TU

Grazm

Roland Czerny, BSc

Exploiting GPU Caches
from the Browser with WebGPU

MASTER’S THESIS
to achieve the university degree of
Diplom-Ingenieur(in)

Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Advisors

Daniel Gruss

Lukas Giner

Institute of Applied Information Processing and Communications

Graz, May 2024



AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated
all material which has been quoted either literally or by content from the
sources used. The text document uploaded to TUGRAZonline is identical to
the present master’s thesis.

Date, Signature



Acknowledgements

I would like to express my gratitude to my advisors, Lukas Giner and Daniel Gruss, for
their support and feedback throughout the development of this thesis. Special thanks
to Fabian, whose master’s thesis on GPU side channels was instrumental in helping me
become acquainted with the topic.

I am deeply thankful to my friends and family for their constant support. A heartfelt
thank you to my parents, my brother Flo, and my grandparents. I feel incredibly
privileged to be surrounded by such a loving family.

Lastly, a special thank you goes to Lisa for her unwavering love and support. Her
determination is truly inspiring, and her constant encouragement and patience have been
essential in making this work possible.

iii



Abstract

The use of GPUs for general-purpose computations has increased steadily in recent years.
The massive parallelism of GPUs benefits many applications, including security-critical
computations such as AES. Since computations on sensitive data have become more
common on GPUs, the scrutiny must also increase. Meanwhile, WebGPU facilitates easy
access to compute shaders from every web browser. Previous studies have shown that
GPUs are susceptible to several cache-based side-channel attacks originally designed for
CPUs. Prior work demonstrated Prime+Probe attacks in various scenarios from native
code.

This work presents the first side-channel attack from within the browser using the
WebGPU API. We construct several generic primitives to build a self-configuring attack
that works across various different devices. We present a technique to distinguish L2
cache hits from cache misses in WebGPU, an essential building block for every cache
attack. We use this building block to automatically detect parameters like the cache
hit-miss threshold, the L2 cache size, and the number of cache sets. We demonstrate the
effectiveness of these primitives on 12 desktop GPUs from 5 different generations and 2
vendors.

A crucial step to mount a Prime+Probe cache attack is to find eviction sets. We
present the first parallel eviction-set-finding algorithm. The algorithm is tailored to
GPUs and reliably finds more than 80 % of sets on all but one tested Nvidia GPU. We
find the sets in 2 to 12 minutes, depending on the GPU.

We further evaluate a native-to-browser data-exfiltration scenario. For this, we con-
struct the first Prime+Probe covert channel from a native CUDA application to a
WebGPU application in the browser. Our covert channel reaches a true channel capacity
of up to 10.9kB/s. The self-configuring nature of our algorithms and the brief time
frame of under 15 minutes enable drive-by attacks during internet browsing. Our attack
requires no user interaction and works across a variety of Nvidia GPUs.

The content of this thesis was a major contribution to a conference paper at AsiaCCS’24
by Giner et al. [1]. The paper demonstrates more practical attacks using our generic
primitives. The attacks presented in the paper include an inter-keystroke timing attack,
which exploits timing variations between keystrokes, and an end-to-end attack that
compromises the entire AES encryption process running natively in CUDA.

Our work demonstrates that access to GPUs from the browser can be a powerful tool
for attackers. We suggest that browsers treat access to the GPU like access to other
security- and privacy-related resources, like the microphone or camera.

Keywords: Security - GPU - WebGPU - Side-channel
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Kurzfassung

Die Verwendung von GPUs fiir allgemeine Berechnungen hat in den letzten Jahren stetig
zugenommen. Der ausgeprigte Parallelismus von GPUs bringt vielen Anwendungen,
einschlielich sicherheitskritischer Berechnungen wie der AES-Verschliisselung, erhebliche
Vorteile. Mit der steigenden Nutzung von GPUs fiir die Verarbeitung sensibler Daten
wird eine intensivere Uberpriifung immer wichtiger. Zugleich ermdglicht WebGPU einen
einfachen Zugriff auf Compute-Shader in jedem Webbrowser. Friithere Studien haben
die Anfilligkeit von GPUs fiir verschiedene cache-basierte Seitenkanalangriffe aufgezeigt,
die urspriinglich fiir CPUs entwickelt wurden. Dabei wurden Prime+Probe-Angriffe in
nativen Code-Umgebungen demonstriert.

Diese Arbeit prasentiert den ersten Seitenkanalangriff innerhalb des Browsers unter
Verwendung der WebGPU API. Wir konstruieren mehrere generische Primitive, um einen
selbstkonfigurierenden Angriff zu bauen, der auf verschiedenen Geriten funktioniert.
Wir prisentieren eine Technik zur Unterscheidung von L2-Cache-Treffern und Cache-
Verfehlungen in WebGPU, einem grundlegenden Element fiir jeden Cache-Angriff. Diesen
Baustein nutzen wir, um automatisch Parameter wie den Grenzwert fiir Cache-Treffer und
-Verfehlungen, die Grofie des L2-Caches und die Anzahl der Cache-Sets zu bestimmen. Wir
demonstrieren die Wirksamkeit dieser Primitive auf 12 Desktop-GPUs aus 5 verschiedenen
Generationen und 2 Herstellern.

Ein entscheidender Schritt, um einen Prime+Probe Cache-Angriff zu starten, ist das
Finden von Eviction-Sets. Wir prisentieren den ersten parallelen Algorithmus zum Finden
von Eviction-Sets. Der Algorithmus ist auf GPUs zugeschnitten und findet zuverlédssig
mehr als 80 % der Sets auf allen bis auf eine der getesteten Nvidia GPUs. Wir finden die
Sets in 2 bis 12 Minuten, je nach GPU.

Wir analysieren weiterhin ein Szenario zur Datenexfiltration von einer nativen An-
wendung zum Browser. Dazu haben wir den ersten Prime+Probe-basierten Cache-
Covert-Kanal entwickelt, der Daten von einer nativen CUDA-Anwendung zu einer
WebGPU-Anwendung im Browser iibertrigt. Unser Cache-Covert-Kanal erreicht ei-
ne Ubertragungsgeschwindigkeit von bis zu 10.9 kB /s. Die selbstkonfigurierende Natur
unserer Algorithmen und der kurze erforderliche Zeitrahmen von weniger als 15 Minuten
ermdglichen Drive-by-Angriffe wihrend des Surfens im Internet. Unser Angriff erfordert
keine Benutzerinteraktion und funktioniert auf einer Vielzahl von Nvidia GPUs.

Der Inhalt dieser Thesis war ein wichtiger Beitrag zu einem Konferenzpapier bei
AsiaCCS’24 von Giner et al. [1]. Das Papier demonstriert weitere praktische Angriffe
unter Verwendung unserer generischen Primitive. Die in dem Papier beschriebenen
Angriffe beinhalten einen Inter-Keystroke-Timing-Angriff, der Zeitvariationen zwischen
Tastenanschlagen ausnutzt, sowie einen Ende-zu-Ende-Angriff, der den gesamten in
CUDA nativ ausgefiihrten AES-Verschliisselungsprozess kompromittiert.



Unsere Arbeit zeigt, dass der Zugang zu GPUs aus dem Browser ein méchtiges Werkzeug
fiir Angreifer sein kann. Wir schlagen vor, dass Browser den Zugang zur GPU wie den
Zugang zu anderen sicherheits- und datenschutzrelevanten Ressourcen wie dem Mikrofon
oder der Kamera behandeln.

Schlagworter:  Sicherheit - GPU - WebGPU - Seitenkanal
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Chapter 1
Introduction

Traditionally, GPUs are highly specialized devices designed for graphics rendering. Com-
pared to CPUs, GPUs offer high levels of parallelism and throughput at the cost of
reduced flexibility and higher latency. The inherent massive parallelism of GPUs also
benefits various other applications, as the work from Thompson et al. [2] from 2002
suggests. During the early stages of general-purpose computing on GPUs, tedious work
was required to translate problems into the graphics domain to be solved on GPUs [3].

To relieve developers of this burden, Nvidia released CUDA [4] in 2007. CUDA and
OpenCL [5], an open standard introduced by the Khronos Group in 2009, are general-
purpose computing frameworks for GPUs. With CUDA and OpenCL, developers can
create their own compute shaders for execution on compatible GPUs, freeing them from
the constraints of the fixed graphics pipeline. General-purpose computing on GPUs has
become increasingly important in various fields due to the immense parallel processing
power offered by modern GPUs. While the individual speed of GPUs is still slow compared
to CPUs, parallelizable workloads profit from thousands of cores. GPUs play an important
role in accelerating deep learning algorithms in artificial intelligence [6] to speeding up
scientific simulations. GPUs enhance virtualization and cloud computing services by
offloading graphics rendering and computational tasks [7]. Even in cryptography, GPUs
contribute to accelerating encryption and decryption processes [8, 9]. Overall, general-
purpose computing on GPUs has become a cornerstone technology, pushing the boundaries
of computation across various domains. Additionally, GPUs have become ubiquitous
across devices, from desktop computers to laptops, smartphones, and servers.

Subsequently, GPUs became an interesting target for attackers. Jiang et al. [10] were
the first to demonstrate that GPUs are vulnerable to the same cache attacks as CPUs.
Their attack code runs on the CPU and uses the shared cache to leak information from the
GPU. Similarly, other works assume an attacker on the CPU to spy on GPU applications
through leakage from shared components [11, 12, 13, 14]. Several works [15, 16, 6, 17]
demonstrate side channels where attacker and victim are co-located on the same GPU.
All attacks mentioned above rely on native code execution on the victim’s machine.
However, acquiring native code execution is often hard to achieve for any attacker.

In contrast to native code, code execution in a victim’s browser is often easier to
achieve, as users routinely run untrusted, third-party code on websites. WebGL is an
API for GPU graphics rendering in the browser. Prior work demonstrates several attacks
with WebGL [18, 19].
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The introduction of WebGPU [20], a JavaScript GPU API and successor of WebGL,
brings general-purpose computing on GPUs to browsers. All major browser vendors are
actively contributing to the development of WebGPU [21], with the goal of making it
the future standard for utilizing GPU capabilities within browsers. From the beginning,
the designers of WebGPU incorporated protections against side-channel vulnerabilities,
including restricted access to timers and mitigations similar to those against the malicious
SharedArrayBuffer use [22]. Furthermore, WebGPU does not provide functions to
query the underlying hardware’s cache size or other architectural details. No works have
demonstrated side-channel attacks in WebGPU so far. This leads us to the following
research questions: Can we construct all necessary building blocks for a GPU side-channel
attack in WebGPU? Is it possible to construct a generic, self-configuring attack code that
works on various GPU devices without user interaction?

In this thesis, we present the first side-channel attack from the restricted browser
environment using the WebGPU API. We construct a timer that reliably distinguishes
cache hits from cache misses. For this distinction, we automatically determine a threshold
value. Our self-configuring attack code detects the cache size and the number of cache
sets of the underlying GPU hardware. We evaluate these primitives across 12 desktop
GPUs from 5 different generations and 2 vendors.

We use this information and the building blocks to construct the first parallelized
L2 cache eviction-set-finding algorithm. Based on prior work on eviction-set-finding
algorithms on CPUs and GPUs, we develop an algorithm that works in the restricted
browser environment. In contrast to native APIs, WebGPU does not provide fine-grained
control over cache eviction. Furthermore, WebGPU does not support conventional
concepts such as pointers and addresses, a limitation addressed by the group-elimination
method proposed by Qureshi et al. [23]. Building on this method, we developed a
parallel eviction-set-finding algorithm tailored for WebGPU. Our algorithm reliably finds
more than 80 % of sets on all but one tested Nvidia GPU. Depending on the GPU, the
set-finding takes between 2 to 12 minutes.

We use the eviction sets to construct the first Prime+Probe [24, 25] cache covert
channel in WebGPU. We evaluate a data-exfiltration scenario from a native CUDA
application to a WebGPU receiver in the browser. We use a variant of CJAG [26] to
select the eviction sets used for transmission between sender and receiver. Using the
parallelism of GPUs, we are able to use 1024 sets for message transmission. Qur covert
channel reaches a true channel capacity of up to 10.9kB/s.

We evaluate our attack on Windows and Linux systems using Chromium versions 112
to 115 and Firefox 114. Our work demonstrates that access to general-purpose computing
on GPUs in web browsers opens the door for various attacks. Our attack works in a time
frame of less than 15 minutes and without user interaction, so a drive-by attack in a
browser tab is feasible.

While GPUs improve the performance of a wide range of applications in the browser, we
emphasize that access to GPUs should be treated like other security- and privacy-related
resources, such as camera and microphone.
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The content of this thesis was a major contribution to a conference paper at AsiaCCS’24
by Giner et al. [1]. The paper explores additional microarchitectural attacks based on
the same techniques developed for this work. These attacks include an inter-keystroke
timing attack and a full AES key recovery from the browser on a native AES CUDA
application.

Outline. We provide background information about GPUs, GPU APIs, and cache
attacks in Chapter 2. In Chapter 3, we present the primitives and set-finding algorithm
to use Prime+4Probe on the GPU in a restricted browser environment. In Chapter 4,
we use the eviction sets to construct a cache covert channel between a native CUDA
application and a web application. In Chapter 5, we explore the limitations of our attack,
provide an overview of additional attacks featured in the related conference paper by
Giner et al. [1], and discuss potential mitigations and other related work. We conclude
in Chapter 6.



Chapter 2
Background

In this chapter, we provide background information for the following chapters. Further-
more, we introduce several terms used throughout the remainder of this thesis.

First, we discuss the architecture of GPUs and their evolution from their original role
in graphics rendering to their use in general-purpose computations. Then, we compare
the cache architecture of GPUs and CPUs and discuss cache addressing and cache
replacement policies. Furthermore, we cover the most important cache attack techniques.
Finally, we discuss native and web GPU APIs.

2.1 GPU

In this section, we explore the evolution of GPUs, tracing their development from
specialized hardware for graphics rendering to their broader application in general-
purpose computations. Furthermore, we cover the architecture of GPUs, focusing on
an Nvidia Ampere GPU. While the terms are specific for Nvidia devices, other GPU
vendors like AMD use similar concepts [27]. Since our work focuses on discrete GPUs,
we do not discuss integrated GPUs in detail. While the architecture of integrated GPUs
is similar to discrete GPUs, they differ significantly in some key aspects. For instance,
integrated GPUs use a portion of the CPU’s RAM instead of having dedicated memory
like discrete GPUs.

2.1.1 General-Purpose Computations on GPUs

Initially, GPUs were designed for graphics rendering only [28, 29]. GPUs run shaders,
specialized programs for different stages in graphics rendering, in a shader pipeline. All
components, including units for vertex and pixel shaders, were highly specialized and
limited to their specific purposes only.

The idea to use GPUs for more general computations emerged quite early [30, 31, 32, 33].
The inherent attributes of GPUs, namely massive parallelism and high throughput, find
applications beyond graphics rendering in numerous other fields. Scientific computing and
simulations are just two examples of fields that benefit from these unique characteristics.

Thompson et al. [2] found a way to use the graphics pipeline for matrix multiplication
and 3-SAT in 2002. They demonstrated performance improvements compared to CPU
implementations, emphasizing the need for general-purpose computations on GPUs.
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Figure 2.1: Nvidia Ampere GA102 Architecture [37] with 7 graphics processing clusters.
Each cluster is connected to the L2 cache and contains several streaming
multiprocessors.

However, the GPU’s fixed graphic pipeline necessitated mapping general problems to the
computer graphics domain before solving them on GPUs [3, 32, 34].

The release of CUDA by Nvidia [4] in 2006 was a huge step forward for general-purpose
computing on GPUs. CUDA enables native support for general-purpose computations
on Nvidia GPUs. Other manufacturers, like AMD, followed a similar approach. While
CUDA is a proprietary framework by Nvidia, the Khronos Group released the open
standard OpenCL [5] in 2009. This paradigm shift meant a significant change in the
hardware architecture of GPUs. GPUs adopted a unified shader model, allowing the
same hardware to be used for different tasks [35, 36]. While early GPUs had dedicated
hardware for specific tasks like vertex and pixel shading, most tasks of the render pipeline
are executed on the same hardware. Still, exceptions, like raytracing, are executed on
dedicated hardware units.

2.1.2 Architecture

This section explores the core concepts of modern GPU architecture, illustrating these
ideas with a detailed examination of the Nvidia GA102 Ampere GPU [37]. As an
example of current GPU technology, the GA102 incorporates concepts widely used in
the industry by Nvidia and other major manufacturers like AMD [27]. We will explore
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Figure 2.2: Nvidia Ampere GA102 streaming multiprocessor [37]. Threadblocks with up
to 1024 threads are scheduled on a single streaming multiprocessor. Each
streaming multiprocessor consists of 4 processing units. Warps with 32 threads
are executed in parallel on each processing unit.

the design features that enable these GPUs to handle computationally intensive tasks
effectively, including the use of multiple graphics processing clusters and the integration
of sophisticated cache management techniques.

The GA102 is the highest-performing GPU in the Ampere architecture’s GA10x lineup,
powering devices like the GeForce RTX 3090, GeForce RTX 3080, NVIDIA RTX A6000,
and the NVIDIA A40 data center GPU. The architecture is similar to prior Nvidia GPUs,
with only minor differences and improvements. Figure 2.1 depicts the architecture of a
GA102 GPU.

Graphics processing clusters represent the largest and most complex components
within the architecture of Nvidia GPUs. A complete GA102 GPU consists of 7 graphics
processing clusters. Each cluster is subdivided into several key functional units: up to
6 texture processing clusters, a raster engine, and two raster operator partitions, each
containing 8 raster operator units.
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Further breaking down the architecture, each texture processing cluster incorporates
2 SMs (streaming multiprocessors) and a PolyMorph engine. The SMs are particularly
critical as they closely resemble CPU cores in their primary function of executing
instructions. Figure 2.2 illustrates that an SM principally comprises four processing
blocks, also called partitions. Each processing block is a separate SIMD (single-instruction
multiple-data) execution unit. They share a common unified architecture for shared
memory, L1 data cache, and texture caching with 128 kB capacity per SM. This versatile
configuration enables the adaptive allocation of memory resources to meet specific
workload demands. Processing blocks include a 64 kB register file, an L0 instruction cache,
a warp scheduler, a dispatch unit, a tensor core, load and store units, and two datapaths
for mathematical operations. One of these datapaths is capable of either 16 FP32 or
16 INT32 operations per clock, while the other only supports 16 FP32 operations per
clock.

Other specialized units in an SM include a raytracing core, four texture units, and
special function units dedicated to certain mathematical operations.

In CUDA, threads are organized in thread blocks. Threads within a block may use
shared memory or synchronization primitives to communicate. A thread block can
contain up to 1024 threads, which are executed on the same SM. These threads are
further divided into warps containing 32 threads, all executing the same instructions.
Each processing unit can execute one warp, meaning they always execute 32 threads in
parallel.

To achieve a high throughput, GPUs execute warps in a SIMT (single-instruction
multiple-thread) fashion [38]. Threads are executed in lockstep. All threads in a warp
share a single program counter, meaning each thread executes the same instruction.
In the case of divergent execution paths, e.g., branch instructions, all paths must be
executed. The program counter is combined with an active mask to indicate which thread
is active at each instruction. For example, a thread is only active for one branch of an
if-else statement and is masked for the other branch. Divergent branches in a warp
are serialized, and all statements in one branch are executed before any statements of the
other side are executed [39]. Not only does this loss of concurrency incur a performance
penalty, it also complicates fine-grained synchronization between threads within a warp.

Starting with the Volta architecture, Nvidia GPUs support independent thread schedul-
ing [39]. They achieve independent scheduling by maintaining the execution state for
each thread, which includes program counters and call stacks. Volta optimizes thread
management using a schedule optimizer that groups active threads from the same warp
into SIMT units, enhancing processing efficiency. Unlike previous architectures, where
divergent paths in branch statements were executed serially, Volta interleaves the exe-
cution of such paths. This interleaving not only improves execution efficiency but also
allows for fine-grained synchronization among threads within a warp.

In contrast to CPUs, GPUs typically have large register files. For example, Ampere
GPUs have a 64 kB register file per processing block. The advantage of a large register
file is that there is enough storage for all currently schedulable threads on an SM. Thus,
there is no need to transfer registers upon a context switch.
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Figure 2.3: 49-bit virtual address breakdown introduced in the Pascal architecture [40].

GPUs use a virtual memory system like CPUs. However, the GPU’s virtual memory
is completely separate from the CPU’s virtual memory. Starting from the Pascal
architecture, Nvidia GPUs employ a virtual memory system that uses up to 49 bits for
virtual addresses [40]. The five-level page table format supports addressing up to 47 bits
of system memory.

Figure 2.3 depicts a 49-bit virtual address breakdown of the Pascal architecture.
Depending on the page size, the least significant 21 bits of the virtual address have
a different meaning. While 21 bits serve as page offset for 2 MB pages, smaller pages
require fewer bits. For 4 kB pages, 12 bits serve as page offset and 9 bits as offset into
the page table. For 64 kB pages, 16 bits serve as page offset and 5 bits as offset into the
page table. The remaining 28 bits of the virtual address are offsets into the PDs (page
directories). 8 bits serve as offset into the PDO0, 9 bits are used for PD1 and PD2, and 2
bits for PD3.

2.2 Caches

CPUs and GPUs encounter performance bottlenecks due to the high latency of accessing
data from main memory. To address this issue, CPU and GPU architectures incorporate
hierarchical cache systems to improve the speed of accessing frequently accessed data.
Caches are small, fast memories that store copies of frequently accessed data, providing
quicker access than main memory.

In this section, we look into the details of the cache architecture of GPUs. While GPU
architectures differ in various aspects, most employ a similar cache arrangement. We
discuss more general aspects of caches, like replacement policies, cache organization, and
addressing. We conclude this section with architectural details of the caches on an Nvidia
Ampere GPU [37].

2.2.1 GPU Caches

CPUs typically use a hierarchical system with multiple cache levels. The lower-level
caches are close to the processor cores and are the smallest and fastest. Higher-level
caches are further away from the processor core and provide slower access times. However,
higher-level caches are typically larger than the lower-level caches.

In general, GPU caches are organized like CPU caches. There is a small, fast L0
instruction cache for each processing block. Each SM includes a 128 kB L1 data cache
shared by the four processing blocks. Parts of the L1 cache can be used as a shared
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memory region. The segmentation of the memory into L1 cache and shared memory
can be configured based on the requirements of the current computation or graphics
workload. The L2 cache is shared by all SMs. It has a maximum capacity of 6 MB on
Ampere GPUs.

With many cores, cache coherency is very expensive to achieve on GPUs. This is
why GPU caches are usually incoherent. To achieve coherency, the caches need to be
flushed explicitly. However, the GPU’s programming model involves less frequent data
sharing among different shaders compared to interactions between processes on CPUs.
As a result, using an incoherent caching approach does not present a significant practical
challenge.

2.2.2 Cache Addressing

Caches can only store a fraction of the GPU’s main memory. Data loaded from the
main memory is stored in the cache for quicker subsequent access. Typically, it is not
just the specific memory location that gets cached; instead, a larger portion known as
a cache line, which is usually 128 bytes wide on GPUs [41, 42], is cached. The 128
bytes are memory locations that are spatially close to the requested memory location.
This practice improves performance as programs frequently access neighboring memory
locations. Furthermore, caching data byte-wise is too expensive. Another reason for
the relatively wide cache lines on GPUs is coalescing. Concurrent memory accesses
to contiguous memory locations by threads within a warp are coalesced into a single
warp-wide access [43, 44]. Given that a warp consists of 32 threads, a 128-byte wide
cache line efficiently stores 4 bytes per thread in one memory access.

The address is divided into three parts to determine the data’s location within the
cache. The least significant bits serve as an offset within the cache line. Given that cache
lines on GPUs are usually 128 bytes wide, the corresponding offset is represented by 7
bits.

The second part is the cache index, which points to a cache set. Set-associative caches
organize cache lines into sets, each comprising several lines linked by a common cache
index. Each cache set contains several lines that can independently store data. In the
case of a direct-mapped cache, the cache index points to a single cache line.

The remaining bits of the address serve as the tag. Since caches are smaller than the
main memory, each cache set must handle more main memory addresses than it has the
capacity for. Consequently, each cache line not only contains cached data and a valid bit
but also includes a tag. This tag uniquely identifies the segment of main memory being
cached in that specific cache line.

2.2.3 Replacement Policies

Newer entries replace older cached data. In systems where data can be stored in multiple
cache locations, deciding which data to replace is crucial. Various strategies have been
developed to manage this replacement process effectively, each designed to optimize cache
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memory usage in different scenarios. These strategies determine which memory locations
are to be replaced next.

With the optimal policy [45], the entry whose next memory reference is the farthest in
the future would be replaced [46]. However, this policy requires knowledge of every future
memory reference, making implementing the optimal replacement policy infeasible.

Several policies use program counter information [47, 48, 49] to optimize cache usage,
yet processor manufacturers have been reluctant to implement these due to the signifi-
cant hardware changes required [50]. Furthermore, there are combinations of different
replacement policies. Adaptive cache replacement policies change their behavior and are
used in various processors [51, 52]. In this section, we focus on the most prevalent and
simple cache replacement policies rather than discussing sophisticated methods.

LRU (Least Recently Used). The LRU policy tracks the timestamps of each cache
entry and replaces the entry that has been the longest in the cache. As LRU needs
to keep track of timestamps, it is expensive to implement in hardware. LRU generally
performs well compared to other replacement policies for many workloads [46]. LRU can
lead to thrashing for memory-intensive workloads, where cache lines go from LRU to
MRU without cache hits.

An approximation to LRU is NRU (Not Recently Used) [53]. In contrast to LRU,
NRU does not keep timestamp information but information about which sets were used
recently. According to Briongos et al. [54], Intel uses NRU for some of their processors.

Pseudo-LRU. Techniques that estimate LRU are referred to as pseudo-LRU. Research
by Al-Zoubi et al. [46] indicates that pseudo-LRU can approximate and surpass LRU in
performance but with considerably less complexity across various cache configurations.
Unlike standard LRU, pseudo-LRU does not require keeping timestamp information,
making it cheaper to implement in hardware [55]. This cost efficiency, combined with its
minimal performance overhead, makes pseudo-LRU a preferred choice among processor
vendors. For instance, Intel employs undocumented variants of pseudo-LRU in several of
its processors [54, 52]. Additionally, prior work suggests that GPUs often utilize LRU or
pseudo-LRU for their cache replacement strategies [56].

LFU (Least Frequently Used). LFU replaces the cache lines that were referenced
the fewest number of times. The underlying assumption is that lines referenced more
often are more likely to be referenced in the future [57]. However, LFU is susceptible to
keeping obsolete lines that were accessed frequently.

Random. A random replacement policy can be used to reduce the implementation
cost. Random replacement ignores temporal and spatial locality. While performance is
worse than LRU for most workloads, there are cases when random performs similar or
even better than FIFO [46].
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FIFO (First-In First-Out). LRU can sometimes be too expensive to compute, so
some architectures use FIFO [55]. FIFO, or round robin, replaces the oldest entry in the
cache, regardless of when it was last accessed. The performance is not as good as LRU
for most workloads and can even be worse than random in some cases [46].

2.2.4 Cache Organization

Several methods exist for mapping addresses from RAM to cache locations, each with
advantages and disadvantages, as no universally optimal solution fits all cache sizes. The
cache organization defines where a specific memory block can be placed within a cache.

Direct-Mapped Cache

In a direct-mapped cache, each location in RAM maps to exactly one cache line, simplifying
the retrieval process as the specific cache location is immediately identifiable. However,
this simplicity often results in poor cache utilization. Particularly, when multiple addresses
that map to the same cache line are accessed alternatingly, they evict each other with
each access, a phenomenon known as cache thrashing. This constant eviction cycle
degrades performance severely.

Fully-Associative Cache

A fully-associative cache is the opposite of a direct mapped cache. Each memory address
can be stored in any cache line, optimizing cache utilization to its theoretical maximum.
The necessity to search the entire cache for a hit with each memory access renders this type
of cache impractical for larger sizes due to its computational expense. Furthermore, when
an eviction is necessary, any cached address can be a candidate for removal, depending
on the used replacement policy, such as LRU or FIFO.

Set-Associative Cache

A set-associative cache combines the advantages of both direct-mapped and fully-
associative caches. Unlike a fully-associative cache, where any address can map to
any cache line, in a set-associative cache, addresses map to specific sets, and each set
contains a predefined number of cache lines, known as ways. We refer to addresses
mapping to the same cache set as congruent.

For instance, in a 16-way set-associative cache, each memory location in RAM can be
stored in one of 16 different cache lines within a specific set. This configuration avoids
thrashing by allowing up to 16 congruent addresses to be cached simultaneously without
conflict. Moreover, compared to a fully-associative cache, which requires searching
every cache line for a hit, a set-associative cache only searches within the specified set,
drastically reducing the number of comparisons needed to find a hit or determine a line
for eviction. This not only boosts performance but also scales efficiently with larger
caches.
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2.2.5 Indexing and Tagging

Caches can be indexed and tagged using virtual or physical addresses. Depending on
the chosen method, several non-desirable scenarios can arise. Among these issues are
homonyms, which describe situations where the same virtual address maps to multiple
physical addresses, thus failing to uniquely identify cached data [58]. Solutions to
homonyms include using physical address tags, flushing the cache during context switches,
tagging the virtual address with an address space identifier, or using non-overlapping
memory layouts for different virtual address spaces.

Also among the issues in caching are synonyms, where different virtual addresses map
to the same physical address, resulting in multiple cache entries for the same data [59].
This setup complicates cache coherence as updates to data in one cache line are not
automatically reflected in others, leading to inconsistencies. Flushing the cache during
context switches does not resolve synonyms within a single address space.

Several strategies are employed to manage this problem effectively. Restricting write
access to affected addresses can ensure data consistency, although this approach may
not be feasible for all applications due to its restrictive nature. Furthermore, broadcast
mechanisms and snoop protocols ensure cache coherency by synchronizing updates to
cache lines, effectively mitigating synonyms. Bloom filters can help to decrease further
the synonym lookup energy [60, 61].

Alternatively, a sophisticated combination of virtual index and physical tag can be used,
which optimizes cache indexing and mitigates synonyms. The following combinations of
virtual or physical indexing and tagging exist.

VIVT (virtually-indexed virtually-tagged). Using the virtual address for indexing
and tagging is simple and fast since no address translation is required. The disadvantage
of VIVT caches is that they suffer from homonyms and synonyms, complicating cache
coherence significantly. For the lower-level caches of GPUs, this is a less significant
concern compared to CPUs. The high level of parallelism in GPUs makes it impractical
and expensive to ensure cache coherency in L0 and L1 caches. By flushing the cache
during context switches, the problem of homonyms is also resolved. Since context switches
on GPUs do not occur as frequently as on CPUs, this does not introduce a significant
performance overhead.

VIPT (virtually-indexed physically-tagged). VIPT is used for various cache levels
on many CPUs. The virtual index for the cache line can be used immediately to load the
corresponding cache line. While loading the cache line, the address translation happens
in parallel. Since the tag is only needed after loading the cache line, the performance
overhead compared to VIVT is small, especially when the address translation is in the
TLB (Translation-Lookaside Buffer).

In a virtual memory system, addresses are translated at the granularity of a page. The
least significant bits of the virtual address serves as the byte offset within the physical
page. Subsequently, the offset bits are identical in physical and virtual addresses. VIPT
caches take advantage of this consistency; for instance, with commonly used 4 kB pages,
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12 bits of the virtual address are used for the byte offset within these pages. Considering
a cache line width of 128 B, 7 bits are used as the offset within the cache line. This
configuration leaves 5 bits for indexing the cache set, allowing for a maximum of 32 (2°)
different sets. Given these parameters and a set associativity of 16, the maximum cache
size in this setup is 64kB (2'2 bytes per cache line multiplied by 16 lines), mimicking a
PIPT (physically-indexed, physically-tagged) cache in operation. As a result, this VIPT
cache configuration avoids the complications associated with homonyms.

PIPT (physically-indexed physically-tagged). PIPT caches are relatively slow
because the virtual address must be translated to its physical form before the cache
index can be looked up. This makes PIPT caches bad candidates for the fast and small
lower-level caches. Like VIPT caches, PIPT caches use a physical tag to avoid homonyms.
Using the physical address as a cache index solves the synonym problem. Moreover,
PIPT caches are not limited by the same size restrictions as VIPT caches, making them
a good option for larger, higher-level caches.

PIVT (physically-indexed virtually-tagged). Although there is a documented
real-world example of a PIVT cache [62], this architecture exhibits several drawbacks
compared to the aforementioned indexing and tagging techniques. Primarily, the necessity
to look up the physical address for indexing slows down the cache operation significantly.
Using a virtual tag also leads to the same complications encountered with VIVT caches,
namely homonyms and synonyms.

2.2.6 Ampere Cache

On Ampere GPUs, the L0 instruction and L1 data caches are VIVT, while the L2 cache
is PIPT. Since cache coherence is complex to achieve due to the computing model of
GPUs, the caches are non-inclusive. The cache lines are 128 B wide. Abdelhkalik et
al. [63] report a latency of 33 cycles for an L1 cache hit and 200 cycles for an L2 hit.
They note a latency of 290 cycles for global memory loads but do not specify if this is
for a TLB hit or miss. In contrast, prior work by Jia et al. [64] on the Nvidia Turing
architecture, the generation before Ampere, identified a 296-cycle latency for a TLB hit
and 616 cycles for a TLB miss. Given the similarity of other values between the two
studies, it is likely that Abdelhkalik’s 290-cycle measurement corresponds to a TLB hit.

Access latencies on GPUs are relatively high compared to those on CPUs [65]. GPUs
are optimized for high throughput, so increased latencies do not impact their performance
as significantly as they do on CPUs [66, 67]. High latency values on GPUs often result
from throughput optimizations. For example, cache lines on GPUs are generally larger
than cache lines on CPUs. Large cache lines enable the GPU to coalesce parallel memory
accesses of 32 threads in a warp and cache them in a single cache line [44]. This coalescing
depends on the spatial locality of the memory accesses and improves throughput at the
cost of increased latency.
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2.3 Cache Attacks

Over the past decade, numerous studies have documented various microarchitectural
attacks [68, 69]. These attacks target shared microarchitectural elements, including
branch predictors [70, 71] and TLBs [72, 73]. Cache-based attacks enable a variety of
malicious activities, ranging from leaking sensitive information through side channels [74,
75] to creating covert channels that bypass traditional security measures [25, 26, 76, 77,
78, 79, 80, 81, 82, 83|, and even breaking cryptographic algorithms [24, 84, 85]. Notably,
these vulnerabilities are not confined to native applications; they can also be executed
within constrained environments like web browsers, demonstrating their broad potential
for exploitation [86, 87, 81, 51].

The key component of timing-based cache side-channel attacks is the timing difference
between a cache hit and a cache miss. The access latency to a memory location is
compared to established baseline values. If the measured latency exceeds a certain
threshold, the memory access was a cache miss. If the latency is below the threshold, the
data was cached with a high probability. To measure the access latency, an attacker needs
a timer that is accurate enough to distinguish a cache hit from a cache miss. In response
to timing attacks, browser vendors removed access to fine-grained timers [88, 89, 90].
However, multiple studies present a wide range of sources of timing information accurate
enough to mount attacks on systems with limited timer APT access [91, 92, 87, 18, 93]. For
example, Schwarz et al. [92] describe various new mechanisms for obtaining timestamps,
some of which offer a resolution that is increased by 3 to 4 orders of magnitude compared
to the timestamp provided by timestamp.now. For example, they construct a timer with
a resolution close to the native timestamp counter by using the SharedArrayBuffer
Javascript interface that is shared between web workers. Browser vendors responded
again by restricting access to the timing sources [94, 95, 96, 97]. Advanced defenses try to
mitigate timing side channels in a more principled manner. Kohlbrenner et al. [91] propose
to add randomness in the JavaScript event loop to thwart exact timing measurements.
On the contrary, Cao et al. [98] present their approach called Deterministic Browser,
where an attacker will always obtain fixed timing information to prevent timing attacks.

There are various types of cache attacks with different requirements and efficacies. The
efficacy of these methods can vary significantly, depending on factors such as the cache
architecture and the isolation mechanisms in place. An example of a simple cache attack is
the cache occupancy attack, where the attacker does not need knowledge about the cache
architecture or addresses. The attacker simply fills the cache and lets the victim program
execute. After that, the attacker checks which sections of the previously filled cache are
still cached and which have been evicted. Shusterman et al. [99] demonstrated how a
simple cache occupancy attack can be used for sophisticated purposes, like fingerprinting
attacks.

In this thesis, we focus on more fine-grained cache attacks. Fine-grained attacks require
a deeper understanding of the cache architecture and rely on a more sophisticated attacker
model, making them more potent. While attacks like Flush+Reload [100] require shared
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memory between an attacker and victim process, others like Prime+Probe [25, 24] have
lower requirements. We discuss these attacks in the following subsections.

2.3.1 Prime-+Probe

The Prime+Probe attack, first described by Percival [25] and Osvik et al. [24], allows
an attacker to determine whether a victim has accessed a specific cache set. Like other
cache attacks, the victim can be a cooperating program and act as a sender in a cache
covert channel.

Prime+Probe exploits shared cache sets between attacker and victim and is coarser
grained than Flush+Reload, which targets individual cache lines to deliver more detailed
insights into memory access patterns. Prime+Probe offers a significant advantage despite
its broader scope: it does not require shared memory between the attacker and the victim,
circumventing a key limitation of Flush+Reload. Additionally, unlike Flush+Reload,
Prime+Probe does not require the ability to manipulate the cache directly using a flush
instruction.

Its weak assumptions make Prime+Probe well-suited for conducting attacks in con-
strained environments, such as from within web browsers. Prior work shows how
Prime+Probe can be used for cross-VM attacks [101, 80], covert channels [102], and
attacks from within sandboxed JavaScript [81, 51]. The Prime+Probe attack technique
extends beyond cache attacks, targeting various types of buffers, including DRAM row
buffers to monitor keystrokes [103] and combining with Rowhammer for cryptographic
attacks [104]. It has also been used on branch predictors to compromise RSA [70] and
establish covert channels [71], as well as to attack KASLR [105].

Eviction Sets

Before we can mount a Prime+Probe attack, we need to find eviction sets. An eviction set
is a minimal set of congruent addresses that evicts a cache set. Applications of eviction
sets go beyond the scope of Prime+Probe attacks. Gruss et al. [51] use eviction sets to
enforce high frequency DRAM accesses and subsequently mount a fault attack. Kocher
et al. [86] use eviction sets to delay the decision on which direction a branch instruction
will take, thereby increasing the number of speculatively executed instructions.

The ease or difficulty of finding eviction sets depends on the system architecture and
the capabilities of the attacking program. While an attacker only requires a timer that is
accurate enough to distinguish cache hits and cache misses to find eviction sets, knowledge
about certain aspects of the underlying cache architecture or access to addresses can help
to improve the eviction set search significantly. In general, there are two approaches to
finding eviction sets. Static approaches to finding eviction sets use reverse-engineered
mapping functions and virtual or physical addresses. In contrast, dynamic approaches
rely on timing measurements to identify colliding addresses, eliminating the need for
knowledge about mapping functions or often even access to virtual or physical addresses.
Often, hybrid methods are implemented in practice, such as the one detailed by Maurice
et al. [26], which combines elements of both static and dynamic approaches.
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Finding eviction sets in a virtually indexed cache is trivial, as the attacker already has
control over the set index. Finding eviction sets in physically mapped caches is more
complicated, even with knowledge about the physical address. Modern processors use
per-core cache slices for their LLCs [80]. Every slice is a separate cache, but every core
has access to the entire LLC. Intel uses an undocumented hash function to map addresses
to cache slices. Prior work reverse-engineered the slice mapping functions for various
processors [73, 106, 107, 108]. Liu et al. [80] present an eviction-set-finding algorithm
that finds eviction sets for all cache slices independent of the cache slice hash function.

In response to several attacks, access to the virtual-to-physical address mapping in the
Linux kernel is only available with root privileges [109]. Various attacks on CPU caches
use huge pages with 2 MB [80, 101] to circumvent this restriction. As the last 21 bits
of the virtual and physical addresses are the same for 2 MB pages, the LLC becomes
effectively virtually indexed.

The situation is even more complicated if the attacker runs in a restricted browser
environment without access to pointers and virtual addresses. Oren et al. [81] first
demonstrated that microarchitectural side-channel attacks in the browser are feasible.
They encounter similar limitations to those we experience in our eviction set search,
such as the absence of pointers and addresses in the browser and the unavailability of
huge pages. In contrast to Liu et al [80], they do not assume 2 MB huge pages, but
more common 4 kB pages. Their algorithm accesses a buffer larger than the cache size in
strides of 64 B. Each memory access refers to a different cache line as they target 64 byte
wide cache lines. However, as there are no pointers in JavaScript, they use offsets in the
buffer for the memory accesses.

They start with a large buffer and a target address to find an eviction set for the target
address. Like Liu et al. [80], they iteratively remove addresses from the buffer and verify
that the target address is still evicted. They stop when only as many addresses remain
as there are cache ways. As virtual memory is aligned to 4kB pages, they can exploit
that the lower 12 bits of virtual and physical addresses are equal and that bits 12 to 6
are used as part of the cache index to reduce the search space for each address [73].

In contrast to Liu et al. [80], they cannot identify the CPU’s cache sets corresponding
to the eviction sets they found. Furthermore, they find different mappings each time
the algorithm runs. As they cannot identify the CPU’s cache sets corresponding to
the found eviction sets, their algorithm is prone to generating duplicate sets. These
duplicates can result in self-evictions, creating misleading outcomes during the probing
phase. Specifically, the probing might erroneously indicate a victim’s activity when, in
fact, the duplicate set has evicted the probed set.

Prior work reverse-engineered mapping functions on various GPUs [110, 111, 112,
64]. However, our tests suggest GPUs use different mapping functions across different
devices. As many GPUs have non-power-of-two cache and VRAM sizes, they employ
non-linear mapping functions or mapping functions that use a different address range.
Furthermore, GPUs from different manufacturers and mobile GPUs use different mapping
functions. Qureshi et al. [23] build upon methods from prior work [81, 80] and present
the group-elimination method. Instead of removing one address at a time, they remove
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multiple addresses to improve the algorithm’s performance. Vila et al. [113] follow a
similar approach to the group-elimination method. In Chapter 3, we discuss how we
extend prior work to identify eviction sets by leveraging the WebGPU API.

Prime

The first step of Prime-+Probe is the prime phase, where the attacker causes contention
in a specific cache set. For this, the attacker fills a specific cache set with an eviction
set, effectively evicting all previously cached data in that specific set. Following the
prime phase, the attacker either triggers or waits for the execution of the victim program.
During this waiting period, the victim may use the targetted cache set and evict elements
from the attacker’s cache set. The attacker can use multiple cache sets to observe the
victim’s activity. However, the probing frequency decreases with a higher number of sets.

Probe

In the probe phase, the attacker loads all addresses of the eviction set and measures the
access time for each address. If the victim program accesses data cached in the targetted
set, at least one of the attacker’s cache lines is evicted. The attacker can detect this
because the evicted line results in a noticeably slower access from the main memory.
Consequently, the attacker learns that the victim program accessed a memory location
that maps to the same cache set as the eviction set. The attacker accesses all addresses
of the eviction set in the probe phase, thus implicitly priming the set for the next round
of Prime+Probe.

Replacement Policies

Cache replacement policies play an important role in a Prime+Probe attack. Prime+Probe
attacks work best for architectures with LRU, pseudo-LRU, or FIFO replacement. With
these replacement strategies, every address of the eviction set is accessed only once to
evict the entire cache set. Gruss et al. [51] developed a method to efficiently evict cache
sets under complex cache replacement policies. They create eviction strategies for various
systems by combining static and dynamic techniques. These eviction strategies evict
cache sets quickly enough to trigger the Rowhammer bug.

Variations

One challenge of Prime+Probe is cache trashing, where probing an address evicts
a previously primed address. Prior work discusses several solutions to cache trashing.
Tromer et al. [84] use a doubly-linked list and traverse it forward for priming and backward
for probing to minimize cache trashing. Their solution works best for LRU caches. Lipp
et al. [79] reduce the chance of set trashing in a cache with a random replacement strategy
by using smaller sets for priming and probing. While many Prime+Probe attacks assume
inclusive caches, Yan et al. [114] target cache directories with Prime+Probe to attack
non-inclusive caches.
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Prime+Count. Cho et al. [115] discuss Prime+Count, a slight alteration of Prime+Probe.
Instead of probing cache lines, they use performance counters to count how many cache
lines have been evicted. They show how their coarser-grained technique can reduce noise
introduced by pseudo-random replacement policies.

Evict+Time. Osvik et al. [24] also proposed Evict+Time, a more coarse-grained
variant of Prime+Probe. First, they measure the duration of a victim program as a
baseline value. Then, they evict a cache set and measure the execution time of the
victim’s program again. If the victim uses the evicted cache set, the execution time is
higher than the baseline value.

2.3.2 Flush+Reload

Gullasch et al. [116] exploit that shared memory between two different processes is cached
in the same cache line in the L1 cache. Yarom and Falkner [100] built on the attack
from Gullasch and proposed the Flush+Reload attack, targeting the L3 cache. Both
attacks allow the attacker to monitor the memory activity of another program at cache
line granularity.

For Flush+Reload, an attacker constantly flushes a cache line in shared memory and
waits for the victim to be scheduled. After that, the attacker accesses the location again
and measures the access latency. A low access latency indicates a memory access of the
victim program, as the recently flushed memory location is cached after the victim has
been scheduled.

A drawback of Flush+Reload is that it requires shared memory for the location to
be monitored between the attacker and victim program, which is harder to obtain than
co-location. Furthermore, the memory shared between the attacker and the victim must
be cached in the same cache location. Another limitation of Flush+Reload is that it
requires a dedicated cache line invalidation instruction, like c1flush. Such instructions
are unavailable on various processors and in certain sandboxed environments like the
browser or are only available to privileged users.

Flush+Reload was initially proposed as an attack targeting shared libraries, which are
typically accessible to the attacker. However, this approach requires knowledge of the
specific libraries the victim uses. Beyond shared libraries, attackers can also target files
used by the victim and accessible to the attacker. In addition to monitoring access to
shared libraries or files the victim uses, an attacker can exploit the operating system’s
active page deduplication, where identical pages are merged into a single copy-on-write
page. This approach, which requires the attacker to create pages identical to those used
by the victim, is more sophisticated than simply mapping shared libraries or files.

Flush+Reload has become a fundamental component in various microarchitectural
attacks. Prior work demonstrates how Flush+Reload can be used to attack cryptographic
implementations [117, 100, 118, 119, 120], monitor user interaction [74, 79, 121, 122], or
as a covert channel [86, 79, 123, 124].
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Variations

There are several approaches to overcome the limitations of Flush-+Reload:

Evict+Reload. As the Flush+Reload attack requires a dedicated flush instruction, it
is not applicable in environments where such an instruction either does not exist or is only
available to privileged users. Gruss et al. [74] introduced Evict+Reload. Evict+Reload
fills the cache set containing the target cache line similar to priming in Prime+Probe.
The result is similar to flushing, but the entire cache set is evicted instead of only flushing
a single cache line. The second step, reloading the target address, remains the same as in
the traditional Flush+Reload attack. Evict4+Reload enables attacks in JavaScript [87,
124], remote attacks [125], and attacks on ARM devices, where flush instructions might
not exist [79]. Gruss et al. [51] and Aweke et al. [126] demonstrate flush-free Rowhammer
attacks by evicting cache sets in their concurrent works.

Flush+Flush. In a Flush+Reload attack, we are not interested in the loaded value of
the reload step. Instead, we only measure the access time to infer the victim’s behavior.
Furthermore, the cache line is flushed again after reloading to prepare for the next
measurement. Gruss et al. [127] build on this observation and present Flush+Flush.
Flush+Flush requires no memory access. Instead, they exploit the timing differences in
the c1flush instruction. As the LLC on CPUs is commonly inclusive, flushed memory is
also removed from the lower cache levels. Flushing data from several cache levels takes
longer than flushing a cache line where no data is currently cached. Flush+Flush does
not make a potentially slow access from memory for each measurement, so it achieves a
higher time resolution than Flush+Reload. Gruss et al. [127] show that Flush+Flush can
be used to attack cryptographic algorithms, monitor user input, and construct channels
for covert communication.

Cache Template Attacks. One challenge in mounting a Flush+Reload attack is
finding interesting shared memory regions between the attacker and the victim. Shared
memory regions can be shared libraries and files used by the victim that are accessible
to the attacker or the victim’s executable binary. Gruss et al. [74] introduced cache
template attacks. Cache template attacks enable automatic attacks on cryptographic
implementations and keystroke logging, among other applications. A cache template
attack consists of a profiling phase, where memory regions that leak information about
a victim are identified automatically. In the exploit phase, the attacker monitors these
memory regions to infer the victim’s behavior. An advantage of cache template attacks
is that attackers need no knowledge about specific software versions or other specific
system information.

Since sharing memory between applications on GPUs is uncommon and not possible
on many devices, to our knowledge, there have been no known demonstrations of
Flush+Reload-style attacks on GPUs so far.
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2.4 GPU APIs

GPU APIs are interfaces that enable software developers to harness the computational
power of GPUs for rendering and general-purpose computations. These APIs act as
a bridge between the application or software and the GPU hardware, abstracting the
complexity of direct hardware manipulation while offering various degrees of control over
the GPU’s capabilities. While some of the GPU APIs are portable and compatible with
various GPU manufacturers [128, 129, 130], others like CUDA [4] are only available for
Nvidia GPUs. We classify GPU APIs into two main categories: Native APIs provide
developers with low-level access to the GPU, and high-level APIs, like those accessible
from web browsers, provide a higher abstraction level to developers. In this section, we
first look into native APIs and discuss CUDA in more detail. After that, we cover Web
APIs and discuss the characteristics of WebGL [131] and its successor, WebGPU [20].

2.4.1 Native APIs

Native GPU APIs are low-level APIs that provide detailed control over the GPU. They
offer a low abstraction level and fine-tuned control over the hardware. This level of
control enables precise optimization, leading to superior performance compared to higher-
level APIs. Native GPUs provide means to use the GPU for graphics rendering or
general-purpose computations. In 1992, the Khronos Group introduced OpenGL [132], a
cross-language, cross-platform API for graphics rendering on Linux and Apple platforms.
Shaders for OpenGL are written in GLSL (OpenGL Shading Language). Windows uses
Direct3D [130], part of Microsoft’s DirectX API collection, for graphics rendering.

In 2007, Nvidia released CUDA [4], allowing for general-purpose computations on
Nvidia GPUs. With the high market share for discrete GPUs of Nvidia and CUDA’s
ease of use, CUDA is currently the most widely used framework for general-purpose
computations on GPUs [133, 134, 135]. Recognizing the need for a universal solution,
the Khronos Group introduced OpenCL [5] for general-purpose computations across
GPUs from various manufacturers. Apple chose a different approach and transitioned
from OpenGL to Metal [129], a modern alternative that merges graphics rendering and
general-purpose computations into a single API.

In 2016, the Khronos Group released Vulkan [128], the successor and modern alter-
native to OpenGL. Vulkan provides developers with a lower-level API and supports
graphics rendering and general-purpose computations. The Vulkan API is supported on
desktop and mobile devices. In contrast to OpenGL, Vulkan shaders are compiled to the
intermediate binary format SPIR-V. This pre-compilation step speeds up application
initialization. Unlike OpenGL, where each OpenGL driver implements its compiler,
Vulkan drivers can focus on hardware-specific optimizations and code generation.

While these APIs have different characteristics, their operations typically include
texture mappings, rasterization, and memory management.
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CUDA

In 2007, Nvidia introduced CUDA, a proprietary API for general-purpose computing on
Nvidia GPUs. Compared to alternative APIs, CUDA offers more precise control over
Nvidia GPUs. CUDA is available on all Nvidia GPUs, starting with the Tesla architecture.
GPUs are categorized by their compute capabilities, each represented by a version
number that specifies the features and technical specifications the hardware supports,
including specific instructions and the number of registers per multiprocessor [136].
CUDA applications can query these compute capabilities at runtime.

A CUDA program is essentially a C/C++ program, making it easily accessible even for
developers with minimal prior knowledge of graphics programming. In a CUDA program,
functions are marked with annotations specifying whether they can run on the host or
the graphics hardware. A subroutine on the GPU is called kernel, and one CUDA kernel
may run at a time. To launch a subroutine, the host specifies the number of blocks and
threads responsible for executing the routine. Passing arguments by value is possible
in CUDA, but since the GPU cannot directly access the host’s memory, data intended
for computation on the GPU must be transferred beforehand through buffer copies.
Launching a CUDA kernel is a non-blocking operation. CUDA provides synchronization
mechanisms that facilitate waiting for scheduled programs. All subsequent API calls are
ignored upon an error, and information about the error is returned.

An advantage of CUDA over other GPU APIs lies in the power of Nvidia’s PTX ISA.
The PTX assembly language is represented as ASCII text, enabling inline assembly
in CUDA. With inline assembly, developers can achieve fine-grained hardware control,
including cache control for prefetching and even altering the replacement strategy. Ex-
tensive optimizations are applied when compiling CUDA code to PTX, resulting in
high-performance levels. The PTX assembly code is compiled to SASS, a low-level
assembly language specific to Nvidia GPUs. SASS is further optimized when translated
into machine code, which is executed directly by the GPU hardware.

CUDA does not provide any locking mechanisms. Generally, GPU workloads should
operate in parallel on independent data. Even though there are atomic operations for
float and integer values, building custom locking mechanisms is highly discouraged.

2.4.2 Web APIs

Web APIs provide a more accessible, higher-level abstraction of GPU hardware compared
to native GPU APIs, significantly simplifying the interface for developers. These APIs,
accessible through JavaScript running directly in the browser, require minimal setup
and integrate seamlessly, facilitating rapid and straightforward development. However,
this ease of use often comes at the expense of performance. In this section, we discuss
WebGL, the predominant browser GPU API, and its successor, WebGPU, which enables
general-purpose computations on GPUs directly within the browser.
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WebGL

WebGL [131] is a JavaScript graphics rendering API. WebGL is designed for rendering
interactive 2D and 3D graphics in compatible web browsers and does not provide direct
support for general-purpose computations on GPUs. However, libraries like GPU.js [137]
enable general-purpose computing in the browser by transpiling JavaScript code to
WebGL shader language. WebGL builds upon OpenGL ES (OpenGL for Embedded
Systems) [138], a subset of the OpenGL API. WebGL shader code is written in GLSL ES,
which is similar to C and C+4. The code is passed to the WebGL API as text strings
and compiled into GPU code.

Like OpenGL, WebGL operates as a state machine where commands modify the current
state and execute subsequent commands within that context. Modifications to the state
by one part of an application can inadvertently affect other parts that rely on a different
state. This creates hidden dependencies within the code, potentially leading to subtle
bugs that are hard to diagnose and fix.

Although technically feasible [139], conducting general-purpose computations on We-
bGL involves cumbersome workarounds. These workarounds lack the efficiency and
flexibility of modern general-purpose GPU APIs like CUDA or WebGPU. The WebGL
2.0 Compute initiative aimed to introduce support for compute shaders on the web
through the WebGL rendering context [131]. However, due to the inherent limitations of
WebGL and the emergence of new native GPU APIs, the group decided to discontinue
efforts to further develop the WebGL API. Instead, they announced that WebGPU will
be the path forward for compute shaders on the web [131].

WebGPU

WebGPU [20] represents a significant evolution in web-based graphics and computation,
aiming to provide a more efficient, powerful, and secure means of accessing GPU resources
directly from web browsers. It is a flexible, modern compute API that enables developers
to use the GPU in web browsers not only for graphics rendering but also for general-
purpose computations. WebGPU is standardized by the W3C [20], with participation
from all major browser vendors. Despite being in active development, the engagement
of these vendors indicates a strong potential for widespread deployment in the coming
years [21]. As GPUs become increasingly ubiquitous across devices, including mobile
phones, the utilization of GPU access from web browsers is predicted to become even
more prevalent [140, 141]. The underlying implementation of WebGPU in Chromium,
Dawn [142], and Firefox, wgpu [143], are available as open-source and pave the way for
the integration of WebGPU into applications beyond the scope of web browsers.
Compared to WebGL, the WebGPU API is more streamlined and does not depend on
a single state object. In contrast to WebGL, which is a wrapper around OpenGL ES,
WebGPU supports native APIs, like Vulkan, Metal, and DirectX, through a JavaScript
API. While implementations provide access to the GPU through these APIs, they may
restrict access to resources, like memory and runtime, for security reasons. Instead of
mirroring a single native API, WebGPU uses its abstractions. The language for WebGPU
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App 1 App 2 App n
Logical Logical Logical
Device Device Device
WebGPU
Adapter Adapter
OS API (e.g. Vulkan, OS API (e.g. Vulkan,
DirectX 12, Metal) DirectX 12, Metal)
GPU Driver GPU Driver
Built-in GPU Discrete GPU

Figure 2.4: Hierarchical abstraction layers spanning from applications utilizing GPUs
through the WebGPU interface down to GPU hardware [144].

is WGSL (WebGPU Shading Language). It is compiled into a format the underlying
system understands, like SPIR-V for Vulkan or HLSL for DirectX 12.

Abstractions. WebGPU abstracts away the details of the underlying hardware archi-
tecture so that the same application runs on different kinds of GPUs. This is achieved
by multiple layers of abstractions, depicted in Figure 2.4.

From the bottom-up, the GPU driver provides an interface to the operating system.
Drivers and the operating system facilitate multiplexing, abstracting away shared resources
and enabling applications to use the GPU as if they were the sole users. The operating
system then provides an interface to applications. These interfaces include Vulkan,
Microsoft’s DirectX 12, and Apple’s Metal. Adapters are a crucial part of WebGPU.
They translate the underlying interface to a common denominator. Each physical GPU
corresponds to one adapter. WebGPU facilitates another level of multiplexing to provide
multiple logical GPU devices to web applications. To request an adapter in JavaScript,
we use navigator.gpu.requestAdapter (). There are optional arguments to request a
high-performance or a low-energy device. Some implementations even provide software
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fallback adapters. After retrieving an adapter, we can request a logical device using
adapter.requestDevice (). However, the logical device may not match the underlying
physical device’s capabilities. Instead, logical devices adhere to a common denominator
with specific limits for properties like the maximum amount of simultaneously running
threads. If an app runs within these limitations, it works across many different GPUs,
thus achieving high portability. It is possible to request higher limits at the cost of
reduced compatibility with a narrower range of GPUs.

Computations. Historically, GPUs ran different shaders in a pipeline to render graphics.
This is also reflected in the design of WebGPU. First, data is copied to the GPU. Then,
different shaders operate on this data in a pipeline, and finally, the data is rendered on
screen or copied back to the host memory. In WebGPU, we program shaders as stages
for a pipeline and set the stage’s entry points.

WebGPU currently supports render pipelines and compute pipelines. Other pipelines,
like a raytracing pipeline, may be supported in the future. A render pipeline typically
consists of multiple stages, e.g., a vertex and a pixel shader. The output of the render
pipeline is typically a 2D image. A compute pipeline usually only consists of one stage.
It operates on data and returns a buffer containing the result.

WebGPU offers developers the concept of workgroups to use the parallelism of GPUs.
The CUDA equivalent to a workgroup is a thread block. A workgroup represents a
collection of threads that execute a shader in parallel. Within a workgroup, threads
are executed on a single core and may use a small shared memory region. WebGPU
provides a means of synchronization for these threads. Workgroups are organized three-
dimensionally to increase locality. Ideally, this improves performance since neighboring
workgroups are expected to access similar areas in memory, leading to better utilization
of caches.

To run a pipeline, we need to place the pipeline in a command buffer. The command
buffer is a queue containing encoded commands that can be executed on the underlying
GPU. This enables efficient batching of commands and parallel command generation.
The command encoder schedules pipelines and copies data between GPU buffers or
between the GPU and the host. To encode a pipeline, we use the PassEncoder. In the
PassEncoder, we set the pipeline and the number of workgroups to be dispatched. The
PassEncoder contains the state and data required to execute the shader. This contrasts
with OpenGL, where state information is stored in a global state object.

WebGPU uses Bind Group Layouts to define properties of resources, like textures
and buffers, used in a pipeline. They act as an interface between the pipeline and the
resources. A Bind Group Layout defines the type of buffers used in a pipeline. The type
defines the purpose of the buffer and other properties, like whether the buffer is writeable.
An actual Bind Group needs to adhere to the Bind Group Layout and contains the actual
GPU resources.

GPU buffers need to achieve high levels of throughput. That is why GPU buffers are
generally not exposed to host memory. Staging buffers are used to copy data to and from
the GPU. Staging buffers are GPU buffers accessible for both the host and the GPU. In
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WebGPU, we can copy data from an internal buffer to the staging buffer and map it into
the host memory. We can also do the same in the opposite direction to copy data to the
GPU. To copy data from internal buffers to the staging buffer, we request a buffer with
usage set to GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_SRC. To copy data to
the staging buffer from the host, we request a buffer that can be mapped to host memory
using GPUBufferUsage.MAP_READ | GPUBufferUsage.COPY_DST.

Enqueuing commands to the command buffer is a synchronous operation. The command
is enqueued and executed at some point in the near future. To use the result of a command,
we map the memory from the staging buffer to the host’s memory using mapAsync.
mapAsync waits for the completion of the commands using the requested buffer. To wait
for all work submitted to the GPU to complete, we can use onSubmittedWorkDone ().
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Eviction Set Search in WebGPU

Recent works demonstrate that Prime+Probe attacks work on GPUs [13, 145]. A crucial
part of Prime+Probe attacks is the finding of eviction sets. There is no eviction-set-
finding algorithm for WebGPU, although algorithms for native applications, such as
CUDA, have demonstrated effectiveness.

In this chapter, we explore the challenges of finding eviction sets in a restricted
environment like the browser. We develop primitives to overcome these challenges, such
as a counting thread and self-configuring components to automatically identify eviction
sets across discrete GPUs from various generations, covering both Nvidia and AMD
platforms. Our set-finding algorithm builds upon set-finding algorithms for CPUs and
uses the parallelism of GPUs to improve its performance.

3.1 Primitives

We require several components to build a set-finding algorithm. First, we need a reliable
timer. The timer must be precise enough to distinguish a cache hit from a cache miss. We
then use the timer to detect cache activity. We determine the cache size by incrementally
enlarging a buffer and observing the changes in its cache hitrate. An accurate timer and
knowledge about the cache size allow us to build Prime+Probe eviction sets.

While such primitives have been extensively studied for CPUs, adapting them for
GPU architectures poses notable challenges. Additional challenges emerge due to the
assumption of a weak generic attacker from the browser.

3.1.1 Cache Timing Measurement

The WebGPU API uses several measures to prevent cache timing attacks. There
is an optional timestamp-query feature. At the time of writing, major browsers ei-
ther do not support this feature or only permit its use for experimental purposes.
For example, Google Chrome supports the timestamp-query feature through the flag
--disable-dawn-features=disallow_unsafe_apis. The WebGPU standard further-
more specifies a reduced precision of timestamp queries [20]. The timestamp-query is
not available inside a WGSL shader. Instead, timestamps can only be recorded between
GPU commands. Hence, at the time of writing, WGSL does not provide any timer
functionality.
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Furthermore, WebGPU restricts access to shared memory similarly to how browsers
manage access to SharedArrayBuffer. This includes adhering to cross-origin policies,
thus ensuring that shared memory is only accessible within the same origin.

JavaScript uses similar defenses against timing attacks, such as reducing timer precision.
Previous research addressed this by using counting threads [92, 87, 13]. Generally, a
counting thread continuously writes an incrementing value to a shared memory region.
Another thread that requires timing information reads this value continuously and
computes the relative difference between values to compare the duration of various
operations. While the incremental value does not directly represent a real-time value, its
consistent incrementing at regular intervals proves accurate enough for many applications,
such as distinguishing between a cache hit and a cache miss. When implementing a
counting thread in WebGPU, we face several challenges:

C1. Thread Serialization. With WebGPU, only one compute shader may run at
a time. Consequently, the attack shader also needs to increment the counting variable
simultaneously. While this task is straightforward on CPUs, a challenge arises on GPUs
due to execution in lockstep within a workgroup [146]. This implies that while the shader
can handle different tasks, such as executing the attack code and a counting thread, actual
execution does not occur in parallel. Instead, diverging instructions result in sequential
execution. While this may lead to poor performance for many practical applications, it
also renders the counting thread useless, as the attack code depends on the counting
thread incrementing the shared timer variable in parallel.

C2. Memory Coherency. There is no automatic memory coherency guarantee on
GPUs in LO and L1 caches. It is the responsibility of developers to ensure coherency
through synchronization. Due to each SM operating with its dedicated memory subsystem,
copies of the same data may exist in different L1 caches. Consequently, a counting thread
might increment the timer variable in its own L1 cache, unobservable for other SMs.

C3. Compiler Optimizations. Before WGSL shaders are executed, the compiler
applies aggressive optimizations. Instructions may be reordered or eliminated. The
compiler replaces loops with their final results and substitutes memory accesses with
registers when possible.

27



Chapter 3 Eviction Set Search in WebGPU

1 @binding (0) @group (0) var<storage, read_write> timer : atomic<u32>;
2 @binding (1) @group (0) var<storage, read_write> stop : atomic<u32>;
3 @binding (2) Q@group (0) var<storage, read_write> buffer : atomic<u32>;

1 @binding (3) @group (0) var<storage, read_write> threshold : atomic<u32>;

6 @compute Qworkgroup_size (1)

7 fn main(@builtin(global_invocation_id) global_id : vec3<u32>)
s {

9 var threshold : u32 = atomicLoad(&threshold);

10 storageBarrier () ;

12 if global_id.x == 0 {

13 var time : u32 = 0;

14 atomicStore (&timer, O0);

15 while (atomicLoad(&stop) != stop_value)

16 {

17 for(var a: u32 = 0; a < 100000; a++)

18 {

19 time++;

20 atomicStore (&timer, time) ;

21 }

22 }

23 return;

24 }

25 else {

26 var time : u32 = atomicLoad(&timer); // before
27 var ¢ : u32 = atomicLoad (&buffer);

28 if ¢ != 0 { // prevent compiler optimization
29 return;

30 }

31 time = atomicLoad (&timer) - time; // after
32 if (time < threshold) {

33 // cache hit

34 }

35 else {

36 // cache miss

37 }

38 atomicStore (&stop, stop_value);

M T
Listing 3.1: Implementation of a counting thread in WGSL. The thread with global

ID 0 incrementally updates a shared timer variable, facilitating timing
measurement for other threads.

Solutions. Listing 3.1 shows our solution to the abovementioned challenges. Dutta et
al. [13] execute the counting thread multiple times to fill a warp and guarantee that it is
the only code executing on one processing unit. They execute the attack code on another
processing unit within the same SM. This solution solves the first challenge since the
threads on a processing unit execute the same code without diverging instructions.
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Figure 3.1: Cache hit and cache miss histograms in WebGPU for different GPUs for 2
million samples. Storing data to a register offers better temporal precision than
adding to a memory location. Higher counts show higher timer resolution [1].

We aim for a more general solution that does not rely on a specific number of threads
to fill a warp. Therefore, we set the workgroup size to 1, as shown on line 6 in Listing 3.1.
Consequently, dispatching the shader multiple times results in executions on different
processing units. We dispatch the shader twice for the simple case, where we need
one attacker thread and a counting thread. In the shader, we use the built-in variable
global_id to distinguish between the counting and attacking threads.

We solve the second challenge by using atomic operations. While atomic operations
guarantee that the compiler does not turn memory accesses into registers, they do not
solve the third challenge entirely. We use a branch instruction depending on the value
fetched at runtime to mitigate compiler optimizations, which would otherwise cause the
removal of instructions with unused results. This can be seen on line 28 in Listing 3.1.
Since the compiler cannot predict the outcome of this branch instruction, the load
instruction is not removed in the optimization step.

To gracefully halt the shader, we use a shared stop variable. Given the expensive
nature of loading the value atomically, we perform this operation only once every 1 000 000
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Table 3.1: Comparison of cache hit and cache miss timing counter values at the 98th and
5th percentiles for the add and store methods across a variety of GPUs. A
separable distribution yields a good threshold value. Total of n = 1000000
hits and misses recorded per GPU [1].

Add Store
GPU hit>98% miss<5% hit>98% miss<5%
B RX 6800 XT 6 7 9 11
5 RX 6900 XT 5 7 9 11
GTX 1070 5 8 62 95
GTX 1650 7 13 75 94
GTX 1660 Ti 7 11 74 94
GTX 1660 Ti Lin 4 7 10 18
« RTX 2070 SUPER 6 8 80 106
A RTX 2070 SUPER Lin 4 8 11 18
= RTX 3060 Mobile Lin 5 8 11 18
“ RTX 3060 Ti 8 13 90 124
RTX 3060 Ti Lin 5 7 11 20
RTX 3080 8 12 95 119
RTX 4090 7 10 99 145
Quadro P620 5 7 61 88

increments. When the attacker thread is done, it writes a predetermined value to the
stop variable to signal the counting thread to stop execution. When we require more
attacker threads, each thread increments the stop value by one once it has finished its
task. In such instances, the timing thread waits for the value of the stop variable to
match the number of attacking threads.

3.1.2 Cache Hit-Miss Threshold

To distinguish a cache hit from a cache miss, we build upon our timing primitive to
automatically find a threshold value. Therefore, we measure the access latency from
memory locations that are highly likely cache misses and from cached memory locations.
As can be seen on line 20 in Listing 3.1, we use atomicStore to store a register value to
the shared memory location. We found that using atomicStore brings a higher timer
resolution compared to atomicAdd, which can be seen in Figure 3.1. This occurs because
atomicAdd requires loading the current value from memory before applying the increment.
In contrast, atomicStore simply stores the current register value to the shared memory
location. This optimization was first presented by Schwarz et al. [147] and exploits the
fact that only the counting thread writes to the counter variable. We found that this
optimization works best with Nvidia cards running on Windows. Table 3.1 compares
different values for different architectures on Windows and Linux. Even in cases where
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Figure 3.2: Average L2 hitrate for varying buffer sizes on a NVIDIA RTX 2070 Super.
The red dotted line indicates the L2 cache size of 4 MiB.

Table 3.2: Our WebGPU cache-size detection algorithm on various GPUs (n = 10). The
algorithm consistently identifies the correct cache size across all cards with

one exception [1].

Size Runtime

Actual Detected Correct p z o

GPU MB MB % ms ms

B  RX 6800 XT 4.0 4.0 100 179.3 19.21
2 RX 6900 XT 40 4.0 100 185.6 26.20
GTX 1070 2.0 2.0 100 192.6 26.15
GTX 1650 1.0 1.0 100  422.2 31.56
GTX 1660 Ti 1.5 1.5 100 283.6 11.02

= RTX 2070 SUPER 4.0 4.0 100 189.9 6.15
§ RTX 3060 Mobile 3.0 2.975 90 285.3 15.03
'z, RTX 3060 Ti 4.0 2.975 0 276.8 9.50
RTX 3080 5.0 5.0 100 2574  9.81
RTX 4090 72.0 72.0 100 1729.6 60.23
Quadro P620 1.0 1.0 100 251.7 23.25

we do not observe an improvement in resolution, the difference between a cache hit and

a cache miss is significant enough to distinguish.

3.1.3 Cache Size Detection

A central goal of our set-finding algorithm is to make it as generic as possible. We aim
to create WebGPU code with a minimal number of hardcoded values that works across
various GPUs. We need to know how many sets we are looking for to find eviction sets,

which we can infer from the cache size.

As the WebGPU does not provide functions to query the cache size, we use the primitives
described above to detect the cache size of the underlying hardware automatically. The
central idea is to fill a buffer and measure access latency in a second iteration. The access

31



Chapter 3 Eviction Set Search in WebGPU

latency increases when the buffer is larger than the cache size, as depicted in Figure 3.2.
This simple method assumes an LRU replacement policy [111].

With this primitive, we conduct a binary search to determine the cache size. The result
of the binary search is compared to known L2 cache sizes for common GPUs. We found
this method effective for various GPUs, as shown in Table 3.2. For many of the tested
GPUs, the cache size was detected correctly within approximately 300ms. The Nvidia
RTX 3060 Ti is an outlier, as the detected cache size is 3 MB, despite the actual cache
size being 4 MB. The straightforward explanation is that the card has a 3 MB L2 cache,
contrary to the official specification. Alternatively, a more complex mapping function
could be influencing cache behavior.

3.1.4 Noise

We observed periodic flushes of the full L2 cache during our experiments. The GPU
flushes almost the entire cache when something is drawn on the screen. While we did not
investigate the cause extensively, Giner et al. [1] show that it is possible to construct an
inter-keystroke timing attack based on this observation. Because full evictions negatively
impact our attack primitives, we increased the sample size to reduce the effects of this
noise source.

3.2 Algorithm

We build upon the primitives described above to find eviction sets. An eviction set is a
set of addresses that map to the same cache set and consequently fill the cache set. To
replace all entries in the cache set, the size of an eviction set must be at least equal to
the cache’s associativity, denoted as W.

Knowledge about the mapping function of virtual or physical addresses to cache sets
simplifies the finding of eviction sets massively. Research on CPUs reverse-engineered
how virtual and physical addresses map to cache sets on various CPUs. Jain et al. [111]
reverse-engineered the cache mapping functions for an Nvidia GTX 1080 GPU and
found that the cache addressing is much more complex than for traditional CPU caches.
Furthermore, our tests confirmed that the mapping functions differ between generations
of Nvidia GPUs. Given the variations in cache mapping functions among Nvidia GPUs,
and even more so across manufacturers and their mobile variants, our generic algorithm
does not rely on mapping functions.

Because GPU memory architecture is proprietary, and our goal is a universal solution,
we cannot depend on contiguous memory, huge pages, or fixed page sizes. In WebGPU,
we do not even have virtual or physical addresses, and the concept of pointers does not
exist. Furthermore, we cannot use fine-grained cache control to assist the set-finding
algorithm. Instead, our generic set-finding algorithm is based on prior work for CPUs [23,
148]. Here, only a timer accurate enough to distinguish cache hits from cache misses is
required.
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S + {1.5x cacheSize, 128B steps}
P+ Slol, § « S/P

3 while & > W

circularShift (S, Yw+1|S|)
G + S[0:Yw+1]|S]]
access (P)
access (S\G)
if isNotCached (P)
S «— S\G // G does not change eviction of P
return S
Listing 3.2: Pseudo-code of the group-elimination method. We iteratively partition the
set § into W + 1 groups, ensuring that at least one group does not affect the
eviction of P. The process terminates when S contains only W elements,

representing an eviction set of P.

3.2.1 Group-Elimination Method

The basis of our set-finding algorithm is the group-elimination method proposed by
Qureshi et al. [23]. The code for the group-elimination method is illustrated in Listing 3.2.
The group-elimination method uses the pseudo-LRU cache replacement policy to find
congruent addresses for a target pivot address P. We start by selecting a large set of
addresses S, significantly larger than W, ensuring that S evicts the target address. Next,
we partition S into W + 1 groups. Each of these groups contains approximately the same
number of addresses.

Since S contains at least VW addresses that evict the target address, we know that at
least one out of the YW 4+ 1 groups does not influence the eviction. The group-elimination
method removes one group at a time and checks whether the target address is still evicted.
The remaining groups form the new search set S. We repeat the steps until only W
addresses remain in §. These W addresses form an eviction set for the target address.

While this algorithm works well to find an eviction set for one target address, our
goal is somewhat different. We want to find all eviction sets in the L2 cache, so we
parallelize the group-elimination method to improve its performance. We reach an
increased performance not only by utilizing the parallelism of GPUs but also by using
the predictable behavior of LRU, similar to Prime+Prune+Probe [148].

Some constants presented in the following section were found empirically and are not
optimal values. However, these values work well for various GPUs. When referring to
addresses in the following sections, we refer to offsets within a WGSL buffer.

3.2.2 Parallel Eviction-Set Finding

The basis for the group-elimination method is pseudo-LRU cache replacement behavior.
The naive approach to parallelizing the group-elimination method is distributing the
computation among multiple threads. However, when we access addresses from the same
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Figure 3.3: Constructing the first bucket containing 3 full eviction sets. First, a pivot
P is chosen. The set containing P is blue; all other eviction sets are green.
In each step, 1/32 of all addresses are removed. We remove addresses that
are cache hits, as they are not part of a full eviction set anymore (yellow).
If the pivot P is still part of a full eviction set, we continue with the next
step. If P is not evicted (red set after 7 iterations), the step is reverted. The
step is repeated until only a certain number of addresses remain. The pivot
‘P guarantees that at least one eviction set remains; however, with a high
probability, more eviction sets remain in the bucket.

set from different threads, we can no longer rely on the access order and, therefore, lose
the LRU behavior.

Therefore, we introduce a pre-processing step to split the addresses into buckets with
non-overlapping sets. Afterward, we can independently search for eviction sets in the
buckets using multiple threads.
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Figure 3.4: Pre-processing step for new bucket. Addresses that are cache hits are not
part of a full eviction set and can be removed from the search space. With an
initial search space of 1.5x cache size, it is highly unlikely that the remaining
addresses, which map to an eviction set found in one bucket, will form a full
eviction set in another bucket. Therefore, the buckets contain non-overlapping
eviction sets.

Step 1: Buckets

The goal of the first step is to separate eviction sets into different buckets. Each bucket
contains eviction sets, with the assurance that all addresses within a set exclusively belong
to that particular bucket. We begin with a higher-level description of the algorithm and
discuss the details afterward.

High-level Description. Figure 3.3 shows the separation of a cache with 8 sets with
16 ways into buckets containing at most 50 addresses. For our initial set of addresses
S, we chose addresses ranging over 1.5x the cache size in 128 B steps. This results in
about 24 addresses per cache set. We chose one pivot address to guarantee that at least
one eviction set is part of the bucket. However, the probability that more eviction sets
are within each bucket is high. The set containing the pivot address is depicted as the
blue square, and other sets of addresses forming a complete eviction set are depicted as
green squares. The number within each square represents the number of addresses within
that set. In each step, we remove 1/32 of the addresses. In the case of this example, this
results in the removal of 6 addresses per step. After every removal step, we check for hits
in the remaining addresses. We remove the hits since they are no longer part of a full
eviction set. We can see this, for example, after 5 steps in Figure 3.3, where the first set
only contains 15 addresses and does not form a full eviction set anymore. We remove
these partial sets except for the set containing the pivot address. After step 7, we see
that the set containing the pivot address is no longer a full eviction set. Since we want at
least to keep the pivot set in our bucket, we revert the step and remove other addresses.
After several rounds of removing addresses, we end up with addresses that form our first
bucket, containing 50 addresses that form 3 eviction sets.

For the search for the next bucket, we repeat the process with all addresses not
contained in the first bucket. Note that at the beginning, these addresses still contain
addresses of sets from the first bucket. However, Figure 3.4 shows that these addresses
cannot form a full eviction set with a high probability when we chose 1.5x the cache size
as our initial search space. Before searching for the next bucket, we remove addresses
that are cache hits and continue like before by selecting a new pivot.

35



2

Chapter 3 Eviction Set Search in WebGPU

S + {1.5x cacheSize, 128B steps}
Buckets <+ {{}}
while § '= {}
B «~ S, P < BIlo]
B < B\P
while |B| > targetSize
g « {1
hits « {}
do
shuffle (B)
B+ BUG
G < BIl0:12w|B|]
B + B\G
if 1Bl > Ys|S| @
access (P), parallelAccess (B)
if isNotCached(P) and hybridCondition() @
hits < accessAndMeasure ({PUDB})

else @

hits < accessAndMeasure ({PUB})
while isCached (P)
B + B\hits @
B+~ BUTP
Buckets ¢ Buckets U {B}
S« S\B @
hits <« accessAndMeasure(S)
S + S\hits
return Buckets
Listing 3.3: Pseudo-code dividing set of addresses into buckets with non-overlapping
eviction sets. We iteratively remove addresses from B and check if P is still
part of a full eviction set. If P is not evicted, we add B again, ensuring that
at least an eviction set for P remains in the bucket. To check whether P is
evicted, we access other addresses either in parallel (@) or serially (@ ,@).
Serial access gives us information about the eviction of each address, so we
can remove addresses that are not part of an eviction set anymore (@). Once
B reaches a target size, we continue with the construction of the next bucket,
continuing with the remaining addresses.

It is not necessary to know the number of addresses within each set. The information
that some addresses are still in the cache after accessing all other addresses is enough
to infer that these addresses do not form a full eviction set anymore and can safely be
removed. This is important because the performance of this algorithm stems from the
fact that, at this point, we do not care about actual eviction sets. The only goal is to
separate a set of addresses into buckets with non-overlapping sets, which we can later
use to find the actual eviction sets in parallel.
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Implementation Details. Now that we understand the high-level abstraction of
separating addresses into buckets, we dive into the details. Listing 3.3 shows the pseudo-
code for this step. We start with a large set of addresses S (1.5x cache size, 128 B steps)
that evicts the whole cache. Next, we select a pivot address P and fill the current bucket
B with all addresses in S. If the current bucket is larger than the target size, we remove
addresses iteratively. In contrast to the group-elimination method, we remove 1/2w|5|
instead of 1/w + 1|B|, which prevents the removal of too many addresses in a later step
(@). Depending on the current size of the bucket, we differentiate between three cases:

Parallel Access for |B| > 1/6|S]| (°) If the current size of the bucket is larger
than 1/6|S|, we access P and then all other addresses in parallel. We then check if the
remaining addresses evicted P. In that case, we know that removing G did not affect
the eviction, and we can continue removing other addresses. This is very similar to
the group-elimination method. This step is fast since we access all addresses but P in
parallel.

Serial Access for |B| < 1/6|S]| (9) If less than 1/6|S| addresses are in the current
bucket, we access all addresses serially. If P is not cached, we can safely remove G again.
While this is slow compared to parallel accesses, we gain an essential advantage. Having
the timing information for all addresses, we can remove all addresses that are cache hits
from the current bucket since they are not part of full eviction sets anymore (€)).

Hybrid Transmission from Parallel to Serial Access (@) We found that
transitioning from parallel to serial access mode in a hybrid manner enhances the efficiency
of this algorithm. If P is still evicted after removing G and accessing the remaining
addresses in parallel, we check for the hybridCondition(). The hybridCondition() is
true on every fourth iteration if |B| < 3/4|S|. In that case, we additionally access and
measure all addresses serially like in 9 to gain timing information and remove all hits in
a later step @).

When |B| is below the target size, we add the pivot P to the bucket. Then, the newly
found bucket is added to the set of buckets. We remove the addresses contained in this
bucket from the set of remaining addresses (@). Additionally, we check if there are cache
hits in the set of remaining addresses. Since these addresses are not part of any eviction
set, we remove them from the set of remaining addresses. We continue searching for
more buckets as long as we have addresses in S.

Empirical tests have shown that a bucket size of 3500 addresses works well across
various devices. This is equivalent to around 146-206 eviction sets per bucket.

Step 2: Sets

The algorithm from Step 1 yields a separation of addresses into buckets with non-
overlapping eviction sets. With non-overlapping sets, we can search for eviction sets in
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G «+ BIlo0]

l

B <+ Bslil

shuffle(B)
P « BIl0]
B «~ B\P

Bl > 1000

G « BIl0:12w|Bl]

B <+ B\hits

l

B« B\G
access({P U B})
hits + measure({P U B})

isCached(P)

B + {BUG}
shuffle(B)

-

set = {G U hits}
Bs[i] < Bs[i] \ set

J

set ={B U P}
Bs[il « Bs[i] \ set —r
B« Bslil

Figure 3.5: Flow chart of set search within one bucket.
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each bucket independently, as accesses to one bucket do not evict addresses from another
bucket. Thus, we can rely on LRU cache eviction. Only the access and measure parts
of the algorithm are executed on the GPU.

Figure 3.5 depicts a flowchart of the parallel set-finding algorithm for one bucket.
Initially, we fill B with one bucket from the algorithm described in Step 1 (@)). One
bucket contains around 3500 addresses, equivalent to 145-206 sets. On an Nvidia RTX
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2070 Super, we start with 13-14 buckets, which are searched in parallel. The exact
number of buckets depends on the results from Step 1.

Similar to Step 1, we select one pivot address P (@)). Subsequently, we look for a
set that evicts P. Depending on the size of the bucket B, we remove either one address
(@) or a fraction (/2w of |B|, @ ) from B, storing the removed addresses in G. The
threshold value for this decision is 1000 addresses. While this is not an optimal value, we
found that it works well across various GPUs. We remove only one address when a few
remain in the bucket because it allows us to find many sets for free at a later step (@).

After removing G, we run the WebGPU shader in parallel with the other instantiations
of this algorithm (@)). The shader invocation is the computationally expensive part
of this algorithm and a synchronization point. As a result, we get information about
cache hits and misses for all addresses within the bucket. Note that this is only possible
because the other instantiations of this algorithm work on different buckets containing
addresses that do not influence cache sets of other buckets. So, even though we access
addresses in parallel, we can rely on LRU eviction within each bucket.

Using the result of the shader, we check whether P is cached. If P is indeed cached,
removing G from B yielded an unwanted outcome: B does not contain an eviction set for
P anymore. We add G to B again and try again removing different addresses ( @ ).

This is repeated until we remove a set G from B, after which B still contains an eviction
set for P. We can then remove all addresses that are cache hits from B since they are
not part of a full eviction set anymore (@ ).

Then, a vital optimization step comes into play. When we remove one address and,
consequently, W hits occur, we find an eviction set for free. This set consists of the
removed address in G and the addresses that are cache hits after removing G. After
checking if {G U hits} is indeed an eviction set, we store the newly found set and remove
it from the initial bucket Bs[i] (@).

Similar to the group-elimination method, we check if we have W addresses remaining
in B. In that case, we have found an eviction set that evicts P. We verify once more
if the newly discovered set {8 U P} indeed is an eviction set for P, and store the set
upon confirmation (@).

Finally, we choose a new P and start again. Note that Figure 3.5 does not include an
exit condition for the algorithm for simplification. However, we stop the search once the
bucket is empty or no more sets can be found.

3.3 Implementation

As mentioned, large parts of the algorithm are not executed on the GPU. The goal of
the implementation is to minimize noise sources. Since every memory access within the
shader causes cache activity, we only use a GPU shader for measurements. All other
computations are done in JavaScript.

We observed significant noise levels when implementing our cache attack, which posed
a substantial challenge. For example, we observe periodic evictions of almost the entire
L2 cache, which we attribute to screen updates rendered by the GPU. We access all
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Table 3.3: Evaluation of set-finding algorithm on various GPUs (n = 10). More than
80% of sets found on all GPUs but one [1].

Sets Runtime

Overall Found z Found o T o

GPU % % min min
GTX 1070 1024 96.0 2.1 11.8 48
GTX 1650 512 82.9 22 42 39

« GTX 1660 Ti 768 96.4 2.1 121 3.8
A RTX 2070 SUPER 2048 98.7 1.0 70 21
= RTX 3060 Mobile 1536 99.9 01 23 04
“ RTX 3060 Ti 1536 94.5 53 26 1.5
RTX 3080 2560 99.3 1.9 28 1.2
Quadro P620 512 50.8 245 13.7 9.0

addresses in a pointer-chase style to eliminate the unwanted effect of cache accesses from
address lookups. As suggested by prior work on CPUs and GPUs [149, 150, 112], we use
pointer-chasing to reduce the effect of address lookups on the cache. In pointer-chase,
we traverse an array whose elements are initialized as the indices for the next memory
access [112]. Since we use atomic memory accesses and only know the following address
after loading the current one, we do not need additional memory barriers. Naturally, we
cannot get rid of all other cache activity. For example, reading shader code evicts some
cache lines. To reduce the effect of noise, we take several samples per measurement.

3.4 Evaluation

In this section, we evaluate the performance of the eviction-set-finding algorithm on
various Nvidia GPUs. Furthermore, we discuss empirically determined values used for
the separation of addresses into buckets with non-overlapping eviction sets as discussed
in Section 3.3.

3.4.1 Set Search

Our set-finding algorithm finds eviction sets on most of the tested GPUs in less than 5
minutes, as shown in Table 3.3. However, the set-finding was not successful on AMD
cards. We suspect that on AMD GPUs, the measured difference between a cache hit
and a cache miss value from our timing primitive is too small, as detailed in Table 3.1.
Nevertheless, we expect that finding eviction sets with our algorithm on AMD cards is
also possible. For example, choosing a higher sample size could be sufficient to find sets
on AMD GPUs as well. However, because access to AMD GPUs was restricted, we did
not pursue further investigation into this matter.
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Figure 3.6: Comparative analysis of accuracy and duration of different threshold values
for parallel bucket search. If more than x values are in the current bucket, the
algorithm accesses addresses in parallel, which introduces noise but improves
performance. The goal is separation of & into 13-14 buckets; different values
come from high noise levels. Threshold of 1/6|S| (gray dotted line) gives
consistent results with good performance on various devices. Evaluation on

Nvidia RTX 2070 Super (n = 10).

The optimization step allows us to find sets for “free” and improves the algorithm’s
efficiency. For instance, on the Nvidia RTX 2070 Super, which has 2048 L2 cache sets, we

divided all addresses into 13-14 buckets, each containing approximately 3500 addresses.

We find about 1950 sets for “free”, using only about 100 pivot addresses. This means

that around 95 % of all sets were found indirectly as a side-product of the actual search.

3.4.2 Parameter Evaluation Bucket Separation

We use several empirically determined values that work for various GPUs to separate
addresses into buckets. As these values are not tailored for specific devices, they are not
optimal.

Parallel Access Threshold. As described in Section 3.2.2, we differentiate between
three cases to reduce the size of the current bucket. Accessing the addresses in the bucket
in parallel improves performance at the cost of lower accuracy of the results. Figure 3.6
compares different threshold values for parallel access. All memory accesses are serial
if the number of remaining addresses in a bucket is below the threshold value. For the
values above, we access all addresses in parallel. However, we add a serial access on
every 4th iteration for the hybrid mode. This helps to mitigate the noise introduced with
parallel accesses. We found that switching to serial-only access when less than 1/6|S|
addresses remain in the bucket yields good performance and consistent results on various
devices.
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Figure 3.7: With hybrid mode, we add a serial access step while parallel probing for every
mth iteration. Comparison of accuracy and duration for different values for
m. Goal is separation into 13-14 buckets, different values from high noise
levels. Accessing all addresses serially every 4th iteration works consistently
on various devices. Evaluation on Nvidia RTX 2070 Super (n = 50).

Hybrid Mode. Accessing all addresses in parallel improves performance but yields
inaccurate results. While this does not affect the separation of buckets if the current
bucket size is larger than 3/4/S|, we introduce a serial access for every mth iteration of
the parallel mode. This hybrid mode is described in detail in Section 3.2.2. Figure 3.7
compares different values of m. Adding a serial access step for every 4th parallel access
works well across various devices.
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Chapter 4
Covert Channel

A covert channel refers to a method of communication that involves exploiting shared
system resources, using them in unintended ways to transmit data. Attackers often use
these channels to transmit data between domains that are either isolated or under strict
surveillance, thereby violating the system’s security policy. In such channels, the sender
and receiver typically collaborate.

One example of using a covert channel is to exfiltrate sensitive data. An attacker may
control an application with access to sensitive data but lacks internet access. The attacker
may now lure the victim to a website with the receiver program in JavaScript. Detecting
covert channels can be challenging, especially when the communication occurs through a
channel that is not architecturally visible. The collaboration between sender and receiver
in a covert channel also makes it an effective tool for measuring the bandwidth of any
side channel.

In a Prime+Probe covert channel, the sender and receiver operate on one or more
eviction sets to transmit data. Before transmitting data, both parties need to agree on
the set of eviction sets used for transmission. After that, the sender primes (evicts) an
eviction set to transmit a binary 1 or leaves the set as it is to transmit a binary 0. The
receiver then probes the eviction set. When the receiver detects an eviction, it infers that
the sender transmitted a binary 1. Conversely, the receiver registers a binary 0 if the
probed set is still cached.

4.1 Construction

To construct a cache covert channel, we first address the challenge of synchronizing both
parties, a process detailed in Section 4.1.1. Next, the sender S and receiver R establish a
shared set of eviction sets for communication, as outlined in Section 4.1.2. We then use
these eviction sets to transmit data, with our method presented in Section 4.1.3. Finally,
the implementation details are discussed in Section 4.1.4.

4.1.1 Synchronization

We synchronize the sender and receiver using the system’s wall clock. While the accuracy
of the wall clock is limited to 100pus, this is not a significant limitation for our covert
channel. The invocation of a shader takes approximately 3ms, overshadowing the
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inaccuracy of the wall clock. For this reason, the accuracy of the wall clock is sufficient
for our covert channel.

Furthermore, using a common clock signal simplifies synchronization. For the first
stage of the channel, where we transmit the eviction sets used for message transmission,
we synchronize using the start of even-numbered seconds. The second stage, where
the message is transmitted, runs immediately after the first stage. We use one more
synchronization point at the start of a full second and compute each message package’s
start and end times using a predetermined package window length.

4.1.2 Set Transmission

Sender S and receiver R agree upon some constant parameters beforehand. These include
the number of sets used for communication (1024) and the duration of a single package
transmission, the package window length.

To establish a communication channel, sender S and receiver R need to agree upon a
set of eviction sets used in the communication. Neither & nor R know absolute labels
for their respective eviction sets. Hence, we implement CJAG (Cache-based Jamming
Agreement) as described by Maurice et al. [26], with modifications tailored to optimize
performance on GPUs. In CJAG, S continuously jams (evicts) and probes a set. At the
same time, R probes all sets continuously. Once R detects the eviction of a set, it starts
to jam the detected set. S then recognizes the detection in its probe phase and continues
with jamming the next set to be transmitted to R.

CJAG on CPUs works in a way where § and R are executed simultaneously and
continuously. However, on GPUs, only one compute shader may run simultaneously.
Since compute shaders may run for longer periods of time, there is no assurance that both
the sender and receiver shaders are scheduled in a manner conducive to the synchronized
jam and detect cycle. Therefore, we invoke the shaders for jamming and detection in
each iteration rather than executing them continuously. Unfortunately, this introduces
additional overhead. We found that invoking a shader in WebGPU and waiting for its
termination takes around 3ms on an Nvidia RTX 2070 Super. We observe similar values
for other GPUs. We also observe an increased overhead when we copy buffers larger
than 200kB to and from GPU buffers. We investigate this further in Section 4.2. The
buffer used to evict the cache on the Nvidia RTX 2070 Super is 6 MB, which consists of
49 152 offsets with a stride of 128 B. Since we are only interested in whether the offsets
are cache hits or cache misses in each iteration, we copy a buffer with around 200 kB after
each shader invocation. As mentioned before, a buffer copy of this size only marginally
increases the duration of each invocation.

Since we invoke the shader for each prime and probe step, we face a hard limit of 3ms
per package transmission. However, we mitigate this limitation using multiple threads
with the parallel priming and probing of 1024 sets.

For our modified CJAG protocol, we use the eviction sets obtained through the
algorithm described in Chapter 3. We additionally obtain all eviction sets in CUDA
using the algorithm described by Liu et al. [80].
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S « Sets
T < {} // sets used for message transmission

3 while |71 < 1024

[

C + S[0:1023]

sync ()

jamParallel (C)

T <« detectParallel ()

L =C \ T // sets lost in transmission

S+~ S\ L
Listing 4.1: Sender Pseudo-code of parallel CJAG
T « {}
while |71 < 1024
sync ()

T < detectParallel ()
jamParallel (7)

Listing 4.2: Receiver Pseudo-code of parallel CJAG

S chooses several sets they want to use for communication with R. As described
before, S waits for the start of a full even second to begin with the jamming. We use
many sets, so transmitting them serially, like in the traditional CJAG, is not feasible.
Therefore, we jam and detect all sets simultaneously. This is feasible because we leverage
the parallelism of GPUs for both S and R. We opted to use 64 sets per shader invocation.
This approach allows us to simultaneously jam and detect 1024 sets using 16 threads in
parallel.

Once R detects sets, it starts jamming these sets. This serves as an acknowledgment
for S. We observe that R does not always detect all sets. Therefore, the transmission of
sets is an iterative process, where S swaps out the sets not detected by R. This ensures
that only sets found by both parties are used for communication. Listings 4.1 and 4.2
depict the pseudo-code for S and R respectively.

With our solution of parallel transmission of sets, another challenge arises. In contrast
to CJAG, where sets are transmitted serially, we no longer receive the sets in a specific
order. Of course, the order of sets is essential for transmitting messages. Therefore, after

i<« 0
T + transmissionSets

3 while i < log2(1024)

Ti < {Tn] | ne{0,1,..,|T|-1}A(n & (1 <« i) =1}
sync ()

jamParallel (7;)

i+ i+ 1

Listing 4.3: Sender Pseudo-code set-order transmission.
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Sender S sets Receiver R sets Sender S sets Receiver R sets
S R1 S R1
S, R Ss Ra
Ss R S3 Rs
Sy // Ra Sy Ry
[ 7] ®] =] [s [ = [s [ =]
(a) Receiver R primes cache sets. (b) Sender S transmits two binary 1s loading

cache sets S§; and S3 and two binary Os leav-
ing sets Ro and R4 cached for R.

Sender S sets Receiver R sets
S Ri
Sy Ra
S3 Rs
S // Ry
s r e n]

(c) Receiver probes cache sets. Sets Ry and R
are cache misses, and thus binary 1s. Rs
and R4 are cache hits, and are recorded as
binary Os.

Figure 4.1: Transmission of data using a Prime+Probe covert channel. Since § and R
agreed upon the order of sets, they can communicate a 4-bit value in this
simplified example.

successfully transmitting all sets, S starts to transmit the order of the sets. This works
as follows: S jams only half of the sets. The selection of sets to be jammed depends on
the current bit in the index number of each cache set. For example, the set with the
index number 816 = 51100110000 is jammed in the set order transmission’s 1st, 2nd,
5th, and 6th iteration. This enables a transmission of the set order from S to R in 10
iterations, corresponding to logo(1024). Listing 4.3 shows the sender part of the set-order
transmission.

4.1.3 Message Transmission

Once § and R agreed upon the sets used for the communication channel, the data
transmission starts. If & wants to transmit a binary 1, it fills the corresponding cache
set. Conversely, to transmit a binary 0 & does not access addresses of the corresponding
cache set. R continuously primes all cache sets, waits for a short period, and then checks
if the sets are still cached. R registers a binary 1 for evicted sets and a binary 0 for sets
still residing in the cache. Figure 4.1 depicts the transmission of 4 bits over a covert
channel using four sets.
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(c) Evicted cache after self-eviction. e; replaced (d) Accessing the eviction set in reverse for prob-
ey4, eg replaced es and so on. All accesses to ing gives us the exact number of evicted ad-
e; are cache misses. dresses of e.

Figure 4.2: Comparison of same-order and alternating-order access for Prime+Probe for
an 8-way cache set. Eviction set addresses are denoted as e;__g, addresses from
unrelated tasks as ni._;. Numbers in the lower half represent the timestamps
used for LRU. Accessing the eviction set in the same order (4.2c) leads
to self-evictions. Back-forth order allows counting the number of evicted
addresses (4.2d).

We opted for a one-way channel. Since there is no backchannel, we use a fixed length
window of around 5ms for each data package. We evaluate different window lengths in
Section 4.2. As described in Section 4.1.1, we synchronize S and R using the system’s
wall clock.

As discussed before, we observe lots of noise on the cache lines. To reduce the effects
of noise, we use three techniques. First, we use a majority vote measurement. When
multiple packages arrive within the duration of a package window and contain different
values, the value received most frequently is considered.

Next, we access all addresses in alternating order to prevent self-evictions, as depicted
in Figure 4.2. Self-evictions occur when we prime a cache set, and subsequent unrelated
cache accesses evict some primed addresses in LRU order. Reaccessing the set for probing
and starting with the first primed address triggers the eviction of the oldest cache entry,
which is also among the next addresses to be probed. This sequence creates a domino
effect of evictions. While probing indicates a complete set eviction, a single external
access can initiate this eviction cascade.

By probing in reverse access order, the first address probed is the last one that was
primed. Thus, probing is not affected by self-evictions. This reverse order probing,
proposed by Tromer et al. [84], helps us count the evicted addresses accurately. With this
information, we can filter out low-level noise and establish a threshold for the number
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Table 4.1: Transmission results of our covert channel on three Nvidia GPUs. Transmission
from native CUDA to WebGPU receiver in the browser, n = 10 [1].

Configuration CJAG Bandwidth Bit-Error-Rate

Sets;; Window Reads/window Z Set Tx Raw  True Z True o T o

GPU ms s Byte/s Byte/s Byte/s % %

RTX 2070 Super 1024 6.0 3.3 14.6 10666.7 8963.0  360.8 2.4 0.7

- 1024 5.0 2.2 14.0 12800.0  8962.0 286.5 5.3 0.6

A RTX 3060 Ti 1024 6.0 2.9 16.4 10666.7  9004.9 2714 2.3 0.5

= 1024 5.0 1.9 15.7 12800.0  7272.0 12525 9.1 3.1
Z.

RTX 3080 1024 5.0 2.7 27.8 12800.0 10897.5  698.3 2.2 1.0

1024 4.0 1.9 28.2 16000.0  5964.5 1048.6 15.9 2.7

of evictions required to be counted as a full eviction, thus enabling more fine-grained
control.

The third technique we use to deal with noise is differential transmission. We use
2 sets for each transmitted bit. One set conveys the actual bit, and the other set the
inverse. The transmission is discarded as noise if both sets convey the same information.
The technique prevents periodic full cache evictions from being received as erroneous
information. However, this effectively reduces the throughput to a maximum of 64 B per
package for 1024 sets.

4.1.4 Implementation

We implement the sender in a native C++ application with CUDA. With CUDA, we
can use the native high-resolution hardware timer. The disadvantage of CUDA is that it
is only available for Nvidia. Furthermore, as our set-finding algorithm does not work for
AMD GPUs, we can only construct a covert channel for Nvidia GPUs. However, since
the presented concept does not rely on features exclusive to Nvidia GPUs, we assume
that the same concept also works on AMD GPUs.

The receiver is implemented in JavaScript and WGSL. Like the set-finding implemen-
tation, most parts of the receiver algorithm run in JavaScript on the CPU. Naturally,
priming and probing run in a WGSL shader on the GPU. To optimize message trans-
mission, we sum up the transmitted bits for each package within the WGSL shader and
implement the differential transmission concept directly in the shader.

4.2 Evaluation

We evaluate our covert channel on three Nvidia GPUs. We did not evaluate AMD GPUs,
as our sender is a CUDA application and AMD does not support CUDA.
To compute the true channel capacity C, we use Shannon’s formula [151]

C=T-(p-logy(p) + (1 —p) - logy(1 —p) + 1),
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Figure 4.3: Comparison of bit-error-rate and true channel capacity (B/s) for different

package window lengths (0.5 ms steps) on an Nvidia RTX 2070 Super (n = 10).

50 % bit-error-rate is equivalent to a random guess.

where T is the transmission rate, and p the bit-error-rate. Table 4.1 compares the
transmission results for different package window lengths. The raw bandwidth value
represents the maximum transmission rate for the corresponding package window length
with no errors in the transmission. We compute the maximum transmission rate using
the package window length and the transmitted information per package. Since we
use 1024 sets for the transmission and use 2 sets per transmitted bit for differential
transmission, we get 1024/8x2 =64 B per package. Therefore, the maximum transmission
rate is computed with

1000 ms

T=64B*% ————.
package,s

We observe a large variation in true channel capacity relative to conventional benchmarks.

For the measurements, we tried to reduce noise as much as possible. However, due to the
GPU’s involvement in updates on-screen and overhead from WebGPU shader invocation,
noise on the L2 cache is inevitable on a single-GPU system. The significant noise levels
observed in WebGPU often result in errors during message transmission or, even worse,
during the transmission of sets.

We found that window sizes ranging from 4 to 6 milliseconds provide the best balance

between bit-error-rate and maximum transmission rate on the tested Nvidia GPUs.

Compared to the other two devices, the Nvidia RTX 3080 allows for a slightly faster
transmission due to its increased clock rate. We observe the highest true channel capacity
on the Nvidia RTX 3080 with 10.9kB and a bit-error-rate of 2.2 %. Even though our
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Figure 4.4: The invocation and waiting for the completion of a simple shader in WebGPU
takes at least 3ms on an Nvidia RTX 2070 Super. We observe similar values
for other devices. When copying data to and from GPU buffers in addition to
the invocation, the duration does not increase significantly for up to 200 KiB
buffers. For larger buffers, we observe a linear increment in the overall
duration.

channel is slower compared to prior work, we demonstrate that it is feasible to construct
a covert channel receiver with the WebGPU API.

Figure 4.3 compares different package window lengths on an Nvidia RTX 2070 Super
GPU. Window lengths below 3 ms result in bit-error-rates close to random guesses. This
randomness is expected, as we invoke the receiver shader in WebGPU for every package,
and the invocation alone takes around 3 ms. We observe the highest true channel capacity
at around 5-6 ms for this GPU. Since the bit-error-rate is already close to 0 % for package
lengths of 6 ms, increasing the package length further only reduces the true channel
capacity.

Figure 4.4 shows the duration of copying data to a GPU buffer, invoking a shader,
and copying back the result. The shader increments the first value in the buffer, so the
buffer size does not influence the complexity and duration of the computation. For the
0 KiB buffer size, we did not copy buffers but waited for the completion of the shader.
Figure 4.4 shows that the duration for invocations, including copying buffers up to around
200 KiB is very close to the duration of an invocation without buffer copies. Therefore,
we can copy small buffers almost for free.
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Chapter 5
Discussion and Related Work

In this chapter, we discuss the limitations and implications of our cache attack. First, we
cover the supported devices and the limitations we faced during the evaluation. Then, we
discuss two attacks presented in the paper by Giner et al. [1]. They use the fundamental
building blocks discussed in this thesis to monitor inter-keystroke timings and recover
an AES key with browser-based templating. Furthermore, we present related work and
discuss how it compares to this thesis, highlighting similarities and distinctions. Finally,
we discuss future work and potential mitigations against side-channel attacks in WebGPU.

5.1 Supported Devices and Limitations

In our study, we primarily focused on Nvidia devices due to limited access to AMD
hardware, which resulted in worse results on AMD devices. The eviction-set-finding
algorithm and the subsequent covert channel did not perform successfully on AMD devices.
Nonetheless, the basic building blocks, such as the custom timer and the distinction
between cache hits and cache misses, were also validated successfully on AMD devices.
Therefore, we believe that more sophisticated attacks on AMD devices via WebGPU are
feasible with additional focus on these systems. Currently, WebGPU support on mobile
devices, particularly Android, is still in the early stages of development compared to
desktop implementations. However, as WebGPU continues to develop, we anticipate
potential browser-based attacks on mobile devices’ GPUs as well.

Our experiments demonstrated that WebGPU enables generic attacks on GPUs directly
from the browser since our basic building blocks for cache attacks in WebGPU were
effectively evaluated across various devices. As the WebGPU standard is still evolving, we
observe inconsistencies across different versions of WebGPU. However, since our attack
does not even require a timer, it is unlikely that future versions will mitigate this class
of attacks without significant performance deterioration or by imposing very restrictive
APT access, such as removing atomic operations.

We further observe differences across operating systems. We did not investigate the
root cause for these differences. Potential causes include driver, browser, or the underlying
framework, such as DirectX and Vulkan.

However, our findings confirm that our basic building blocks are sufficiently generic,
as the critical timing difference between cache hits and cache misses was consistently
observable across different operating systems.
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5.2 Work based on our Framework

In this section, we discuss attacks from the published paper by Giner et al. [1]. The
examples use the building blocks described in this thesis to build sophisticated attacks.
First, we cover an inter-keystroke timing attack. In the second attack, they recover a full
AES encryption key used in a native CUDA application from the browser.

5.2.1 Inter-Keystroke Timing Attack

When constructing the basic building blocks for GPU side-channel attacks using WebGPU,
we noticed that certain external events often lead to nearly complete cache evictions.
These events include refreshes of the frame buffer and screen updates when something
is drawn. While these cache evictions may be undesirable for some cache attacks, they
can also serve as a side channel themselves. Giner et al. [1] take advantage of the fact
that these events indicate screen activity to construct an inter-keystroke timing attack.
Prior work has shown that the timings between keystrokes carry a significant amount
of information that can help to recover passwords [152, 74, 153, 121]. The described
attack is a practical example where a victim enters a password on a static login page,
and the attack code spies from another browser tab. Since the scenario is also realistic on
mobile devices, the relevance of the attack will increase even more once WebGPU is fully
supported on mobile devices. While the keystroke events occur with a low frequency, a
high detection rate is crucial for the accuracy of the measured inter-keystroke timings.
The approach by Giner et al. [1] is similar to an attack described by Naghibijouybari et
al. [16].

The attack exploits the fact that the text box is re-rendered when a character is typed.
As each re-rendering causes a significant portion of the cache to be evicted, an attacker
can observe this. In their attack, an attacker continuously fills a buffer and measures the
cache hitrate. A keystroke event is recorded if the hitrate is below a certain threshold.
The size of the buffer is an important factor for the accuracy of the timing measurements.
A larger buffer takes longer to fill, resulting in a slow detection rate. However, a rendering
event might not evict a too small buffer, and the corresponding keystroke event is missed.
Giner et al. [1] found that a buffer size of 35% of the cache size is a good tradeoff between
detection and speed and works across various devices. Screen resolution, the size of the
text box, and the zoom level contribute to the number of evicted cache lines. They
further filter some events to improve the performance of the attack. Filtered events
include events that are separated by less than 25 ms, as keystrokes are usually separated
by a larger timeframe. Furthermore, they can filter the cursor’s blinking, as this event
occurs at predictable intervals. For example, they measured a cursor blinking interval of
530 ms on Windows.

The attack works across multiple Nvidia GPUs, reaching F} scores between 0.82 and
0.98. For the evaluation, they assume no other activity on the screen to minimize visual
noise. This scenario is similar to static login pages of many websites. On AMD GPUs,
they observe a high recall value similar to Nvidia cards but very low precision. They
consider the attack mostly failed or severely degraded on AMD. They attribute the low
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precision to either high levels of noise or, more likely, frequent misclassification of hits
as misses due to the close timing differences between cache hits and cache misses as
observed for AMD GPUs in Table 3.1.

5.2.2 Set-Agnostic AES Key Recovery

Recovering the encryption key from a vulnerable T-table AES implementation has become
a common benchmark to demonstrate fine-grained information extraction using a side-
channel attack [24, 79, 154]. This benchmark is also used to assess side channels on
GPUs [14, 10, 11, 12]. Furthermore, prior work has proposed AES on GPUs since 2007 [8,
9.

The attack described by Giner et al. [1] again uses basic building blocks described in
this work. In contrast to prior work, their attack is set-agnostic and requires no eviction
set search. Instead, they follow a similar approach to the one used for the inter-keystroke
timing attack. They focus on finding offsets within a buffer congruent with T-table lines
used in the AES encryption.

Their attack assumes a native AES CUDA implementation that can be queried with
an attacker’s chosen key and plaintext. The implementation uses 4 combined T-tables
for all rounds. Each T-table consists of 256 4 B entries. Combined with the 128 B cache
line size of GPUs, this results in 32 cache lines filled with T-table entries.

The attacker spies from a WebGPU application and has access to the victim’s ciphertext.
Like the inter-keystroke timing attack, the attacker fills a buffer that occupies a significant
portion of the cache. The first phase is a profiling phase to identify offsets within the
buffer coherent with T-table lines. The size of this buffer depends on the GPU. After
filling the buffer, the attacker triggers an AES encryption and checks which offsets were
evicted by the encryption. They use a chosen key and crafted plaintexts to find relations
between buffer offsets and table entries. Due to significant noise from kernel loading,
they can identify 20/32 offsets coherent to T-table lines on average.

In the second phase of the attack, they execute a traditional last-round attack [155,
156], specifically the non-elimination method described by Neve and Seifert [157]. They
collect accesses to T-tables and the corresponding ciphertexts for each encryption by the
victim. Combining the information about T-table lines not accessed during encryption
with the corresponding ciphertext allows them to remove last-round key bytes that would
have caused table accesses in the last round based on the ciphertext. They repeat this
until less than 2%° candidates remain; then, they switch to an exhaustive search of the
key.

As their AES implementation is CUDA-based, evaluation on AMD GPUs is infeasible.
They evaluated the attack on 2 Nvidia GPUs and recovered the full AES key in about 6
minutes with a 100% success rate.
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5.3 Related Work

In this section, we discuss related work. We discuss covert and side-channel attacks on
GPUs from native APIs like Cuda and OpenGL. We then discuss side-channel attacks
that target the GPU from the browser.

5.3.1 Covert and Side Channels on GPUs

In their recent survey, Naghibijouybari et al. [158] provide an overview of research on
microarchitectural attacks on heterogeneous systems. In many works, the attacker is
located on the CPU, spying on the targetted GPU.

Jiang et al. [10] present the first cache-based timing attack on GPUs. They demonstrate
a complete AES key recovery through a timing channel in under 30 minutes with one
million timing samples. The attacker sends encryption requests to the victim over the
internet and collects the encrypted ciphertext and timing information. Their attack
targets the L1 cache on Nvidia GPUs and relies on the dependency between unique cache
line requests and kernel execution time. They assume a vulnerable AES encryption,
where access to specific cache lines depends on input data and the encryption key.

Naghibijouybari et al. [15] show the first covert channels on applications co-located
on the same GPU. They reverse-engineered the hardware block scheduler and the warp-
to-warp scheduler. With the information about the scheduler, they manipulate the
scheduling algorithm to establish co-location between the spy and trojan. They exploit
contention on shared resources, like L1 and L2 caches, functional units, and memory,
to construct multiple covert channels. They use the GPU’s parallelism to increase the
channel’s bandwidth.

Jiang et al. [11, 12] exploit bank conflicts from shared memory. On GPUs, every thread
in a warp can access the shared memory, which serves as a cache to decrease memory
access latency. They target an AES implementation that uses key-dependent memory
accesses for table lookups. They create bank conflicts and measure the execution time of
the encryption. As the table lookups depend on the key, they can infer the correct key
by observing timing differences.

Naghibijouybari et al. [16] present the first general side-channel attack on GPUs. They
present two attacks that spy on victim applications co-located on the GPU. They exploit
the fine scheduling granularity to interleave the execution of their attacker code with
the victim application. The first attack uses the graphical software stack to fingerprint
websites, track user activities within websites, and infer keystroke timings for a password
text box. They track re-rendering events and use the GPU’s performance counters for
memory usage accessible from OpenGL for the attack. For the second attack, they use the
compute software stack. They use a CUDA spy application to derive internal parameters
of a neural network model used by another CUDA application.

Liu et al. [159] demonstrate the feasibility of GPU side channels across virtual machines.
Both virtual machines share one integrated Intel GPU. They construct an OpenCL-
based probing application to generate contention on shared resources. By measuring the
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execution time, they can identify the victim’s workload from a small set of entertainment
and deep learning workloads.

Wei et al. [6] extract more fine-grained structural secrets of a neural network model
than Naghibijouybari et al. [16]. They assume a co-location of an attacker and a model
developer training a DNN (Deep Neural Network) in a cloud scenario with two virtual
machines. For the attack, they exploit a side channel based on context-switch penalties.
They use Nvidia’s performance counters for their attack. After Nvidia’s driver update to
restrict access to the performance counter API [160], they downgrade the driver on the
attacker’s virtual machine. Since only the attacker needs access to the timer, Nvidia’s
driver update does not mitigate this attack.

Ahn et al. [14] present a hybrid cache-collision timing attack on modern GPUs. They
use a combination of cache collisions, chosen plaintext attack, and negative timing
correlation to significantly reduce the number of samples required for a full AES key
recovery.

Dutta et al. [13] present the first microarchitectural attack crossing the component
boundaries between GPU and CPU on integrated GPU devices. They construct two
covert channels. First, they use contention on Intel’s LLC, which is shared between the
CPU and the integrated GPU, to construct a Prime+Probe cache covert channel. The
second covert channel exploits contention on the ring bus connecting the CPU and GPU.
Furthermore, they use the GPU’s parallelism to increase the communication bandwidth.
Their proof-of-concept probes the entire LLC from the GPU.

Nayak et al. [145] show the first TLB-based covert channel on GPUs. They reverse-
engineered the GPU’s TLB to perform fine-grained management of translations and
construct a Prime+Probe covert channel.

On-chip interconnects are channels between streaming multiprocessors. Ahn et al. [17]
exploit contention on the shared on-chip interconnect channels to construct a covert
channel. At the time of publication, their covert channel had one of the highest bandwidths
observed on Nvidia Volta GPUs, reaching up to 24 Mbit/s.

Dutta et al. [110] demonstrate the first microarchitectural attacks on connected Nvidia
GPUs. The GPUs are connected with Nvidia’s custom interconnect, NVLink [161]. They
reverse-engineered the interconnected cache and cause contention on the L2 cache of
another GPU. They use this contention to develop a Prime+Probe-based covert channel
between GPUs. Furthermore, they use the contention as a side channel to spy on the
victim’s behavior.

The attacks mentioned above rely on access to native APIs. Native APIs like CUDA
and OpenGL offer access to high-precision performance counters and timers. However,
when constructing a covert channel in WebGPU, we lack access to these high-performance
counters and timers, which complicates the execution of the attack.

Several prior works [10, 14, 11, 13] do not assume co-location of attacker and victim
on the same GPU. They use shared resources between CPU and GPU on systems with
an integrated GPU to leak data or monitor the GPU’s resource utilization using an
application executing on the CPU.
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5.3.2 Side-Channel Attacks on GPUs from the Browser

API access to the GPU from the browser enables attackers to mount attacks through
JavaScript. To our knowledge, all known browser-based attacks exploit the GPU using the
WebGL API. Our focus on WebGPU introduces distinct challenges, differing significantly
from previous research that used WebGL.

Cronin et al. [19] present a browser-based GPU side-channel attack on ARM processors.
Their cross-tab attack code runs in a background tab on an ARM device and performs a
website fingerprinting attack. They use GPU.js [137] to transpile JavaScript functions to
WebGL shader code for their attack code. Their attack kernel continuously computes on
values in a buffer to cause contention on the system-level cache shared between SoC and
GPU. They measure the duration of the computations and exploit the correlation between
the duration and the memory used by each website to perform a website fingerprinting
attack. Their work stands apart from ours by focusing on the system-level cache of
integrated GPUs and utilizing WebGL instead of WebGPU. Additionally, their attacks
are more coarse-grained.

Frigo et al. [18] construct all required primitives for GPU-based microarchitectural
attacks on GPUs using the WebGL API in JavaScript. They construct a precise timer
and use reverse-engineering techniques to gain information about the cache architecture
and replacement policy of an integrated GPU. They use the timer and the gathered
information for a side-channel attack that detects contiguous areas of physical memory
from the GPU. They further develop the first web-based GPU-accelerated Rowhammer
attack from a browser on mobile devices.

Taneja et al. [162] use native APIs to monitor the GPU’s power consumption, tem-
perature, and frequency to construct hybrid side channels. They exploit the instruction
and data-dependent behavior of GPUs for history sniffing and website fingerprinting.
One of their attacks involves a pixel-stealing technique from the browser that does not
require native APIs. They construct a specially designed SVG filter that triggers unique
frequency throttling behaviors based on the hamming weight of black and white pixels.
By exploiting the data-dependent execution times of this filter, they create a side-channel
attack capable of extracting pixel data from the victim. Their attack does not directly
use any browser GPU API like WebGL or WebGPU and is more coarse-grained than
ours. They exploit the data-dependent execution time of instructions on the GPU and
do not directly target microarchitectural buffers like caches.

5.4 Future Work

As general-purpose computing on GPUs becomes more accessible and computations on
sensitive data more common, research on possible vulnerabilities on GPUs becomes even
more critical. Even though research on microarchitectural attacks on GPUs is less evolved
than their counterpart on CPUs, prior work has shown that several attack techniques
also apply to GPUs. In general, less is known about the microarchitectural details of
GPUs compared to CPUs. As prior works reverse-engineered several microarchitectural
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details of specific GPUs, they found that various aspects differ not only between vendors
but also among devices from different generations of the same vendor [112, 163, 64]. The
feasibility of applying CPU attack principles on shared resources on GPUs [145] hints at
more possible microarchitectural attacks on GPUs. Therefore, more research must be
conducted to reverse-engineer microarchitectural components within GPUs.

As the shared memory model of GPUs is fundamentally different from that of CPUs
and sharing data between applications is not common practice, we do not expect to see
Flush+Reload-based attacks on GPUs. Even though GPUs offer no instruction to flush
instructions from specific cache lines, attacks on cache line granularity cannot be ruled
out, as research on CPUs has shown [74].

5.5 Mitigations

The WebGPU standard incorporates several mitigations against side-channel attacks,
such as using an imprecise timer [22]. Despite these measures, we constructed an effective
timer by utilizing coherent memory shared between concurrent threads, facilitated by
atomic operations. Removing atomic operations would invalidate our timer; however,
they are crucial for numerous common workloads due to their role in synchronization
and other critical functions.

We have demonstrated that side-channel attacks are feasible in WebGPU using basic
assumptions. These assumptions are essential to how current software is built, and
removing them would have significant consequences. Therefore, we propose treating
access to the GPU in the browser like access to other privacy- and security-relevant
resources such as camera and microphone. This measure could help prevent GPU side-
channel attacks and stop the covert misuse of GPU computing resources for activities
such as cryptomining.
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Chapter 6
Conclusion

In this thesis, we developed the first side-channel attack from the browser using the
WebGPU API. Our attack is generic and self-configuring and requires no user interaction.
Since the WebGPU API was designed with mitigations against side-channel attacks in
mind, we had to overcome several challenges, like the absence of timers.

We implemented a counting thread that serves as a timer for other GPU threads. We
use this timer to automatically determine a baseline threshold value to distinguish cache
hits and cache misses. With these two building blocks, we can automatically detect the
cache size and, subsequently, the number of cache sets of the underlying GPU hardware.
These building blocks and parameters are essential to mount a Prime+Probe cache attack
and were successfully tested on 12 GPUs from 5 generations and 2 vendors.

To demonstrate the susceptibility of WebGPU to cache attacks, we used the building
blocks to construct a Prime+Probe cache covert channel. The covert channel commu-
nicates data from a native CUDA application to an app in the browser and reaches a
true channel capacity of 10.9kB/s. For a Prime+Probe attack, we had to find eviction
sets in the browser. We constructed the first parallel eviction-set-finding algorithm in
the browser. The algorithm finds more than 80% of eviction sets on all but one tested
Nvidia GPU in 2 to 12 minutes. Our attack requires no user interaction and runs on a
variety of GPUs.

We demonstrated that access to general-purpose computing on the GPU from the
browser can be a powerful tool for attackers. We have shown that it is possible to carry
out remote, generic, and fully automated attacks on GPU caches from a restricted browser
environment. As users regularly run untrusted third-party applications in browsers, it is
easier for an attacker to execute WebGPU code on the victim’s machine than to obtain
native code execution. Therefore, we recommend that access to the GPU is treated
like other security- and privacy-related resources, such as the microphone and camera.
Furthermore, we urgently need to deepen our understanding of GPU vulnerabilities to
counter future side-channel attacks preemptively.
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