collisions withUAV-2
(framed in red) and buildings.

We model UAV-2 adversarially, assuming that it actively tries to
collide with UAV-1. This way, the shield’s safety guarantees hold
regardless of the behavior of UAV-2. (See Section 3.). We deploy
shielded and unshielded reinforcement learning to search for an
optimal and safe policy to deliver the package. During training, the
agent is rewarded when reaching the goal and receives a negative
reward for violating safety. Additionally, it receives a small negative
reward for each step taken.

Results. The learning results are illustrated in Figure 10. The or-
ange curves represent the results for unshielded learning, while the
blue curves show the results for shielded learning with absolute
safety guarantees. Figure 10a reports the reward, and Figure 10b
shows the accumulated safety violations, both averaged over five
runs. In this example, shielding clearly enhances learning perfor-
mance. The challenging part of this learning task is avoiding colli-
sions with UAV-2. Since the shield handles this aspect, the shielded
agent quickly learns to complete the package delivery efficiently.
While the unshielded agent eventually learns to avoid collisions
and to achieve a similar expected reward, the shielded agent never
violates safety and converges in a fraction of the time.

1Experimental setup: The agents were trained using the maskable Proximal Policy
Optimization implementation provided by Stable-Baselines3 [34] with the default
hyperparameters. The shields were computed using the shield synthesis tool TEMPEST
[33]. The details of the experiments can be found in the supplemental material in the
Digital Library.

0k 50k 100k

−1

0

Timesteps

Re
w
ar
d

unshielded
shielded

(a) Reward averaged over five runs.

0k 50k 100k
0

500

1,000

1,500

Timesteps

Vi
ol
at
io
ns unshielded

shielded

(b) Accumulated safety violations averaged over five runs.

Fig. 10. Results for reinforcement learning in the gridworld shown in Figure 9.

Fig. 11. A gridworld containing a UAV, controlled by the agent, which must
deliver a package. The wind’s direction per cell is indicated by varying shading.
Paths are illustrated that were learned when using no shield (orange path) or
shields with different probability thresholds (blue paths).

6.2 Collision Avoidance with Probabilistic Safety Guarantees
The grid world for the second demonstration is depicted in Fig. 11. In
this example, the UAV has to deliver a package without crashing into
a building, while wind affects its movement. The wind direction
is modeled individually for each cell, with a 5% probability that
the wind displaces the UAV in its direction. We compute shields
that provide probabilistic safety guarantees (see Section 4), using
a finite horizon of 20 time steps and the probability thresholds
𝜀 ∈ {0.00, 0.03, 0.05}, where 𝜀 limits the risk the agent is allowed to
take. As before, we compare unshielded and shielded reinforcement
learning for finding a policy for delivering packages, using a similar
reward function.

Results. The orange curves in Figure 12 depict the reward and
the number of safety violations observed during training without a
shield. The blue curves depict the same metrics when shields with
different probability thresholds are applied. As expected, the lower 𝜀
is, the fewer safety violations occur. Interestingly, when using either
shield that allows the agent to take some risk, the agent learns faster
and achieves a higher reward compared to using no shield or a
shield that completely forbids taking risks.
Figure 11 illustrates the learned paths for the different learn-

ing settings. The unshielded agent learns to take the shortest and
narrowest path (orange), which involves a relatively high risk of

6

Shields for Safe Reinforcement Learning CACM, 2024, CACM

0k 200k 400k
−2

−1

0

1

Timesteps

Re
w
ar
d

unshielded
𝜀 = 0.05
𝜀 = 0.03
𝜀 = 0.0

(a) Average Reward.

0k 200k 400k
0

200
400
600

Timesteps

Vi
ol
at
io
ns unshielded

𝜀 = 0.05
𝜀 = 0.03
𝜀 = 0.0

(b) Accumulated safety violations.

Fig. 12. Results for reinforcement learning in the gridworld shown in Figure 11.

colliding with a building. In contrast, the shielded agents take longer
but safer routes. The shields with 𝜀 = 0.03 and 𝜀 = 0.05 allow the
path between the buildings (light blue), enforcing only a slightly
larger distance from the buildings. Thus, most of the agent’s flexibil-
ity in choosing the path to the target is maintained, while its search
space is reduced by prohibiting too risky routes. The longest path
(dark blue), which circumnavigates the building, is taken using the
shield with 𝜀 = 0.00, resulting in a lower final reward.

Further Applications. Deep reinforcement learning began gaining
significant attention around 2013, with a key breakthrough being
the development of DeepMind’s Deep Q-Network. The first works
on shielded RL emerged in 2018. Much like the early development
of RL, shielding was initially applied in computer games [17]. Only
recently has it been applied to prominent application domains such
as robotics [20] and autonomous driving [18], where ensuring safety
is critical. These developments represent the first steps in applying
shielded RL to real-world challenges.

7 STATE OF THE ART AND CHALLENGES
Shields for reinforcement learning were first introduced in [24], but
were originally introduced in the setting of reactive systems [5].
Shielding can be interpreted in the general framework of Supervisory
Control Theory [35], which discusses how a high-level controller (a
shield) may disable certain actions of lower-level controllers (an RL
agent). It should be noted that similar ideas have been introduced
independently by others. Notably, Fulton and Platzer introduced the
related concepts of Justified Speculative Control [15] in continuous
settings using a theorem prover as a verification engine.
In this section, we will describe extensions, covering partial ob-

servability, properties that go beyond mere safety, continuous sys-
tems, and multi-agent systems. We will not give an overview of
other methods to guarantee safety in reinforcement learning [16].
Similarly, for a comprehensive survey on formal runtime enforce-
ment techniques, we refer to [13].

Partially Observable Environments. So far, we considered fully
observable environments, where the shield (and the agent) knows
the precise state. This assumption may be unrealistic. A standard

approach is to consider partially observable environments where
only a part of the state can be observed. Shields are then computed
from partially observable Markov Decision Processes (POMDPs). A
challenge for these models is that computing policies is hard or even
undecidable [26]. Fortunately, conservative shields can potentially
be computed by under-approximating the safe actions. Such shields
can be constructed for non-trivial examples, guaranteeing safety
and potentially improving the empirical learning rate [7].

Continuous State and Action Spaces. Shielding can be extended to
systems with continuous state and action spaces. Using continuous
systems increases the theoretical complexity and tractability of
computing shields. Yet, several papers address this extended problem.
For example, Fisac et al. [14] provide a Bayesian method to provide
safety guarantees for robot systems. Kochdumper et al. [23] propose
a post-shielding approach for cyber-physical systems with nonlinear
dynamics using zonotopes, and David et al. [10] proposed a pre-
shielding approach for systems with continuous time. Brorholt et al.
[6] present an approach to shielding based on discretization, while
Rodriguez et al. [36] present a method that is based on properties
written in LTL modulo theories, which allows reasoning over non-
Boolean domains. Simplex-based approaches for guaranteed safety
in a continuous setting were considered in [21, 27, 32].

Multi-Agent Systems. Shielding multi-agent systems is difficult, as
most verification problems are undecidable in a distributed setting.
Nevertheless, shields for multi-agent systems have been introduced
using runtime verification results, in both centralized and decentral-
ized settings [4, 12, 28].

Beyond Safety. Safety properties require that something bad never
happens; that is, any violation of a safety property consists of a finite
“bad” trace. This class is relatively broad, encompassing invariants
such as “a collision never happens” as well as bounded properties,
such as “every request must be answered within five time units.”
However, various unbounded properties are not safety properties.
For example, consider that a UAV should eventually reach its desti-
nation. Properties for which no finite bad trace can, by itself, demon-
strate that the property is violated are called liveness properties [8].
Under certain assumptions, a liveness property can be ensured by a
shield that merely prevents an agent from entering a state where
satisfying the property becomes impossible. For instance, a UAV
should not drain its battery before reaching its destination, as do-
ing so would prevent the UAV from ever reaching its destination.
One such assumption could be that the agent follows an 𝜖-greedy
strategy [7], ensuring that it will eventually explore any unshielded
action. In the absence of such assumptions about the agent’s behav-
ior, shielding becomes more challenging, as the shield must enforce
specific actions to ensure the satisfaction of the liveness property.
The main question is when the shield should interfere. Specifically,
at any point in time, if the shield intervenes to satisfy the liveness
property, this intervention may be premature, as the agent might
have satisfied the property on its own at some later point in time.
One possible approach to decide when to interfere employs quanti-
tative methods, assigning costs to violations of a property and to
the shield’s interference [2].

7

CACM, 2024, CACM Koenighofer et al.

8 CONCLUSION
In this paper, we provided an overview of a safe reinforcement
learning technique referred to as shielding. We discussed common
assumptions that a shield requires, such as the availability of a suit-
able model. We provided a clear distinction between the two main
types of shields, namely those that provide absolute safety guar-
antees and those that yield probabilistic guarantees. We discussed
several key advantages, properties, and challenges of shielding and
presented demonstrations that highlight important practical aspects
of shielded reinforcement learning.

Acknowledgements. We thankChaoWang and Robert Koenighofer
for the inspiration and the work on the initial formulation of shields;
Ruediger Ehlers for his great contributions to shields for reinforce-
ment learning; Ufuk Topcu for many interesting ideas; our many
other collaborators and students for ideas, discussions, ideas, and
implementations; and Dejan Nickovic, Benedikt Maderbacher, and
the anonymous reviewers for many comments that improved the
paper. Illustrations by Theresa Dachauer.
This research was funded in whole, or in part, by the Austrian

Science Fund (FWF) [10.55776/S114] and [10.55776/W1255], by the
State Government of Styria, Austria – Department Zukunftsfonds
Steiermark, via the ERC Starting Grant 101077178 (DEUCE), and via
the NWO Veni Grant 222.147 (ProMiSe). For the purpose of open ac-
cess, the author has applied a CC BY public copyright licence to any
Author Accepted Manuscript version arising from this submission.

Bettina Könighofer is an assistant professor at Graz University of
Technology, Graz, Austria.

Roderick Bloem is a professor at Graz University of Technology,
Graz, Austria.

Nils Jansen is a professor at Ruhr University Bochum, Germany,
and an associate professor at Radboud University, Nijmegen, the
Netherlands.

Sebastian Junges is an assistant professor at Radboud University,
Nijmegen, the Netherlands.

Stefan Pranger is a Ph.D. student at Graz University of Technology,
Graz, Austria.

REFERENCES
[1] Arulkumaran, K., Deisenroth, M. P., Brundage, M., and Bharath, A. A. Deep

reinforcement learning: A brief survey. IEEE Signal Processing Magazine 34, 6
(2017), 26–38.

[2] Avni, G., Bloem, R., Chatterjee, K., Henzinger, T. A., Könighofer, B., and
Pranger, S. Run-time optimization for learned controllers through quantitative
games. In Computer Aided Verification (CAV) (2019), vol. 11561 of Lecture Notes in
Computer Science, Springer, pp. 630–649.

[3] Baier, C., and Katoen, J. Principles of model checking. MIT Press, 2008.
[4] Bharadwaj, S., Bloem, R., Dimitrova, R., Könighofer, B., and Topcu, U. Syn-

thesis of minimum-cost shields for multi-agent systems. In American Control
Conference (ACC) (2019), IEEE, pp. 1048–1055.

[5] Bloem, R., Könighofer, B., Könighofer, R., and Wang, C. Shield synthesis:
Runtime enforcement for reactive systems. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS) (2015), vol. 9035
of Lecture Notes in Computer Science, Springer, pp. 533–548.

[6] Brorholt, A. H., Jensen, P. G., Larsen, K. G., Lorber, F., and Schilling, C.
Shielded reinforcement learning for hybrid systems. In Symposiom on Bridging
the Gap Between AI and Reality (AISoLA) (2023), vol. 14380 of Lecture Notes in
Computer Science, Springer, pp. 33–54.

[7] Carr, S., Jansen, N., Junges, S., and Topcu, U. Safe reinforcement learning via
shielding under partial observability. In Conference on Artificial Intelligence (AAAI)
(2023), AAAI Press, pp. 14748–14756.

[8] Clarke, E. M., Henzinger, T. A., Veith, H., and Bloem, R., Eds. Handbook of
Model Checking. Springer, 2018.

[9] Dalrymple, D., Skalse, J., Bengio, Y., Russell, S., Tegmark, M., Seshia, S.,
Omohundro, S., Szegedy, C., Goldhaber, B., Ammann, N., Abate, A., Halpern,
J., Barrett, C. W., Zhao, D., Zhi-Xuan, T., Wing, J., and Tenenbaum, J. B.
Towards guaranteed safe AI: A framework for ensuring robust and reliable AI
systems. CoRR abs/2405.06624 (2024).

[10] David, A., Jensen, P. G., Larsen, K. G., Mikucionis, M., and Taankvist, J. H.
Uppaal stratego. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS) (2015), vol. 9035 of Lecture Notes in
Computer Science, Springer, pp. 206–211.

[11] Dräger, K., Forejt, V., Kwiatkowska, M. Z., Parker, D., and Ujma, M. Permis-
sive controller synthesis for probabilistic systems. Logical Methods in Computer
Science 11, 2 (2015).

[12] Elsayed-Aly, I., Bharadwaj, S., Amato, C., Ehlers, R., Topcu, U., and Feng, L.
Safe multi-agent reinforcement learning via shielding. In International Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS) (2021), ACM, pp. 483–
491.

[13] Falcone, Y., Fernandez, J., and Mounier, L. What can you verify and enforce
at runtime? International Journal on Software Tools for Technology Transfer 14, 3
(2012), 349–382.

[14] Fisac, J. F., Akametalu, A. K., Zeilinger, M. N., Kaynama, S., Gillula, J. H., and
Tomlin, C. J. A general safety framework for learning-based control in uncertain
robotic systems. IEEE Transactions on Automatic Control 64, 7 (2019), 2737–2752.

[15] Fulton, N., and Platzer, A. Safe reinforcement learning via formal methods:
Toward safe control through proof and learning. In AAAI (2018), AAAI Press.

[16] García, J., and Fernández, F. A comprehensive survey on safe reinforcement
learning. Journal of Machine Learning Research 16 (2015), 1437–1480.

[17] Giacobbe, M., Hasanbeig, M., Kroening, D., and Wijk, H. Shielding atari
games with bounded prescience. In AAMAS ’21 (May 2021), AAMAS Conference
proceedings, International Foundation for Autonomous Agents and Multiagent
Systems, p. 1507–1509.

[18] Hu, H., Nakamura, K., and Fisac, J. F. Sharp: Shielding-aware robust planning
for safe and efficient human-robot interaction. IEEE Robotics and Automation
Letters 7, 2 (2022), 5591–5598.

[19] Jansen, N., Könighofer, B., Junges, S., Serban, A., and Bloem, R. Safe rein-
forcement learning using probabilistic shields (invited paper). In International
Conference on Concurrency Theory (CONCUR) (2020), vol. 171 of LIPIcs, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, pp. 3:1–3:16.

[20] Ji, G., Yan, J., Du, J., Yan, W., Chen, J., Lu, Y., Rojas, J., and Cheng, S. S. Towards
safe control of continuum manipulator using shielded multiagent reinforcement
learning. IEEE Robotics and Automation Letters 6, 4 (2021), 7461–7468.

[21] Johnson, T. T., Bak, S., Caccamo, M., and Sha, L. Real-time reachability for
verified simplex design. ACM Transactions on Embedded Computing Systems
(TECS) 15, 2 (2016), 1–27.

[22] Junges, S., Jansen, N., Dehnert, C., Topcu, U., and Katoen, J. Safety-constrained
reinforcement learning for mdps. In International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS) (2016), vol. 9636 of
Lecture Notes in Computer Science, Springer, pp. 130–146.

[23] Kochdumper, N., Krasowski, H., Wang, X., Bak, S., and Althoff, M. Provably
safe reinforcement learning via action projection using reachability analysis and
polynomial zonotopes. CoRR abs/2210.10691 (2022).

[24] Könighofer, B., Alshiekh, M., Bloem, R., Humphrey, L. R., Könighofer, R.,
Topcu, U., and Wang, C. Shield synthesis. Formal Methods in System Design 51, 2
(2017), 332–361.

[25] Laud, A., and DeJong, G. The influence of reward on the speed of reinforcement
learning: An analysis of shaping. In International Conference on Machine Learning,
(ICML) (2003), AAAI Press, pp. 440–447.

[26] Madani, O., Hanks, S., and Condon, A. On the undecidability of probabilistic
planning and related stochastic optimization problems. Artificial Intelligence 147,
1-2 (2003), 5–34.

[27] Maderbacher, B., Schupp, S., Bartocci, E., Bloem, R., Nickovic, D., and
Könighofer, B. Provable correct and adaptive simplex architecture for bounded-
liveness properties. In Symposium on Model Checking Software (SPIN) (2023),
vol. 13872 of Lecture Notes in Computer Science, Springer, pp. 141–160.

[28] Melcer, D., Amato, C., and Tripakis, S. Shield decentralization for safe multi-
agent reinforcement learning. In Annual Conference on Neural Information Pro-
cessing Systems, (NeurIPS) (2022).

[29] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,
M. G., Graves, A., Riedmiller, M. A., Fidjeland, A., Ostrovski, G., Petersen,
S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra,
D., Legg, S., and Hassabis, D. Human-level control through deep reinforcement
learning. Nature 518, 7540 (2015), 529–533.

[30] Moldovan, T. M., and Abbeel, P. Safe exploration in markov decision processes.
In International Conference on Machine Learning, (ICML) (2012).

[31] Mousavi, S. S., Schukat, M., and Howley, E. Deep reinforcement learning: an

8

Shields for Safe Reinforcement Learning CACM, 2024, CACM

overview. In Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016:
Volume 2 (2018), Springer, pp. 426–440.

[32] Phan, D. T., Grosu, R., Jansen, N., Paoletti, N., Smolka, S. A., and Stoller,
S. D. Neural simplex architecture. In NASA Formal Methods - 12th International
Symposium, NFM 2020, Moffett Field, CA, USA, May 11-15, 2020, Proceedings (2020),
R. Lee, S. Jha, and A. Mavridou, Eds., vol. 12229 of Lecture Notes in Computer
Science, Springer, pp. 97–114.

[33] Pranger, S., Könighofer, B., Posch, L., and Bloem, R. TEMPEST - synthesis
tool for reactive systems and shields in probabilistic environments. In Automated
Technology for Verification and Analysis, (ATVA) 2021 (2021), vol. 12971 of Lecture
Notes in Computer Science, Springer, pp. 222–228.

[34] Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., and Dormann,
N. Stable-baselines3: Reliable reinforcement learning implementations. Journal
of Machine Learning Research 22 (2021), 268:1–268:8.

[35] Ramadge, P. J., and Wonham, W. M. Supervisory control of a class of discrete

event processes. SIAM Journal on Control and Optimization 25, 1 (1987), 206–230.
[36] Rodriguez, A., Amir, G., Corsi, D., Sanchez, C., and Katz, G. Shield synthesis

for LTL modulo theories. CoRR abs/2406.04184 (2024).
[37] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal

policy optimization algorithms. CoRR abs/1707.06347 (2017).
[38] Seshia, S. A., Sadigh, D., and Sastry, S. S. Toward verified artificial intelligence.

Communications of the ACM 65, 7 (2022), 46–55.
[39] Sutton, R. S., and Barto, A. G. Reinforcement learning - an introduction. Adaptive

computation and machine learning. MIT Press, 1998.
[40] Tang, C., Liu, C., Chen, W., and You, S. D. Implementing action mask in proximal

policy optimization (PPO) algorithm. Information & Communications Technology
Express 6, 3 (2020), 200–203.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

9

	Abstract
	1 Introduction
	2 Modeling
	3 Shields with Absolute Safety Guarantees
	4 Shielding with probabilistic guarantees
	5 Benefits and Drawbacks
	6 Shielding Demonstrations
	6.1 Collision Avoidance with Absolute Safety Guarantees
	6.2 Collision Avoidance with Probabilistic Safety Guarantees

	7 State of the Art and Challenges
	8 Conclusion
	References

