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Abstract—Computer science education has a unique setting
where students write code commonly automatically tested in
so-called “test systems”. While best practices for sandboxing
are known in the academic community, the security of real-
world test systems remains unclear.

In this work, we evaluate the security of 11 real-world
test systems from computer science university classes, in-
cluding computer security classes. We studied these systems
between October 2023 and February 2024 and provide a
systematic overview of the typical approaches these systems
follow. We identify 3 categories of systems: GitLab Run-
ners with a Docker registry, GitLab Runners with custom
pipelines, and entirely custom test systems that do not
rely on a CI system as a basis. We identify 13 types of
security issues, the most widely spread ones affecting 5-6 of
the test systems in our analysis. We practically show that
all test systems in our analysis can be compromised and
develop new techniques to exfiltrate secret and privileged
information, including the use of side channels. We present
3 cases studies, demonstrating specific bypasses possible in
these systems. Finally, in a user study, we assess the impact
a potential breach together with the educators using these
test systems. Our work shows that educational test systems
are particularly critical, as a compromise can lead to the
exposure of highly sensitive student and research data, and
even embargoed vulnerabilities. Our results highlight that
the real-world challenges to run and maintain secure test
systems are not solved in practice. While we discuss best
practices, our study reveals the need for new systematic
security approaches to secure this very common type of
software system.

1. Introduction

A crucial element of university computer science ed-
ucation is that students also practically write code. Ed-
ucators review this code and often also used to grade
the students [1]. Practical programming courses range
from introductory courses to programming languages to
advanced courses requiring direct hardware access or
courses for practicing the development of secure code
and exploitation of insecure code. Especially for larger
institutions with thousands of students, reviewing student
code can accumulate to a significant workload [2].

A solution to this resource problem is the partial or
full automation of the code reviews [2], [3]. For this
purpose, an automated “test system” [4] runs student code
with test inputs and analyzes the behavior and output.

Especially for classes with thousands of users, this is a
unique setting where large amounts of untrusted code are
run on university computer systems. There are different
approaches on how to run the untrusted student code,
ranging from simple scripts that execute one program after
another to the use of containers and virtual machines.
Wilcox [4] already noted that security is a crucial aspect
of these systems and advised the use of chroot or virtual
machines. Similarly, Paiva et al. [3] argue that virtual
machines and containers are among the most compre-
hensive solutions to run student code securely. As the
students are also often provided with Git repositories
via university GitLab instances, one can consider GitLab
Runners (the continuous-integration system integrated in
GitLab) [5] for testing student code. GitLab Runners can
be configured to use a container or a virtual machine.
While under normal use, the output would be provided
to the developer, educators can restrict the information
they hand to students, e.g., via customized interfaces that
communicate with GitLab through an API. However, CI
systems are intended for trusted environments, whereas
in malware analysis, where the fundamental assumption
is that the code under analysis is malicious, other tools,
such as virtual machines [6], are used to fully isolate the
malicious code from the rest of the system.

In this work, we show that despite following the
recommendations of prior work, e.g., using containers
or virtual machines, several security issues can persist
in educational test system environments. We evaluate the
security of 11 test systems used in computer science uni-
versity classes during the time frame from October 2023 to
February 2024, including computer security classes.1 We
studied these systems and provide a systematic overview
of the typical approaches these systems follow. We iden-
tify 3 categories of systems: GitLab Runners with a
Docker registry, GitLab Runners with custom pipelines,
and entirely custom test systems that do not rely on a CI
system as a basis. We identify 13 types of security issues,
the three most widely spread ones affecting 5-6 of the test
systems in our analysis.

We practically show that all test systems in our anal-
ysis can be compromised and develop new techniques
to exfiltrate secret and privileged information, including
the usage of side channels. We present 3 case studies,
showing specific bypasses possible in these concrete sys-
tems. Finally, in a user study, we assess the impact of a

1. We note that one of the systems was set up by one of the authors
of this paper.



potential breach together with the educators using these
test systems. Based on our results, we derive best practices
that educators should follow to minimize security risks
and prevent exposure of confidential data and malicious
data integrity breaches in the context of testing untrusted
student code.
Contributions. We summarize our contributions as fol-
lows.
1) We systematically analyze the security of 11 inde-

pendently developed test systems in computer science
education that were practically used from October
2023 to February 2024.

2) We identify 3 categories of systems and 13 types of
security issues tied to these systems. We showcase
3 case studies where we show the specific security
bypasses possible.

3) We assess the impact of potential breaches in a user
study involving the educators of these systems.

4) We discuss best practices for educators to minimize
the risk of security breaches that would compromise
the confidentiality and integrity of sensitive data but
also the practical limitations.

Ethical Considerations. We responsibly disclosed our
findings to the maintainers of the examined test systems
in December 2023. We received permission to publish our
findings from the test system maintainers and invited them
to take part in our user study. In our experiments, we have
not extracted any personal identifiable information from
the affected systems.
Outline. The rest of the paper is organized as follows.
Section 2 provides background. Section 3 presents our
systematic analysis of the 11 test systems we study and
categorizes them into 3 categories. Section 4 presents the
13 types of security issues we identified and how they
are tied to the design choices of the systems. Section 5
showcases 2 case studies of concrete test systems and how
they can be exploited. Section 6 presents our user study
with educators to assess the impact of potential breaches.
Section 7 contextualizes our work and discusses best
practices to minimize security risks. Section 8 concludes.

2. Background

In this section, we overview computer science edu-
cation, focusing on higher education, educational aspects
of test systems in coding classes, principles of related
continuous integration systems, and misconfiguration of
those.

2.1. Programming Education at Universities

In almost all computer science-related study programs
around the globe, programming is one of the core concepts
within the curricula. Even though these programming
courses are building the central foundation for the stu-
dents’ programming education, the learned concepts are
part of many follow-up classes. Traditionally, courses that
involve programming, especially early in the academic
education, have specific characteristics: For example large,
they often comprise a heterogenous groups of students,
continuous assessment, and large performance differences
between students [7]. In a comprehensive literature review,

Medeiros et al. [8] report that scalability is one of the
major challenges that educators are faced with. This can
be traced back to diverse backgrounds of students enrolled
in computer science classes, including varying levels of
prior programming experience, academic preparation, and
mindset.

Xia [9] found that well-defined learning goals and a
deeper cognitive understanding are relevant factors for a
successful learning process, especially in programming
education. One central concept related to learning and
motivation is self-efficacy, introduced by Bandura [10],
which is part of the social cognitive theory. Self-efficacy
means that an individual’s belief in their own ability
to accomplish tasks directly influences their actions and
persistence in the face of challenges. The theory implies
that students with high self-efficacy in their programming
abilities are more likely to engage in learning and perse-
vere through difficulties.

Another challenge related to scalability is a lack
of feedback and communication between educators and
students due to a mismatch in the staff-student ratio.
Koulouri et al. [11] discuss the role of formative feedback,
which is not always positive, as students may find feed-
back challenging to understand. Additionally, the com-
plexity of coding assignments in computer science edu-
cation, particularly in advanced courses, poses challenges
for educators.

2.2. The Need for Automated Test Systems

Automated testing systems play a crucial role in ac-
commodating this complexity by providing personalized
feedback, assessment, and support to students at different
skill levels in many computer science courses. Educators
carefully design test suites and evaluation criteria to as-
sess students’ mastery of key concepts, problem-solving
skills, and software development practices, ensuring that
assessments are meaningful and relevant to the course
objectives. Wrenn et al. [12] show that this widely used
approach may negatively impact the quality of the assess-
ment of students due to cases not fully considered in the
test suites. However, in a recent study, Mitra [13] showed
that it still supports students to develop independent test-
ing skills and positively impacts their work, especially
for underrepresented student groups. The nature of coding
assignments in computer science education varies widely,
from simple exercises in introductory courses to complex
projects in advanced topics. Consequently, test systems
must be flexible enough to accommodate different pro-
gramming languages, environments, and testing require-
ments. Basic input-output testing is the most common
approach, where the output of a student’s solution is
compared against the output of a reference solution. While
this approach is simple for both educators and students,
it can have an impact on students’ skills to write test
cases [14], as this is excluded from the learning path.

2.3. Continuous Integration Systems

Continuous integration (CI) refers to the wide-
spread [15], [16] practice of frequently integrating soft-
ware changes into a shared mainline code repository.



Figure 1: A typical test system setup. Multiple student solutions are tested in separate containers. Students provide code
via Git and get the results via a web interface.

Instead of postponing the integration task to a later devel-
opment phase, integration is performed regularly, at least
once per day [17]. By this, CI aims to reduce and simplify
integration conflicts, as changes do not accumulate over
an extended period, making conflicts more manageable
and easier to resolve.

In addition to a shared and frequently updated main-
line code base, CI includes automated builds and tests
triggered by every mainline code update [17]. This ensures
quick feedback about programming and integration errors,
minimizing the effort to narrow them down to specific
changes.

Continuous integration systems, such as Jenkins [18],
Travis CI [19], or GitLab Runner [20], enable develop-
ment teams to set up automated build and test pipelines.
When triggered by a code update, these systems fetch the
current source code from the repository, run the project-
defined build and test pipeline, and report back the result
via email or a web interface. Pipelines are usually run on
specialized executors, either hosted by the vendor of the
CI system or on a project-managed instance.

The actions to be executed during a pipeline run are
defined by scripts. These can be stored in the code base,
together with the code of the project itself, or in a separate
code repository. Executors run these scripts and, during
testing, also the code of the project. Effectively, anyone
with write access to the code base can run arbitrary code
on the executor. However, in usual development settings,
only development team members have write access. Con-
sequently, executors do not run untrusted code in these
settings.

Furthermore, as best practices recommend [21], [22],
pipelines are typically executed within ephemeral con-
tainers or virtual machines. With this, pipelines are al-
ways executed within the same environment, without any
potential traces of prior runs influencing the results. In
addition, when configured correctly [22], this also en-
hances security, as potentially dangerous code is restricted
to interacting with its ephemeral sandbox.

2.4. Security Misconfigurations

To support a wide variety of programming languages,
project management styles, application domains, and test

cases, CI systems have to provide a large degree of flex-
ibility. In addition to the ability to execute arbitrary code
within the pipeline, these systems also have a rich set of
configuration options. In GitLab, for example, the overall
execution of the pipeline is controlled by a configuration
file within the code base [5], whereas the web interface is
used to assign executors (i.e., runners in GitLab terms) to
specific projects, pass environment variables to the execu-
tor and set up access tokens. Especially in the context
of isolating workloads, e.g., with Docker, or container
orchestration tools like Kubernetes, security misconfigu-
rations can compromise the entire system setup [23], [24].
However, misconfigurations can occur on any layer of the
software stack, especially for use cases with a wide range
of configuration options [25], including the application
level [26]. Based on their analysis, Dietrich et al. [27]
conclude that there are countless undiscovered security
issues in systems connected to the Internet. In educational
test systems, misconfiguration issues can occur on all
layers, e.g., within the container, the runner, and the
virtual machine hosting the runner. Finally, misconfigu-
ration can also be a reason for deferred software updates,
among other reasons, again leading to vulnerable applica-
tions [28].

3. Threats of Executing Untrusted Code in
Educational Contexts

In this section, we systematically analyze the typical
approaches of test systems with respect to their security
properties. We focus on 11 test systems from computer
science university classes, including computer security
classes. All test systems were in productive use in the time
frame from October 2023 to February 2024 at a university.

3.1. Decentral Development of Test Systems

A solution to the resource problem of reviewing stu-
dent code is automation [2], [3] with so-called “test
systems” [4]. However, test systems are often developed
and deployed by educators of the courses rather than
professionals aware of security best practices. Several of
the test systems we analyzed were developed over the past
3 years and, in some cases, moved away from previously



TABLE 1: Overview of the analyzed test systems.

System Educational Context Languages User Interface Students

GD1 Introductory C Git 770
GD2 Introductory C Git 366
GD3 Introductory C++ Git 547

C4 Systems C, C++, Assembly Git, Web 134
GD5 Formal Methods Python Git 125
GD6 Privacy C++, Python Git 57
GC7 Software Development Java Git 413

C8 Systems C++ - 547
GD9 Security Python Git 413
C10 Systems C, C++, Assembly Git, Web 374
C11 Security C Web 75

unified and centralized test systems due to the specific
requirements the different courses have. Hence, there are
different strategies to develop such systems. Among the
11 test systems2 we analyzed, 6 opted for GitLab Runners
with Docker registries. This is in line with the best prac-
tices recommended by Paiva et al. [3], using containers to
run student code in isolation.

One test system used GitLab Runners but with a
custom pipeline. In this testing system, each push triggers
the execution of a Python script. The script builds and
spawns three separate Docker containers that commu-
nicate with each other. This approach allows for more
precise management of the container spawning process
and isolation between different parts of the test system
and untrusted code, e.g., checks are not performed within
the same container and also not directly on the host system
but run in another container, to also mitigate exploitation
of this code. However, this approach requires significantly
more upfront development and maintenance.

Four test systems were not based on CI systems and
developed from scratch. The first (C4) is testing stu-
dent code inside virtual machines, that are run inside a
chroot environment, following the recommendations by
Paiva et al. [3] and Wilcox [4]. This is also the case
for the other three: System C8 is testing student code
by compiling it and running unit tests within a reference
Ubuntu virtual machine without any further isolation. Sys-
tems C10 and C11 are testing student code with custom
bash and python scripts inside Docker containers.

Table 1 provides an overview of the test systems, pro-
gramming languages, and educational context. The four
systems-related courses use custom test systems (prefixed
with a C), whereas all others rely on a GitLab-based ap-
proach (prefixed with a G). Language-wise, there is a fo-
cus on C and C++, and in about half of these systems, the
build environment is also controlled by the user. Finally,
for the interfaces, most test systems expose an interface
via Git, e.g., commit hooks or CI pipeline triggers, and to
the web to check the results. Most test systems directly
rely on the GitLab interface for the students.

3.2. Threat Model of Running Untrusted Code

In our threat model, illustrated in Figure 2, we assume
malicious users intentionally submitting code intended
to exploit the test system. We assume the user has no

2. We note that one of the systems was set up by one of the authors
of this paper.

knowledge about the test system other than publicly avail-
able to all participants. We assume that the host system
spawning the test containers is running on the most recent
kernel and that it uses the most recent packages from its
distribution. Furthermore, we assume established software
security features to be enabled, e.g., KPTI [29], ASLR
and KASLR [30], [31], hardware-assisted control-flow
integrity [32], [33]. We assume the educators’ creden-
tials are appropriately chosen, secure against unpermitted
access, and possibly even protected with second-factor
authentication.

For both GitLab Runners with Docker registries and
GitLab Runners with custom pipelines, we assume that
the student code is run inside a container and not running
directly under the user account of the educator on the host
machine. We also assume that GitLab itself is fully up-
to-date and no software bugs are known about the GitLab
instance.

The malicious user can obtain information such as
the total runtime, log files, and other custom artifacts the
test system provides. The goal of the malicious user is to
extract information about the test system, the test cases,
and access confidential data and configurations.

4. A New Approach to Identify Security Is-
sues in Educational Test Systems

Educational test systems face unique security chal-
lenges: First, they execute untrusted code, submitted by
potentially malicious students. Second, they also process
a variety of sensitive information, such as test cases,
solutions and privacy related information. This contrast
between execution of potentially dangerous code and the
sensitivity of the processed information makes hardening
these systems more difficult than it is the case for more
typical CI systems.

In the following, we suggest a 3-step approach: First,
the security-critical assets on the test system are identi-
fied (Section 4.1). Secondly, intentional features of the
educational test system that may facilitate attacks are
examined (Section 4.2). Finally, the test system has to
be assessed for security vulnerabilities, with the unique
setting of educational test systems in mind (Section 4.3).
While hijacking of the test system is a critical concern,
unauthorized access to the data processed by the test
system is an even bigger risk. Educational test systems
process a variety of sensitive information, such as test
cases or solutions of the exercise tasks. In Section 4.1, we



Figure 2: The threat model we consider for the test systems in this work.

identify a set of critical assets that require special security
evaluation.

4.1. Asset-oriented Security Evaluation

In this section, we discuss which assets might be
of interest to an attacker. We want to emphasize that
this discussion is not comprehensive. However, there are
not only assets that are of direct interest to the attacker
(primary interest assets) but also assets that are useful in
intermediate steps (secondary interest assets).

4.1.1. Primary Interest Assets. We consider assets to be
of primary interest if they contain information the attacker
is directly interested in: Such information includes every-
thing that gives the attacker an unfair grading advantage,
as well as everything that directly breaks user privacy and
confidentiality.

To gain a grading advantage, the attacker might want
to exfiltrate non-publicly available test cases, reference
solutions, or other students’ solutions. The attacker might
develop against the test cases in a trial-and-error man-
ner without properly understanding what the program
is supposed to do. Exfiltrated solutions can be directly
plagiarized.

A test system storing grades or points might leak other
students’ grades to the attacker, infringing privacy and
breaking confidentiality. Test systems might also store real
names, email addresses, contact data, or other personally-
identifying information of the students or the educator.

4.1.2. Secondary Interest Assets. We consider assets to
be of secondary interest if they provide an intermediate
step to obtain primary interest assets. Such assets include
credentials or access tokens protecting confidential data,
e.g., private repositories or container registries. While they
do not contain the critical information directly, the attacker
can use them in a subsequent step to gain access.

For example, if test cases are provided in a private
docker container that is supposed to be accessed only by
the test executor, the test system might leak the access
token for the container registry, enabling the attacker to
download the container and extract the test cases. If, due
to misconfiguration, the access token even grants write
access, the attacker can perform unauthorized modifica-
tions to the container. Similar attacks can be imagined for
access tokens protecting external test case repositories.

As another example, code execution as root might
also be used to bypass permission checks and, in turn,
to obtain a primary interest asset. The same argument ap-
plies to container-to-host escapes. Furthermore, injecting
malicious code into the test pipeline might lead to primary
interest assets.

4.2. Continuous Integration for the Attacker

Using CI systems for testing student code has the
major advantage of providing feedback quickly. Usually,
within minutes after submitting their code, most systems
give students visual feedback and a log file, indicating
which tests passed and which of them failed. However,
while such short feedback loops are desired under normal
circumstances, these might also be helpful to an attacker.
Attackers, too, get immediate feedback from the test sys-
tem, allowing them to test their exploits frequently and
quickly.

The feedback usually includes a log file of the test
run. Student code usually is permitted and often even
required to generate some output, which is also written
to the log file. If attackers gain unauthorized access to
security-critical information, they can directly print it and
exfiltrate it through the log. Similarly, information might
also be exfiltrated via other artifacts the pipeline creates.
In addition, if Internet access is not blocked, the attacker
might send critical data to a web server they control.

Even without log files, artifacts, or Internet access,
the attacker can exfiltrate data via covert channels, e.g.,



by encoding a byte in delayed execution time dependent
on the numeric value of the byte to leak. A multi-byte
secret could be transmitted in multiple pipeline executions,
allowing the attacker to reconstruct the secret byte-by-byte
from the execution times.

4.3. Categorization of Security Issues

To identify the issues in test systems, we analyze the
systems with respect to the following four categories of
security issues:

4.3.1. Output sanitization. As Paiva et al. [3] note, a se-
cure test system should block any attempt to leak sensible
test data, e.g., “output data”, to the outside. However, for
virtually all systems we analyzed, the output data is in-
tended to be seen by the students. This setup introduces a
significant challenge, requiring filtering illegitimate output
from legitimate output. This challenge is far from trivial
to solve, as an attacker can choose an arbitrary encoding
for the secrets.

4.3.2. Permission issues. The test system must pro-
tect sensitive information from the execution of student-
provided code, i.e., access to critical assets should be de-
nied to untrusted code. The operating system supports this
by enforcing file access permissions or limiting access to
other resources, such as processes. However, this requires
that the permissions are set correctly by the test system.
For example, if student code runs under the same system
account as the test case owner, a malicious student could
exfiltrate the test cases.

While it is challenging to design a test system with
correct separation, the confidentiality of the test cases and
the integrity of the test system is still crucial.

4.3.3. Misconfiguration issues. Misconfiguration is a
common source of security problems. One of the most
efficient ways to leak information about the system or data
is to use the Internet. If the test system allows Internet
access, the attacker can exfiltrate data to a web server
under their control.

Another common misconfiguration is the use of out-
dated software. While we assume the host system run-
ning the test containers to be up to date, this might not
necessarily be the case for the container images, where
outdated software might also be exploited. A large-scale
study by Shu et al. [34] showed that about 30% of the
Docker images available on Docker Hub have not been
updated within 400 days when that study was performed.
Container images might also ship custom software that
is no longer maintained, making updating the images
challenging. Educators may be negligent with updating
containers.

4.3.4. Environment sanitization issues. The test system
must prevent students from modifying the environment in
a way that would yield unauthorized access to the system
or test cases. For instance, students should not be able to
modify the build system by modifying the Makefile.
Therefore, build files are often replaced with a reference
file or checked for modifications by the test system.

Similarly, with GitLab Runners, the
.gitlab-ci.yml file defines the pipeline. However,
this file should not be modifiable by the student, as
this would allow the student to modify the pipeline.
Consequently, students can change pipeline variables
such as the entry point or add additional steps to the
pipeline.

5. Case Studies

Following the methodology described in Section 4, we
analyzed 11 test systems. As Table 2 shows, each of them
was affected by at least one vulnerability. In this section,
we briefly summarize our most critical findings before we
continue by discussing 3 case studies in more detail. As
the analyzed test systems were in productive use, we focus
on analyzing their vulnerabilities, without performing full
end-to-end exploitation.

Out of the 11 systems, 6 systems did not sanitize
their output. At least 4 of them allowed the tested code
to establish outbound Internet connections, and none of
them fully mitigated timing side channels. Consequently,
on all of these, if student code has access to sensitive
information, it can also exfiltrate it from the test system,
as we discuss in all our 3 case studies in more detail.

All of the 6 systems based on GitLab runners and
Docker registries exposed credentials for the registry to
untrusted student code via the DOCKER_AUTH_CONFIG
environment variable. Effectively, this gives an attacker
read access to the entire Docker container, possibly includ-
ing reference solutions and test cases. In at least 3 cases,
the exposed credentials even granted write permissions to
the Docker registry, enabling an attacker to modify the
container image persistently. For instance, this miscon-
figuration issue affects the test systems GD5 and GD1,
discussed in Section 5.1 and Section 5.2, respectively.

On 5 of the test systems, the reference solutions were
accessible for an attacker, either directly by examining the
docker container or during the execution of the tests (e.g.,
due to misconfigured file permissions). Examples of this
are provided in Section 5.1 and Section 5.2 for the GD5
and GD1 test systems.

Furthermore, on 4 test systems, attackers could ma-
nipulate the test pipeline, enabling them to inject arbitrary
commands and run unauthorized code. For instance, we
found this environment issue in the GD1 test system,
as discussed in Section 5.2. Similarly, on at least 5
systems, attackers could inject arbitrary commands into
the build process by modifying the Makefile or other
build scripts. For instance, the GD1 and C4 test systems
discussed in Section 5.2 and Section 5.3 both had this
issue.

5.1. Case Study 1: Test System GD5

Our first case study is GD5, and we investigated the
4 categories of security issues outlined in Section 4. GD5
is a system based on GitLab Runners, combined with a
Docker registry, which is not publicly accessible. Students
can push code into their GitLab repository, which is then
tested within a Docker container by the GitLab Runner.
Subsequently, the log file is available as an artifact to
the students. Notably, the test cases and runtime are not



TABLE 2: Test systems and what attack vectors they mitigated. ✗ means vulnerable, ✓ means not vulnerable, ∼ means
inconclusive.

Security Issue GD1 GD2 GD3 C4 GD5 GD6 GC7 C8 GD9 C10 C11

Unsanitized Output ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓
Timing Side Channels ✗ ✗ ✗ ∼ ✗ ✗ ∼ ∼ ✗ ∼ ∼

No Container ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓
Privileged Git Tokens ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓

Reference Solution ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓
Exec as Root ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗

DOCKER_AUTH_CONFIG ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓
ptrace ✓ ✓ ✓ ✗ ✗ ✗ ∼ ✗ ✓ ✗ ✓

Internet Access ✗ ∼ ∼ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓
Outdated Software ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Docker Socket Mount ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

Modify Pipeline ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓
Build System Takeover ✗ ✗ ✗ ✗ ✓ ∼ ✓ ✓ ✓ ✓ ✓

randomized and highly stable, i.e., 6 seconds with an
empty submission where no tasks have been solved.

5.1.1. Output Sanitization. As a first category, we ana-
lyzed the system’s output sanitization. Given the intention
to provide users with the output, we observe that system
GD5 does not sanitize the output at all. However, this
introduces significant security issues, as a malicious user
can print any data of interest into the log file, which is
then accessible through GitLab’s web interface, i.e., as an
artifact. While this does not imply that leakage of valuable
information is possible, it is a direct path to information
leakage when combined with any misconfiguration, per-
mission issue, or missing environment sanitization.

For completeness and going beyond the issues
Paiva et al. [3] identified, we also tested the timing channel
as a possible output vector. In our timing side channel,
we leak environment variables or user credentials. These
are often stored as base64-encoded strings (typically 26
characters), and hence, we focus on leaking such base64
strings. We encode and transmit character by character,
one per test run. For a single character, we let the GitLab
Runner sleep between 0 and 64 seconds, depending on
the base64 character to leak. Thus, after deducing the
base runtime, the attacker can infer the specific character
transmitted from within the GitLab Runner. Consequently,
we can leak a GitLab authentication token within 156 s to
1820 s, with an average around 988 s.

5.1.2. Permission Issues. Primary assets for a malicious
user are test cases and the reference solution. We analyzed
system GD5 and discovered three main issues: First, the
reference solution was accessible to the malicious user
from within the Docker container, i.e., it was bundled
into the Docker container. It is not clear why this is
necessary for testing, as the test system uses test cases.
Hence, a solution is to not include unnecessary secret
data in the Docker containers. Second, however, the test
cases were also accessible to the malicious user from
within the Docker container, also bundled into the Docker
container. In line with Paiva et al. [3], neither the reference
solution nor the test cases should be available to the

user. A solution could be to restrict the permissions, e.g.,
provide not read permissions to the user executing the
student code. Finally, even if these permission issues were
fixed, the student-provided submission is executed with
root privileges inside the Docker container. Consequently,
the student effectively has unrestricted access to all data
within the Docker container, regardless of other restric-
tions, e.g., file permissions, made. Furthermore, root priv-
ileges within containers are particularly dangerous when
combined with misconfiguration issues, e.g., unnecessary
provision of capabilities to the container.

5.1.3. Misconfiguration Issues. As a third attack vector,
misconfiguration issues could expose confidential infor-
mation, including secret test cases or a reference solu-
tion. We identified two main issues in system GD5: The
first issue is the provision of the ptrace capability. As
we already noted, in system GD5, untrusted code runs
with root privileges within the containers. However, this
combination of root privileges and the ptrace capability
effectively allows the student code to attach (i.e., like a
debugger) to any process within the container including
the parent process responsible for running the tests and
evaluating the output of the student-provided code, i.e., the
process with full access to the test cases. The second issue
is the implicit provision of the DOCKER_AUTH_CONFIG
environment variable by the GitLab runner. GitLab run-
ners use the DOCKER_AUTH_CONFIG to access an image
from a private container registry [5]. However, it is not
documented that containers implicitly inherit this envi-
ronment variable, exposing the credentials to authenticate
against the private container registry. Consequently, nei-
ther GD5 nor any of the other test systems we tested
unset this environment variable. We emphasize the sig-
nificance of this issue, as the DOCKER_AUTH_CONFIG
credentials often include both read and write permissions
to the container registry. Thus, this misconfiguration not
only exposes the confidentiality of the test cases of the
educators: A malicious user could overwrite the existing
image in the container registry with their own image,
running arbitrary code on every subsequent push of every
student.



5.1.4. Environment Issues. For completeness, we also
investigated the environment issues but did not identify
any particular issues that would allow for a takeover of
the build system or pipeline modifications.

5.2. Case Study 2: Test System GD1

Our second case study is system GD1, which we
analyzed as described in Section 4. GD1 is similar to our
first case study test system, GD5, which is also based on
GitLab runners combined with a Docker registry.

With each git push, the student code is tested
inside a Docker container by the GitLab Runner. Once the
test run is complete, students can view the corresponding
pipeline log. Additionally, students are provided with a
testreport.html document that includes both public
and a select few redacted private test cases, along with
their corresponding inputs and outputs for the public test
cases.

5.2.1. Output Sanitization. The first category we ana-
lyze is the output sanitization of the test system. The
output data is intended for students to receive feed-
back on their submissions. In system GD1, the output
data for each public test case can be obtained from the
testreport.html document. In addition, the pipeline
offers metrics during runtime, such as testing times. We
observe that no output sanitization occurs for the out-
put data in the testreport.html document. Conse-
quently, a user with malicious intent can print any data of
interest, such as environment variables and the file system
structure.

We also tested the timing side channel as a possible
output vector. The test cases have a constant runtime,
which allows us to leak environment variables such as the
DOCKER_AUTH_CONFIG environment variable encoded
in the runtime. The approach we follow, is the same as
the one described in the first case study: We encode and
transmit character by character, one per test run, where
each character is represented by 1 second of timing delay.
More efficient leakage is possible if sub-second runtime
information is available.

5.2.2. Permission Issues. In test system GD1, grading
is based on the passed test cases. There are both public
and private test cases. Students have access to the input
and output data for all public test cases, but private test
cases are always redacted in the test report. Therefore,
the test cases and the reference solutions are the most
interesting resources for a potential attacker. Based on this
assumption, we identified two issues in GD1:

Before building and testing the student’s submission,
the test pipeline retrieves the latest test cases from private
repositories. Authentication is required to pull from a pri-
vate Git repository. Hence, in GD1, GitLab API tokens are
provided via files, accessible to the unprivileged user. An
attacker can leak an API token through unsanitized output
or side channels. The attacker can then use these tokens to
access and inspect repositories on a local machine. This
cannot only result in data leakage but also more severe
security issues: API tokens often have not only read but
also write privileges. As a result, by modifying files in the
private repository, a student with malicious intent could

delete or add test cases, or even execute arbitrary code. In
combination with misconfiguration errors, this can lead to
more devastating security compromises.

Secondly, the private Git repositories contain not only
the test cases but also the reference solution to the assign-
ments. As the test system does not require the reference
solution, it should also not be present while testing the
student’s submission with the test cases. This is a signif-
icant issue, as the reference solution is the most valuable
resource for a potential attacker in our scenario.

5.2.3. Misconfiguration Issues. System GD1 suffers
mainly from two misconfiguration issues. The first issue
is yet again the presence of the DOCKER_AUTH_CONFIG
environment variable. As we noted earlier, the
DOCKER_AUTH_CONFIG credentials often include
both read and write permissions to the container
registry. Combined with the fact that the test system
did not sanitize the output data, the leakage of the
DOCKER_AUTH_CONFIG credentials is a significant
problem. We also verified that the credentials provided
had write permissions to the container registry. As a
result, a malicious user could have overwritten the
existing image in the container registry with their new
image.

The second issue is that outbound Internet connections
are not blocked throughout the entire pipeline. Internet
connections are only blocked during the build and test
stages. As mentioned before, the pipeline requires this
connectivity to retrieve the latest test cases from private
repositories. Once the test cases are retrieved, the Internet
connection is blocked for the duration of the tests. After
the tests are completed, the pipeline can connect to the
Internet and upload artifacts to a dedicated server.

5.2.4. Environment Issues. The fourth category of at-
tack vectors are environment issues. System GD1 also
suffers mainly from two environment-related security is-
sues: First, students receive a .gitlab-ci.yml file
containing the pipeline configuration for the test system.
This file defines the pipeline stages, the jobs executed
in each stage, and their order. The .gitlab-ci.yml
file is stored in the student’s repository and executed by
the GitLab Runner. It is a critical asset for a potential
attacker, as it can be modified to manipulate the pipeline.
For instance, an attacker can modify the entrypoint of the
Docker container to run unauthorized code. Additionally,
the attacker obtains a command injection vulnerability
since the script sections of the .gitlab-ci.yml file
are executed as shell commands following the Docker
container entrypoint.

Secondly, the build process relies on the Makefile
provided by the student. The Makefile contains the
build instructions for the student’s submission. How-
ever, the test system does not check the integrity of the
Makefile or the commands it contains. This is a signif-
icant issue, as the Makefile can be altered to execute
arbitrary commands instead of compiling the student’s
code.



5.3. Case Study 3: Test system C4

For our third case study, we investigated C4. C4 is a
completely custom and independently developed system
for testing low-level system code.

After students push their code into a GitLab repository,
a web hook triggers the system to pull the submission
and to execute the following two steps: First, the student
code is built in a chroot environment following the best
practices described by Paiva et al. [3]. The chroot
environment is a separate root file system that contains
all the necessary tools and libraries to build and test the
student’s submission. Secondly, the resulting binary is
tested within a customized QEMU fork to obtain specific
low-level event metrics. From each test run, students get
the build log and a report of unintended behavior or
crashes.

5.3.1. Output Sanitization. We again first analyze the
system’s output sanitization. The system performs output
sanitization in several places, yet not in all stages of the
test pipeline. For example, an attacker can write arbitrary
text during the build and startup phases. As the test cases
reside in the chroot tree of the build process, an attacker
can directly exfiltrate them by writing them to the log.
Furthermore, the test cases are included in the built image,
allowing the attacker to dump them into the log during the
startup phase.

5.3.2. Permission Issues. For completeness, we checked
for permission issues but did not identify any particular
security-relevant issues.

5.3.3. Misconfiguration Issues. We observed three major
misconfiguration issues:

Firstly, outbound Internet connections are unrestricted
while running the entire pipeline. This allows an attacker
to exfiltrate arbitrary information to a server, enabling
similar attacks as with incomplete output sanitization.

Secondly, C4 uses outdated software versions in mul-
tiple places. The custom QEMU fork is outdated and,,
unpatched against multiple published vulnerabilities [35],
[36], allowing the tested code to escape the virtual ma-
chine. Furthermore, the software within the chroot en-
vironment has also not been updated for more than 3
years. For example, the sudo binary in the chroot
environment is vulnerable against CVE-2021-3156 [37],
enabling an attacker to gain root privileges and escape
the chroot environment.

Thirdly, C4 runs pipelines from different students
always under the same user and does not prohibit ptrace
across different processes of the same user. Thus, an
attacker can embed code into the build phase, attaching
itself to the pipeline of another student. Hence, the attacker
can read memory or files within the victim’s chroot,
obtaining the solution of other students. The attacker
can also hijack the victim’s pipeline process to execute
arbitrary shell code, e.g., to disrupt the victim’s process
and manipulate the test results.

5.3.4. Environment Issues. Our investigation of environ-
ment issues yielded two command injection vulnerabili-
ties. First, the system executes several helper programs

during the build process. These are built from source
files, which can be overwritten by an attacker to execute
arbitrary code in the chroot environment, enabling the
attacks discussed above. Secondly, an attacker can also
overwrite the Makefile, enabling similar attacks.

6. User Study: Severity Assessment

To assess the severity of the found security vulner-
abilities, we performed a user study with the people in
charge of the test systems. The people responsible for 6
of the systems participated on all questions regardless of
whether their test system was vulnerable or not.

The severity assessment of the read access (Figure 3a)
is strongly connected with the frequency with which stu-
dent assignments change. For courses where the assign-
ments change every semester, the severity is assessed as
low. The main reason given was that there can always be
communication between students leading to plagiarism.
Therefore, solutions must always be checked for plagia-
rism, uncovering copied solutions from the test system.
The medium-high assessment of one participant was rea-
soned by possible access to the solutions of assignments
and because it is difficult to detect plagiarism.

The severity of write access (Figure 3b) to the so-
lutions of other students was assessed low because the
manipulation of other students’ solutions could easily be
detected, and also, there is no reason to do it.

The severity of read access to the test cases (Figure 3c)
is assessed low for courses where the test cases are public
and use randomized inputs on the test system. In this case,
there is no advantage for an attacker. Most participants
assessed the severity medium because access to the test
cases could allow them to reverse engineer the solution.
For courses where the test cases do not change frequently,
accessing them would have high severity.

Manipulating test cases with write access (Figure 3d)
would be detected, i.e., has a low severity. Still, it could
be used to interfere with other groups.

The severity assessments of read or write access to all
files in the test container (Figure 3e and Figure 3f) are very
similar to the assessment of accessing the test cases. The
reason is that the test systems do not contain other secret
data that an attacker could exploit. One participant notes
that modifications of student grades would be evident in
log files.

In most cases, read access to the container registry
(Figure 3g) gives an attacker access to the test cases. This
may be a security issue if the test cases are private and not
frequently changed. On the test system of one participant,
read access to the container registry gives an attacker
access to the reference solution. On one test system, the
container does not contain the test cases.

The severity of a write access (Figure 3h) is assessed
based on a few factors: In some courses, the containers
from the registry are also run locally on student’s systems.
A modified container would be started carelessly in priv-
ileged mode this could cause a complete exploitation of a
student’s system. Medium severity was assessed because
modified containers could leak all student solutions.

Access to the host system (Figure 3i and Figure 3j)
provides an attacker access to personal information of
students, and databases with students’ points and grades.



low medium high
0

2

4

6

8

C
ou

nt

(a) Reading solutions of other students.

low medium high
0

2

4

6

8

C
ou

nt

(b) Writing solutions of other students.

low medium high
0

2

4

6

8

C
ou

nt

(c) Read access to the test cases.

low medium high
0

2

4

6

8

C
ou

nt

(d) Write access to the test cases.

low medium high
0

2

4

6

8

C
ou

nt

(e) Reading any file in the test container.

low medium high
0

2

4

6

8

C
ou

nt
(f) Writing any file in the test container.

low medium high
0

2

4

6

8

C
ou

nt

(g) Read access to the container registry.

low medium high
0

2

4

6

8

C
ou

nt

(h) Write access to the container registry.

low medium high
0

2

4

6

8

C
ou

nt

(i) Read access on container host.

low medium high
0

2

4

6

8

C
ou

nt

(j) Write access on container host.

low medium high
0

2

4

6

8

C
ou

nt

(k) Execute permission on container host.

Figure 3: Severity assessment by the participants.

Educators typically do not know or are in charge of the
host system and they expressed the concern that access to
the host will give an attacker also access to other informa-
tion not related to their course. The severity assessment
for execution permission (Figure 3k) is the same as for
write access on the host system, as they ultimately give
an attacker the same capabilities.

7. Discussion and Limitations

Hardening educational test systems against security
vulnerabilities is challenging, given that they have to

execute untrusted code while they also process a variety
of security-critical information. Furthermore, resources to
develop and maintain these test systems are often limited.
In the following, we therefore want to give some guide-
lines to improve the security of these systems.

First of all, security-critical assets have to be identified
(see Section 4.1), and it is crucial to reduce these to a
minimum. For example, reference solutions should not be
stored on the test system if they are not required for testing
the submissions. Each required asset must be protected
from the student code.



Secondly, typical CI systems are not designed to test
completely untrusted code. If such a system is used, its se-
curity has to be evaluated with regard to the changed threat
model (Section 3.2). Even some desired properties of the
CI system may be helpful to an attacker (Section 4.2).

Thirdly, derived from the previous steps, concrete
attack vectors have to be identified. Several of the issues
we have discussed could be mitigated by following best
practices: For instance, providing users with the precise
execution time of their tests, inherently opens a timing
side channel. Therefore, test system maintainers should
consider hiding the execution time from the students.
Permission issues generally align with best state-of-the-
art security practices and the principle of least privileges
that test system maintainers should follow: On the con-
tainer level, untrusted code should not be run without a
container, data that is not required should not be made
accessible to untrusted code, root privileges should not be
granted by default. On the level of interaction with Git
and GitLab, it is important to set up GitLab access tokens
only with the least privileges required, i.e., read access to
clone student or testcase repositories. Common misconfig-
uration errors include access to Internet or communication
sockets, but also setups that implicitly lead to outdated
software, e.g., manually patched software or environment
configurations that prevent automatic updates. Another
common error here are container capabilities that are not
required for testing, such as the ptrace capability. As
these capabilities usually configure the interaction be-
tween processes inside the container and the host kernel,
they implicitly allow bypassing the sandbox boundaries
in certain ways. It is crucial that test system maintainers
carefully review the capabilities granted to a container.
Furthermore, environment issues allow an attacker to take
over the build process or the entire test pipeline. Test
system maintainers should ensure critical control files
are not overwritten by student code.

Our investigation shows that these best practices are
not followed in several cases. This indicates that test
system maintainers are often unaware of the many ways
their systems might be exploited. We hope this paper will
raise the general awareness of the security problems of
educational test systems.

While we found a large variety of vulnerabilities,
additional issues might exist, or future changes in the test
systems might introduce new issues. Hence, the security
of the test systems has to be evaluated periodically. To
support this, educators should encourage their students to
find and disclose security issues in their test systems. This
not only helps hardening these systems but also teaches
the students to engage in responsible disclosure.

8. Conclusion

We evaluated the security of 11 practically used test
systems from computer science university classes, includ-
ing computer security classes. We studied these systems
during the time frame from October 2023 to February
2024 and provide a systematic overview of the typical
approaches these systems follow. We identified 3 cate-
gories of systems: GitLab Runners with a Docker registry,
GitLab Runners with custom pipelines, and entirely cus-
tom test systems that do not rely on a CI system as a

basis. We identified 13 types of security issues, the most
widely spread ones affecting 5-6 of the test systems in our
analysis. We practically showed that all test systems in our
analysis can be compromised and develop new techniques
to exfiltrate secret and privileged information, including
the use of side channels. We presented 3 case studies
where we show the specific bypasses possible in these
concrete systems. Finally, in a user study, we assessed
the impact a potential breach together with the educators
using these test systems. Based on our results, we derived
best practices that educators should follow to minimize
security risks and prevent exposure of confidential data
and malicious data integrity breaches, in the context of
testing untrusted student code.
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