
International Journal on Software Tools for Technology Transfer
https://doi.org/10.1007/s10009-025-00779-0

GENERAL

Special Issue: SPIN 2022-2024

An adaptive, provable correct simplex architecture

Benedikt Maderbacher1 · Stefan Schupp2 · Ezio Bartocci2 · Roderick Bloem1 · Dejan Ničković3 ·
Bettina Könighofer1

Accepted: 14 January 2025
© The Author(s) 2025

Abstract
Simplex architectures optimize performance and safety by switching between an advanced controller and a base controller.
We propose an approach to synthesize the switching logic and extensions of the base controller in the Simplex architectures
to achieve high performance and provable correctness for a rich class of temporal specifications by maximizing the time the
advanced controller is active. We achieve provable correctness by performing static verification of the baseline controller.
The result of this verification is a set of states that is proven to be safe, called the recoverable region. We employ proofs
on demand to ensure that the base controller is safe in those states that are visited during runtime, which depends on the
advanced controller. Verification of hybrid systems is often overly conservative, resulting in smaller recoverable regions that
cause unnecessary switches to the baseline controller. To avoid these switches, we invoke targeted reachability queries to
extend the recoverable region at runtime. In case the recoverable region cannot be extended using the baseline controller, we
employ a repair procedure. This tries to synthesize a patch for the baseline controller and can further extend the recoverable
region. Our offline and online verification relies upon reachability analysis since it allows observation-based extension of
the known recoverable region. We implemented our methodology on top of the state-of-the-art tool HyPro which allowed us
to automatically synthesize verified and performant Simplex architectures for advanced case studies, like safe autonomous
driving on a race track.

Keywords Simplex architecture · Hybrid systems · Monitoring · Runtime enforcement · Repair

1 Introduction

Modern control applications are increasingly becoming au-
tonomous and are gaining complexity. The adoption of the
DevOps practices by the cyber-physical systems (CPSs) com-
munity enables control systems to evolve and progressively
improve their performance after their deployment, by col-
lecting and analyzing data during system operation.

The design of advanced control systems that can be trusted
is a major challenge in the development of safety-critical
applications. Formal verification of sophisticated controllers
at the design time is typically intractable due to their inherent
complexity. Therefore, runtime assurance techniques [27]
that provide safety guarantees during system operation by
monitoring and altering the execution of the controller are
becoming an increasingly popular alternative.

Simplex architecture. The Simplex architecture [7, 26]
is a popular runtime assurance framework, originally intro-
duced to enable safe upgrades of control systems in opera-
tion. Given a plant P representing the physical system that
may exhibit mixed discrete-continuous behavior, and a safety

This paper is an extended version of the “Provable Correct and
Adaptive Simplex Architecture for Bounded-Liveness Properties”
manuscript published at SPIN 2023 [14].

� B. Maderbacher
benedikt.maderbacher@tugraz.at

S. Schupp
stefan.schupp@tuwien.ac.at

E. Bartocci
ezio.bartocci@tuwien.ac.at

R. Bloem
roderick.bloem@tugraz.at

D. Ničković
dejan.nickovic@ait.ac.at

B. Könighofer
bettina.koenighofer@tugraz.at

1 Graz University of Technology, Graz, Austria
2 TU Wien, Vienna, Austria
3 AIT Austrian Institute of Technology, Vienna, Austria

Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-025-00779-0&domain=pdf
mailto:benedikt.maderbacher@tugraz.at
mailto:stefan.schupp@tuwien.ac.at
mailto:ezio.bartocci@tuwien.ac.at
mailto:roderick.bloem@tugraz.at
mailto:dejan.nickovic@ait.ac.at
mailto:bettina.koenighofer@tugraz.at

B. Maderbacher et al.

Fig. 1 Schematic of a Simplex architecture

specification 𝜑, the Simplex architecture ensures that P sat-
isfies the specification 𝜑. It consists of three components, as
shown in Fig. 1:

1. The baseline controller (BC), a simple controller that
is formally verified. More specifically, the baseline con-
troller is guaranteed to provide control inputs to the plant,
which result in behaviors that satisfy 𝜑. This holds under
the assumption that P is initially in a state from which the
baseline controller can satisfy 𝜑. We call the set of such
states the recoverable region.

2. The advanced controller (AC), a highly efficient, sophis-
ticated, and possibly data-driven controller that might in-
corporate deep neural networks. Due to its complexity,
the advanced controller is not amenable to formal ver-
ification, and its behavior does not have guarantees to
always satisfy 𝜑.

3. The switching logic (SL) monitors the operation of the
advanced controller. Whenever the plant is about to leave
the recoverable region, the switching logic hands the con-
trol to the baseline controller that ensures the satisfaction
of the safety guarantee 𝜑.

To summarize, the Simplex architecture facilitates high
performance of the control system while also guarantying
safety of the application. The high performance is achieved
by allowing the advanced controller to have the maximal
freedom and only restricting its operation to the recoverable
region. The formally verified baseline controller provides the
guarantee that the plant never leaves the recoverable region.

Challenges. The simple concept of a Simplex architecture
is nevertheless complex to implement. The first challenge is
to formally verify the baseline controller and hence provide
the safety guarantees. Baseline controllers can be modeled as
hybrid automata [2] that allow accurate description of sys-
tems that combine discrete computational and continuous
processes. The verification of hybrid automata is challeng-
ing and exhaustive verification tools have inherent limitations
in terms of scalability and accuracy. To obviate formal ver-
ification, assumptions are often made about the correctness
of a given baseline controller. However, all safety guarantees
meant to be provided by the Simplex architecture are lost by
avoiding the formal verification step.

The second challenge is to implement a Simplex archi-
tecture that has high performance while being safe at the

same time. The accumulation of overapproximation error
during verification of the baseline controller typically yields
an overconservative recoverable region. This can result in
the switching logic giving control to the baseline controller
more frequently than necessary, causing unnecessary drops
in performance.

Problem statement. We start with (1) a plant and a base-
line controller, both modeled as hybrid automata, (2) a safety
specification expressed in the bounded-liveness fragment of
signal temporal logic (STL) [15], and (3) an advanced con-
troller. The problem is to synthesize a Simplex architecture
that has high performance while being provably correct for
the given STL specification.

Our approach. We first compute at design time an initial
recoverable region is the form of the set of states that can be
reached by the baseline controller from an initial region. We
use a fixpoint detection on this recoverable region to prove
its safety with respect to the specification.

We then incrementally optimize the performance of the
Simplex architecture during the system operation. Whenever
the advanced controller proposes an output that would result
in the plant leaving the recoverable region, we perform the
following steps: (1) we give control to the baseline controller,
and (2) we attempt to either enlarge the recoverable region
or repair the baseline controller. To enlarge the recoverable
region, we first identify suspicious states, states that would
have been reached under the execution of the advanced con-
troller’s last command. Next, we analyze how the baseline
controller behaves from the suspicious states. If we prove
that the baseline controller is safe from a suspicious state,
we add this state and all states reachable from it to the recov-
erable region. Next time the advanced controller proposes a
command that results in such a state, the switching logic does
not interfere. If we cannot prove that the baseline controller
is safe from that suspicious state, we perform a repair that
attempts to alter the controller’s behavior by attempting to
synthesize a patch, a finite sequence of commands that steer
the system back into the known recoverable region.

Contributions. This paper expands and improves the text
of our preliminary paper [14] published at SPIN 2023 with
the following new contributions:

• We propose a repair mechanism for the baseline controller.
Whenever the Simplex architecture encounters a suspi-
cious state that is outside the recoverable region and could
not be added to it, the repair procedure attempts to create
a patch consisting of a sequence of actions that bring back
the system to the recoverable region.

• We extend the autonomous racing car case study with an
additional track and associated experiments that further
demonstrate the value of our approach.

• We add a simple illustrative example that we use through-
out the paper to explain the different steps of our approach
and provide intuition to the reader.

Springer

Adaptive simplex architecture

1.1 Related work

Original works on the Simplex architecture [7, 26, 27], as
well as many recent works [12, 20, 28] assume to have a ver-
ified baseline controller and a correct switching logic given.
Under these assumptions, the papers guarantee the safe oper-
ation of the advanced controller. However, these assumptions
are very strong and the works ignore the challenges and im-
plied limitations that need to be addressed in order to get
a verified baseline controller and a switching logic that is
guaranteed to switch at the correct moment. The reason for
many works to leave out these steps is that a general safety
statement for unbounded time for the baseline controller is
required (i.e., a fixpoint in the analysis). Depending on the
utilized method, fixpoints in the analysis cannot always be
found, as some verification methods tend to have bad con-
vergence due to accumulating errors.

Recent works that verify the baseline controller deploy
standard methods to verify hybrid systems such as barrier
certificates [18, 19, 30], and using forward or backward
reachability analysis [4]. Our method is independent of the
concrete approach that is used for offline verification. In
general, for methods based on flowpipe construction for for-
ward or backward reachability analysis, there exists a trade-
off between accuracy and complexity: using simple shapes
to overapproximate the reachability tubes results in overly-
conservative recoverable regions, while using too complex
shapes requires difficult computations to check for a fixpoint.
By using the concept of proof on demand, we allow simple
shapes for the reachability analysis but amend the problem of
an overly-conservative recoverable region by enlarging the
region on demand.

While several works study provable correct Simplex ar-
chitectures, there is only little work on how to create high-
performing Simplex architectures. Similar to our approach,
the work in [13] uses online computations to increase per-
formance. While our approach adapts to a given advanced
controller and therefore the number of online proofs reduces
during exploitation, the approach in [13] performs the same
online computations repeatedly.

Furthermore, to the best of our knowledge, no work con-
sidered temporal logic properties beyond safety invariants to
be enforced by a Simplex architecture. Instead, our work al-
lows us to specify bounded reachability and bounded liveness
properties, and conjunctions of them.

Runtime assurance covers a wide range of techniques and
has several application areas, for example, enforcing safety in
robotics [16] or in machine learning [29]. Runtime enforcers,
often called shields, directly alter the output of the controller
during runtime to enforce safety. In the discrete setting, such
enforcers can be automatically computed from a model of
the plant’s dynamics and the specification using techniques
from model checking and game theory [1]. In the continuous

domain, inductive safety invariants such as a control Lya-
punov functions [22] or control barrier functions [21] are
used to synthesize runtime enforcers.

2 Background

2.1 Reachability analysis of hybrid systems

We use hybrid automata as a formal model for hybrid sys-
tems.

Definition 1 (Hybrid automata [2])
A hybrid automaton H = (Loc,Lab, Edge, Var, Init, Inv,
Flow, Jump) consists of a finite set of locations Loc = {ℓ1,
. . . , ℓ𝑛}, a finite set of labels Lab, which synchronize and
coordinate state changes between automata, a finite set of
jumps Edge ⊆ Loc× Lab× Loc, that allow realizing location
changes, a finite set of variables Var = {𝑥1, . . . , 𝑥𝑑}, a set of
states Inv called invariant, which restricts the values 𝜈 for
each location set of initial states Init ⊆ Inv, a flow relation
Flow where Flow(ℓ) ⊆ R �Var ×R𝑑 , which determines for each
state (ℓ, 𝜈) the set of possible derivatives �Var, a jump relation
Jump where Jump(𝑒) ⊆ R𝑑 ×R𝑑 defines for each jump 𝑒 ∈
Edge the set of possible successors 𝜈′ of 𝜈.

A state 𝜎 = (ℓ, 𝜈) of H consists of a location ℓ and a
valuation 𝜈 ∈ R𝑑 for each variable, 𝑆 = Loc×R𝑑 denotes the
set of all states.

Every behavior of H must start in one of the initial
states Init ⊆ Inv. Jump relations are typically described by
a guard set 𝐺 ⊆ R𝑑 and an assignment (or reset) 𝜈′ = 𝑟 (𝜈)
as Jump(𝑒) = {(𝜈, 𝜈′) | 𝜈 ∈ 𝐺 ∧ 𝜈′ = 𝑟 (𝜈)}. For simplicity,
we restrict ourselves to the class of linear hybrid automata,
i.e., the dynamics (Flow) are described by systems of lin-
ear ordinary differential equations and guards (𝐺), invariant
conditions (Inv), and sets of initial variable valuations are
described by linear constraints. Resets on discrete jumps are
given as affine transformations. In this work, we use com-
position of hybrid automata as defined in [10] with label-
synchronization on discrete jumps and shared variables.

A path 𝜋 = 𝜎1→𝜏 𝜎2→𝑒→ · · · in H is an ordered se-
quence of states 𝜎𝑖 connected by time transitions →𝜏 of
length 𝜏 and discrete jumps→𝑒, 𝑒 ∈ Edge. Time transitions
follow the flow relation while discrete jumps follow the edge
and jump relations, we refer to [10] for a formal definition of
the semantics. Paths naturally extend to sets of paths which
collect paths with the same sequence of locations but differ-
ent variable valuations.

The reachability problem in hybrid automata. A state
𝜎𝑖 = (ℓ, 𝜈) ofH is called reachable if there is a path 𝜋 leading
to it with 𝜎1 ∈ Init. The reachability problem for hybrid au-
tomata tries to answer whether a given set of states 𝑆bad ⊆ 𝑆 is

Springer

B. Maderbacher et al.

Fig. 2 Hybrid automata templates for the STL properties: invariance (G (𝜑)), bounded reachability (F[0,𝑡] (𝜑)), and bounded liveness
(G

(
𝜓→ F[0,𝑡] (𝜑)

)
)

reachable. Since the reachability problem is in general unde-
cidable [11], current approaches often compute overapprox-
imations of the sets of reachable states for bounded reach-
ability. Note that reachability analysis follows all execution
branches, i.e., does not resolve any nondeterminism induced
by discrete jumps in the model. This means that comput-
ing alternatingly time- and jump-successor states may yield
a tree-shaped structure (nodes contain time-successors, the
parent–child relation reflects discrete jumps, see also [23])
which covers all possible executions.

Flowpipe construction for reachability analysis. For
a given hybrid automaton H , flowpipe construction (see,
e.g., [6]) computes a set of convex sets

𝑅 = reachH≤𝛼 (𝜎),

which are guaranteed to cover all trajectories of bounded
length 𝛼 that are reachable from a set of states 𝜎. We use
reachH=𝛼 (𝜎) to denote the set of states that are reached after
exactly 𝛼 time, and similarly reachH∞ (𝜎) to denote the set of
states reachable for unbounded time.

The method overapproximates time-successor states by a
sequence of sets (segments), referred to as flowpipe. Seg-
ments that satisfy a guard condition of an outgoing jump of
the current location allow taking said jump leading to the
next location. Note that nondeterminism on discrete jumps
may introduce branching, i.e., it requires the computation of
more than one flowpipe. The boundedness of the analysis is
usually achieved by limiting the length of a flowpipe and the
number of discrete jumps.

To compute the set of reachable states reachH∞ (𝜎) for un-
bounded time requires finding a fixpoint in the reachability
analysis. For flowpipe-construction-based techniques, find-
ing fixpoints boils down to validating whether a computed
set of reachable states is fully contained in the set of pre-
viously computed state sets. As the approach accumulates
overapproximation errors over time, it may happen that this
statement cannot be validated [24]. One way is to check
whether the set obtained after a jump is contained in one of
the already computed state sets.

Safety verification via reachability analysis. Reachabil-
ity analysis can be used to verify safety properties by check-
ing that the reachable states do not contain any unsafe states.
A system is (bounded-)safe if 𝑅 ∩ 𝑆bad = ∅, otherwise the
result is inconclusive. Unbounded safety results can only be
obtained in case the method is able to detect a fixpoint for all
possible trajectories in all possible execution branches.

2.2 Temporal specification

We use STL [15], as the temporal specification language to
express the safe behavior of our controllers. Let Θ be a set
of terms of the form 𝑓 (𝑅) where 𝑅 ⊆ Var are subsets of
variables and 𝑓 : R |𝑅 | → R are interpreted functions. The
syntax of STL is given by the following grammar and we use
standard semantics [15].

𝜑 ::= true | 𝑓 (𝑅) > 𝑘 | ¬𝜑 | 𝜑1 ∨ 𝜑2 | 𝜑1U𝐼𝜑2 ,

where 𝑓 (𝑅) are terms in Θ, 𝑘 is a constant in Q, and 𝐼

are intervals with bounds that are constants in Q∪ {∞}. We
omit 𝐼 when 𝐼 = [0,∞). From the basic definition of STL,
we can derive other standard operators as usual: conjunction
𝜑1 ∧ 𝜑2, implication 𝜑1→ 𝜑2, eventually F𝐼𝜑, and always
G𝐼𝜑.

In our approach, we use STL specifications to handle
properties beyond simple invariants. More specifically, we
support the following subset of STL specifications: invari-
ance G (𝜑), bounded reachability F[0,𝑡] (𝜑), and bounded
liveness G

(
𝜓→ F[0,𝑡] (𝜑)

)
, where 𝜑 and 𝜓 are predicates

over state variables and 𝑡 is a time bound. We also allow
assumptions about the environment such as the bounds on
input variables.

STL specifications can be translated to hybrid automaton
monitors. The translation is inspired by the templates used
by Frehse et al. [8]. We adapt the original construction to
facilitate fixpoint detection, by creating (mostly) determin-
istic monitors instead of universal ones. Figure 2 depicts the
specification automata for the STL fragments considered in
this work. A specification is violated when the sink location

Springer

Adaptive simplex architecture

Fig. 3 Hybrid automata of illustrative example

ℓbad is reached. Urgent transitions are encoded with loca-
tion invariants and transition guards such that no time may
pass when an urgent transition is enabled. This is possible
because our 𝜑 and 𝜓 are half-plane constraints and we use
the inverted guards as invariants. Consider an example of
𝜑 = 𝑥 ≤ 1: the outgoing location uses a guard of 𝑥 ≥ 1. We
assume that a state the enables 𝜑 is reached via the dynamic
of the location, which is justified because our templates used
resets only for clocks which are not used in guards for urgent
transitions. This construction ensures that no time can pass
in a location once the urgent transition is enabled because the
dynamic would push the state out of the invariant. The only
option available to the reachability analyzer is to follow the
urgent transition. The conjunction of invariance, bounded
reachability, and bounded liveness properties is enabled by
the parallel composition of monitor automata.

3 Synthesizing adaptive simplex
architectures

This section outlines our method for constructing a provably
correct and adaptive Simplex architecture. In Sect. 3.1, we
will first discuss the setting and the problem statement. Next,
we will outline how to compute a provably correct Simplex
architecture offline in Sect. 3.2. Finally, we discuss how to
adapt the architecture during runtime in Sect. 3.3.

To showcase how our algorithm works, we compute a
Simplex architecture for the simple hybrid automaton of the
plant, as illustrated in Fig. 3(a), from the baseline controller
shown in Fig. 3(b) and a simple given safety specification 𝜑
in STL. We will use this example as a running example
throughout this section.

3.1 Setting and problem statement

The input of our synthesis algorithm is a model of the plant
and a model of the baseline controller as well as a safety
specification 𝜑 in STL. From these inputs, our algorithm
computes a Simplex architecture that enforces 𝜑, for any
possible advanced controller. In the following, we discuss
the individual components in detail.

3.1.1 Plant

The model of the plant is given as a hybrid automaton
H𝑃 with continuous variables VarH𝑃 and discrete locations
LocH𝑃 . The plantH𝑃 is equipped with a clock 𝑡 that monitors
the cycle time. At the end of each control cycle (𝑡 = 𝛿), the
plant receives an input from a controller via a synchronized
edges labeled with tick. We will refer to these communica-
tions between plant and controller at the end of a control
cycle as actions. An action can be an assignment or reset for
a designated subset of plant variables 𝑉 ⊆ VarH𝑃 , or a syn-
chronization label from 𝐿 ⊆ LabH𝑃 . We use 𝑈 for the set of
all actions (resets on𝑉 and labels 𝐿) and 𝑋 = LocH𝑃 ×R

VarH𝑃

for the state ofH𝑃 .

Example
The hybrid automatonH𝑃 of our illustrative example is given
in Fig. 3(a). HereH𝑃 has two locations (drawn as boxes) that
are named upwards and downwards, and a single continuous
variable 𝑥, whose flow is defined via the differential equations
in the locations, e.g., 𝑥′ = −1 in the downwards location. The
hybrid automaton of plant (H𝑃) and the baseline controller
communicate via the actions (synchronization labels) up,
down, and continue. All jumps happen at the end of a
cycle, the clock 𝑡 and the label tick are omitted for clarity.

3.1.2 Safety specification

The safety specification of the system is given as an STL for-
mula 𝜑. Note that the specification includes temporal safety
properties like bounded liveness specifications. A safety
specification 𝜑 in STL can be transformed into a hybrid
automatonH𝜑 , as discussed in Sect. 2.2.

Example
In our example, we use the safety specification

𝜑 =G (−3 ≤ 𝑥 ∧ 𝑥 ≤ 8) .

This specification requires that the value of 𝑥 be always
within the interval [−3,8].

We denote by the hybrid automaton H =H𝑃 ×H𝜑 , the
product of plant automaton H𝑃 and the specification au-
tomaton H𝜑 . The components H𝑃 and H𝜑 communicate
via shared variables and label synchronization.

3.1.3 Baseline controller

The baseline controller (BC) is modeled via a hybrid au-
tomatonH𝐵𝐶 which is composed withH𝑃 and can read the
state 𝑥 ∈ 𝑋 ofH𝑃 . At the end of each control cycle (indicated
by the label tick),H𝐵𝐶 selects which action to provide to the
plant.

Springer

B. Maderbacher et al.

Example
The initial baseline controllerH𝐵𝐶 is given in Fig. 3(b). This
H𝐵𝐶 has a single location and selects its actions (continue,
down, up) to control the plant based on the values of 𝑥.

• If 0 < 𝑥 < 5, thenH𝐵𝐶 issues the action down and thereby
switches the plant to the downwards location.

• If −5 < 𝑥 ≤ 0, then H𝐵𝐶 issues the action up and thereby
switches plant to the upwards location.

• In all other cases, H𝐵𝐶 issues continue and lets plant
continue in its current configuration.

Note that we use a slightly suboptimal baseline controller be-
cause it is well-suited to illustrate our method for computing
a Simplex architecture without distracting details.

3.1.4 Advanced controller

We consider the advanced controller (AC) to be a black box.
Thus, the complexity of our synthesis procedure is indepen-
dent of the complexity of the advanced controller. This is
particularly important if the advanced controller implements
learned components. In the following, we denote a concrete
advanced controller via AC.

More formally, an advanced controllerAC is a black box
that accesses the state 𝑥 of the plant H𝑃 at the end of a
control cycle and suggests an action from 𝑈 for the next
control cycle.

Example
In our illustrative example, the performance target of the
used advanced controller is to keep the value of 𝑥 as high as
possible. Note that this performance property is conflicting
with the safety specification. Thus, the advanced controller
might try to increase the value of 𝑥 beyond its safety limit of
the value 8.

3.1.5 Problem statement

Given the hybrid automaton H (the product of the plant
automaton H𝑃 and the specification automaton H𝜑), and a
hybrid automaton H𝐵𝐶 of the baseline controller, the goal
is to construct a Simplex architecture such that the following
two requirements hold:

• Hard requirement – Correctness. For any given ad-
vanced controllerAC that can be used to control the plant,
it holds that the specification 𝜑 will be satisfied, i.e., the
plant will never be in an unsafe state.

• Soft requirement – Performance. To maximize the per-
formance of the system, the time the advanced controller
AC is active should be maximized.

Fig. 4 Partitioning of state space of H × H𝐵𝐶

3.2 Offline computation of a provable correct
simplex architecture

To construct a provable correct Simplex architecture for a
given baseline controller H𝐵𝐶 , we need to synthesize a
switching logic SL such that the safety specification 𝜑 is guar-
anteed to be satisfied, independent of the concrete advanced
controller H𝐴𝐶 . To achieve the correctness guarantees, we
compute SL directly from H𝐵𝐶 performing the following
steps.

Step 1 – Compute the recoverable region 𝑆r . Following
classical terms, we partition the state space of H into the
unsafe region 𝑆bad (the specification has been violated) and
the safe region 𝑆safe (the specification holds). To keep the
notation simple, we use 𝑆bad for the set of bad states both in
H and in H ×H𝐵𝐶 since H defines the set of bad states.
The region for which the baseline controller H𝐵𝐶 satisfies
the specification is referred to as the recoverable region 𝑆r ⊆

𝑆safe. The partitioning of the state space of H × H𝐵𝐶 is
illustrated in Fig. 4.

The recoverable region of a hybrid automaton can be com-
puted in the following way. From a given set of initial states,
we use reachability analysis to compute the fixpoint of all
states inH ×H𝐵𝐶 that can be reached, i.e., the fixpoint rep-
resents the set of states that will never be left by the baseline
controller. If the fixpoint does not contain a state in 𝑆bad , the
baseline controller is provable safe, and we call the resulting
set the recoverable region 𝑆r of the baseline controller.

Note that if the fixpoint of H ×H𝐵𝐶 contains an unsafe
state in 𝑆bad , we end the synthesis procedure since we cannot
build a provable-correct Simplex architecture from a faulty
baseline controller.

Step 2 – Build the switching logic SL. From 𝑆r , we can
directly build SL. To determine whether the action proposed
by the advanced controller is safe, the plant model is used to
simulate one control cycle.

During runtime, the switching logic monitors the current
state and the potential next state ofH ×H𝐵𝐶 . Let us assume
that the baseline controller is in a state inside 𝑆r , and the
next selected action by the advanced controller is 𝑢𝑎 . If all
reachable states from the current state after executing 𝑢𝑎 are
in 𝑆r , executing 𝑢𝑎 is guaranteed to be safe and can be used.
Thus, the switching logic SL gives control to the advanced
controller. If executing 𝑢𝑎 could result in a state outside of
the recoverable region, the switching logic SL has to switch
to the baseline controller.

Springer

Adaptive simplex architecture

Fig. 5 Overview of our method for online adaptation of a Simplex
architecture

This way, SL ensures that 𝑆r is never left. Thus, the con-
structed Simplex architecture is guaranteed to be correct
concerning 𝜑.

Example
In the illustrative example, we use the set of initial states
𝑥 ∈ [0,1]. For these initial states, we obtain the recover-
able region of 𝑆r = [−1,2]. The running example uses exact
reachability results without overapproximation, this lets us
focus on the main parts of our methodology.

The details of how to construct and use the switching logic
SL are described in Sect. 4.

3.3 Online adaptation of the simplex
architecture

In the previous section, we computed the set of recoverable
states for the baseline controller. A switching logic that main-
tains operation within this recoverable region ensures system
correctness.

However, this switching logic often tends to be overly
conservative. This issue arises because precisely determin-
ing the set of reachable states for a hybrid automaton is
undecidable, as indicated in [11]. Practical approaches to

Fig. 6 Adaptations of the recoverable region in the illustrative example

reachability analysis typically result in an overestimation of
the reachable states set [4]. Nonetheless, this overestimation
is adequate for devising a safe switching logic. If a reliable
overestimation of reachable states excludes any unsafe states,
the system can be verified as safe. The degree of conservatism
in the resulting switching logic directly depends on the extent
of overestimation.

In this section, we will use online reachability analysis
to compute a significantly less conservative switching logic
that is still ensures that the safety specification 𝜑 is satisfied.

The overview of our method to adapt the Simplex archi-
tecture during runtime is illustrated in Fig. 5. Our method
starts with an initial recoverable region 𝑆𝑟 of the baseline
controller H𝐵𝐶 . At every discrete time step, the switching
logic SL reads the current state 𝑥 ofH ×H𝐵𝐶 (the plant and
the baseline controller), and the next control actions 𝑢𝑎 and
𝑢𝑏 issued by the advanced controller and the baseline con-
troller, respectively. The switching logic SL checks whether
all reachable states from 𝑥 after executing 𝑢𝑎 are within
𝑆𝑟 . If this is the case, 𝑢𝑎 is forwarded to be executed. If a
state 𝑥′ ∉ 𝑆𝑟 could be reached, our algorithm performs two
operations to avoid an unnecessary switch to the baseline
controller.

• Extend the recoverable region. Perform online reachability
analysis to check whether 𝑥′ can be added to 𝑆𝑟 . If this is
the case, all newly verified states including 𝑥′ are added to
𝑆𝑟 .

• Repair of the baseline controller. The state 𝑥′ might be
unsafe or undefined in H × H𝐵𝐶 . The repair step aims
to alter the behavior of the baseline controller in a way
that 𝑥′ becomes safe, while simultaneously preserving all
states within the recoverable region. To do so, the repair
algorithm searches for a patch: a patch is a finite sequence
of actions that for a set of initial states steers the system
back into the known recoverable region.

If neither the attempt to extend the recoverable region
nor to repair the baseline controller is successful, the control
output 𝑢𝑏 is forwarded to the plant. Note that at each time
step, the current recoverable region might be extended or the
baseline controller may be adapted to allow more behavior.
By doing so, the Simplex architecture adapts to the used
advanced controller and maximizes the time the advanced
controller is in control. The two adaptation techniques can
be combined flexibly and depending on the setting it can also
be advantageous to use only one or the other.

Springer

B. Maderbacher et al.

Fig. 7 BC of the illustrative
example after repair

Example
The initial recoverable region of our illustrative example is
𝑆0

r = [−1,2]. Let us assume that at time step 𝑡, H ×H𝐵𝐶
is in the state 𝑥𝑡 = 2 and the advanced controller issues the
control 𝑢𝑎 = up. In case 𝑢𝑎 is executed, the next visited state
would be 𝑥𝑡+1 = 4 ∉ 𝑆0

r . Instead of immediately switching to
the baseline controller, our algorithm first tries to extend the
recoverable region. For this example, the procedure returns
successfully, and the new verification results are integrated
into the recoverable region extending it to 𝑆1

r = [−1,4]. The
advanced controller can now operate safely in the larger re-
coverable region 𝑆1

r resulting in a higher value of 𝑥 and thus
improved performance. The extension of the recoverable re-
gion is illustrated in Fig. 6.

Example
Let us continue from 𝑆1

r = [−1,4]. Once the advanced con-
troller tries to visit 𝑥 = 6, extending the recoverable region is
not possible. As illustrated in Fig. 3(b), once reaching 𝑥 = 6,
the baseline controller would continue in the upwards state
until it exceeds the safety limit. Since extending 𝑆1

r failed,
our algorithm next executes the repair procedure which tries
to modify H𝐵𝐶 such that it is safe for the new state 𝑥 = 6 as
well. The repair procedure returns the patch [down, down]
for 𝑥 = 6 in the location upwards. Executing the patch brings
the system in the state 𝑥 = 4 in the location downwardswhich
is part of the recoverable region. This patch is integrated into
the existing H𝐵𝐶 by modifying the guards to ensure that
the actions from the patch are used instead of the current
behavior of H𝐵𝐶 . Applying this repair procedure results in
a recoverable region 𝑆2

r = [−1,6]. If we apply the repair step
once more, we end up in the recoverable region 𝑆3

r = [−1,8]
and a baseline controller as depicted in Fig. 7. Figure 6 shows
how the recoverable region evolves after performing the two
repair steps.

We discuss the details of our approach to extend the re-
coverable region during runtime in Sect. 5. The details of
our algorithm to repair the baseline controller are presented
in Sect. 6.

4 Offline synthesis of the simplex
architecture

The first step of step of our methodology is to synthesize a
switching logic given a plant model and a BC. This switching

Algorithm 1 Switching Logic for a recoverable region 𝑆r

1: (𝑥, 𝑥𝐵) ← InitH×H𝐵𝐶
2: loop
3: 𝑢𝐴←AC(𝑥)
4: 𝑢𝐵←BC(𝑥, 𝑥𝐵)

5:
(
𝑋 ′, 𝑋 ′𝐵

)
← reachH×H𝐵𝐶=𝛿 (𝑢𝐴(𝑥, 𝑥𝐵))

6: if
(
𝑋 ′, 𝑋 ′𝐵

)
⊆ 𝑆r then

7: 𝑥← runPlant𝛿 (uA)

8: else
9:

(
𝑋 ′, 𝑋 ′𝐵

)
← reachH×H𝐵𝐶=𝛿 (𝑢𝐵 (𝑥, 𝑥𝐵))

10: 𝑥← runPlant𝛿 (uB)

11: end if
12: select 𝑥𝐵 s.t. (𝑥, 𝑥𝐵) ∈

(
𝑋 ′, 𝑋 ′𝐵

)

13: end loop

logic is only required to guarantee safety for a small part
of the state space, as it will be incrementally improved by
our method. The main component of a switching logic is
a recoverable region, i.e., a set of states for which the BC
can guarantee safety for infinite time. A recoverable region
𝑆r needs to satisfy the Recoverable Region Invariance: it
cannot contain any bad states and it has to be closed under
the reachability relation.

Definition 2 (Recoverable Region Invariance)
A set 𝑆r fulfills the Recoverable Region Invariance condition
if 𝑆r ∩ 𝑆bad = ∅ and reachH×H𝐵𝐶∞ (𝑆r) ⊆ 𝑆r .

Once a known recoverable region 𝑆r has been verified it
can be used in a switching logic. The intuition is to analyze
the predicted set of reachable states for the plant (and the
specification) ahead for one control cycle and decide whether
to use the advanced controller or the baseline controller. The
decision is based on whether these results are compatible
with the previously computed recoverable region 𝑆r

In the following, we give a more technical description of
this approach which is also shown in Algorithm 1. The initial
state is obtained from the model of the composition of plant
and specification. In a loop, the method receives the sug-
gested actions 𝑢𝐴, 𝑢𝐵 from both advanced and baseline con-
troller (Lines 3 and 4) based on the current observable state
𝑥. Since advanced controller and baseline controller may be
stateful, this step may also update their internal states based
on 𝑥 during the computation of the controller output. In a
next step, we use reachability analysis from the current state
(𝑥, 𝑥𝐵) to obtain all possible 𝛿-reachable states

(
𝑋 ′, 𝑋 ′𝐵

)
of

the plant, the baseline controller, and the specification when
using the output from the advanced controller (Line 5). The
analysis is done for the length 𝛿 of one control cycle. Note
that in this step, we analyze the composition of the plant,
the specification, and the baseline controller using the out-
put of the advanced controller to obtain all possible initial

Springer

Adaptive simplex architecture

states for the next iteration. The idea is to be able to vali-
date, whether after having invoked the advanced controller,
the resulting configuration of the plant and the specification
yields a configuration from which the baseline controller can
ensure safety afterwards if required.

The system in its current state is recoverable when using
the advanced controller, if the newly obtained states

(
𝑋 ′, 𝑋 ′𝐵

)

are fully contained in 𝑆r (Line 6). If the new states are con-
tained in 𝑆r , the plant will be run for one control cycle with
the control input of the advanced controller (Line 7). Oth-
erwise, the plant is executed using the baseline controller
output (Line 10). In both cases, the state of the plant is ob-
served and stored in 𝑥 and the internal state of the BC is
updated.

4.1 Computing a recoverable region with
fixpoint verification

A classic method to compute a set that satisfies the recover-
able region invariance is to use a reachability analysis with
fixpoint detection.

To guarantee that the system satisfies the specification for
unbounded time, the reachability tool searches for fixpoints
outside of the bad states, which means it checks whether
reachH×H𝐵𝐶∞ (InitH×H𝐵𝐶) ∩ 𝑆bad = ∅. We refer to the set of
states that has been proven safe for unbounded time by 𝑆r ⊆

LocH × Loc𝐵𝐶 × 2R
|VarH |+|Var𝐵𝐶 | .

We perform a reachability analysis based on a flowpipe
construction. We detect fixpoints to verify that the baseline
controller satisfies 𝜑. If the reachability computation ter-
minates with a fixpoint that does not include a bad state,
Definition 2 is guaranteed.

Fixpoint detection. As fixpoint detection is a known
problem for flowpipe-construction-based reachability anal-
ysis methods, several improvements were added to increase
the robustness of the approach and thus the chances of find-
ing a fixpoint. Starting from a classical approach where a
fixpoint is found whenever a novel initial set after a discrete
jump is fully contained inside a previously computed state
set we propose several improvements.

Octrees. First, we augment the reachability analysis
method with an interface to access external data sources
for fixpoint detection. This lets us accumulate results over
several runs and thus evolve 𝑆r . External data is stored ef-
ficiently in a tree-like structure similar to octrees [17] that
subdivides the state space into cells for faster lookup. For
each location, we create a tree whose nodes represent a hier-
archical partition of the state space, i.e., nodes of layer 𝑖 + 1
are a partition of the nodes on layer 𝑖. Computed sets are
stored in the leaves of this structure to enable faster lookup;
if a cell is fully covered this information can be cached for
faster results. A minor, but effective, improvement for the

aforementioned data structure is to only store initial sets in-
stead of all sets of states that are computed to save memory
and speed up the lookup when searching for fixpoints.

Often, novel initial sets 𝑆′ are not fully contained in a sin-
gle, previously computed initial set 𝑆𝑖 but are still contained
in the union of several of those sets 𝑆′ ⊆

⋃
𝑆𝑖 . We extend

fixpoint detection to handle this case by iteratively checking
for all 𝑆𝑖 whether 𝑆′ = 𝑆′/𝑆𝑖 eventually becomes empty. Note
that this check requires computing set-difference, which is
hard for arbitrary state sets, e.g., convex polytopes, as the
potentially nonconvex result needs to be convexified after-
ward. To overcome this, we fixed our method to operate on
boxes, which allows more efficient implementation of the
set-difference operation.

Zeno-behavior. The fixpoint detection might not ter-
minate due to Zeno-behavior, i.e., infinitely many discrete
jumps in zero time.

Example
An example of such behavior can often be observed in
switched systems, where the state space is partitioned into
cells where the dynamics in each cell are described by a sin-
gle location. For instance, having two neighboring locations
ℓ, ℓ′ connected by jumps with guards 𝑥 ≥ 5 and 𝑥 ≤ 5, for
𝑥 = 5 the system can switch infinitely often between those
locations without making any progress.

To overcome this problem, we have added detection for
those Zeno-cycles that do not allow progress into our analysis
method such that these cycles get executed only once and thus
can be declared a fixpoint. In contrast to the aforementioned
approach to finding fixpoints, which operates on the com-
puted state sets, this method analyzes cycles symbolically
and does not cause overapproximation errors. Intuitively, for
a path 𝜋 leading to a reachable location ℓ, we iteratively com-
pute sets of states that would possibly allow Zeno behavior:
initially, we consider the set of states satisfying the guard
condition of the incoming transition to ℓ. Going back in the
considered path, we alternatingly add constraints for invari-
ant conditions and further incoming transitions along the
locations and transition on path 𝜋 while also adding transfor-
mations according to the reset functions on the transitions.
This way, we can encode a symbolic expression representing
the set of states that enables Zeno-behavior. Checking con-
tainment of the actual state sets and the computed symbolic
set allows finding Zeno-cycles of length up to the length of
𝜋.

Parallel composition. Computation of 𝑆r is performed
on the product of the plant-automaton, the specification-
automaton, and the baseline controller automaton. To im-
prove scalability, we feature an on-the-fly parallel composi-
tion that unrolls the product automaton during analysis as
required. This improves execution speed and reduces the
memory footprint.

Springer

B. Maderbacher et al.

Algorithm 2 Adapting the recoverable region
1: procedure Extend(𝑆r, 𝑆𝐴𝐶)
2: 𝑆0← bloat(𝑆𝐴𝐶)
3: for 𝑛 ∈ [1, itermax] do
4: 𝑆𝑛 = reachH×H𝐵𝐶=𝛿 (𝑆𝑛−1)

5: if 𝑆𝑛 ∩ 𝑆bad ≠ ∅ then
6: return (⊥, 𝑆r)

7: else if 𝑆𝑛 ⊆ 𝑆r ∪ (
⋃
𝑖∈[1,𝑛−1] 𝑆𝑖) then

8: return
(
�, 𝑆r ∪ (

⋃
𝑖∈[1,𝑛−1] 𝑆𝑖))

)

9: end if
10: end for
11: return (⊥, 𝑆r) ⊲ Tread as unsafe if safety cannot be established in itermax time steps.
12: end procedure

5 Extending the recoverable region online

In Sect. 4 we have indicated how the initial recoverable region
𝑆r for a given baseline controller (BC) can be determined
using reachability analysis. This restricts the advanced con-
troller (AC)’s operation to a small part of the state space,
even though the BC could ensure safety for a larger re-
gion. To overcome this, we extend the known recoverable
region for the BC based on additional system observa-
tions.

As described in Sect. 4, in every control cycle, after hav-
ing computed the next controller outputs, a simulation of
the plant using the controller outputs from the AC for the
next cycle is performed (see also Line 5 in Algorithm 1).
This simulation may result in a set of states 𝑆AC for which
no safety results are available. In this case, the set of states
𝑆AC can be used as an input to determine whether it can
be declared safe for the baseline controller, similarly to
the static analysis employed ahead of time. The procedure
Extend (𝑆r, 𝑆AC) (Algorithm 2) performs a reachability
analysis from 𝑆AC to determine whether 𝑆AC is safe for un-
bounded time when using the BC. In this case, it returns
the new recoverable region together with a Boolean flag �.
Otherwise, the procedure returns ⊥ and the old recoverable
region.

To produce results that generalize beyond a single state
we bloat the state set by extending it in all dimensions to a
configurable size. Unbounded time safety is checked for this
enlarged set. This can be established either by proving that
all trajectories reach 𝑆r or by finding a new fixpoint. It is
sufficient to check if the sets 𝑆𝑖 are safe, as the construction
of the specification automaton ensures that a bad state can
never be left and if there is a bad state between 𝑆𝑖 and 𝑆𝑖+1 a
bad state will also be in 𝑆𝑖+1.

Extending 𝑆r using Extend preserves recoverability
(Definition 2).

Proposition 1 (Extension preserves recoverable region in-
variance)
Let 𝑆′r be the set computed by Extend (𝑆r, 𝑠) then

(𝑆r ∩ 𝑆bad = ∅ ∧ 𝑟𝑒𝑎𝑐ℎ
H×H𝐵𝐶
∞ (𝑆r) ⊆ 𝑆r)

⇒ (𝑆′r ∩ 𝑆bad = ∅ ∧ 𝑟𝑒𝑎𝑐ℎ
H×H𝐵𝐶
∞ (𝑆′r) ⊆ 𝑆′r).

The intersection of the states added by Extend and of
𝑆r with 𝑆bad is empty. Thus, this also holds for 𝑆′r . There
are two cases to show that the evolution of all states remains
in 𝑆′r: First, the added states originate from a flowpipe that
fully leads into 𝑆r . In this case, all added states will have a
trajectory into 𝑆r when using the baseline controller, where
they will stay by the assumption for 𝑆r . In the second case the
new recoverable region that is added that has its own fixpoint,
i.e., is safe for unbounded time. The used reachability method
guarantees that every trajectory stays in this region which
is a subset of 𝑆′r . Thus 𝑆′r satisfies both properties from
Definition 2, i.e., a system controlled by Algorithm 1 using
𝑆′r from Algorithm 2 satisfies 𝜑, if its initial state is in 𝑆r .

The evolutionary nature of this approach allows to pro-
vide proofs on demand even during running time, provided
the system environment is equipped with enough computa-
tional power to perform reachability analysis. Since this is
in general not the case, the approach can be adapted to col-
lect potential new points 𝜎 and verify those offline or run
verification asynchronously (online). In the later cases, since
safety cannot directly be shown for 𝜎, the system switches
to using the baseline controller and results obtained offline
or asynchronously can be integrated into future iterations.

6 Repair of the baseline controller

The BC can be undefined or show unsafe behavior in some
states. In this case the verification will fail and the plant
is not permitted to visit this state. In many cases, however,

Springer

Adaptive simplex architecture

Algorithm 3 Repair of the BC
1: procedure Repair(𝐵𝐶, 𝑆r, 𝑆𝐴𝐶)
2: 𝑆𝑛𝑒𝑤← bloat(𝑆𝐴𝐶)
3: for all 𝑝← GeneratePatchCandidates (𝑆𝑛𝑒𝑤) do
4: 𝑆0, . . . , 𝑆𝑚← ReachPatch (𝑝)
5: if ∀𝑖 : 𝑆𝑖 ∩ 𝑆𝑏𝑎𝑑 = ∅ and 𝑆𝑚 ⊆ 𝑆𝑟 ∪ (

⋃
𝑖∈[0,𝑚−1] 𝑆𝑖) then

6: 𝐵𝐶′ ← ApplyPatch (𝐵𝐶, 𝑝)
7: return

(
�, 𝐵𝐶′, 𝑆r ∪ (

⋃
𝑖∈[0,𝑚−1] 𝑆𝑖)

)

8: end if
9: end for

10: return (⊥, 𝐵𝐶, 𝑆r)

11: end procedure

there is a behavior for the BC that could be used instead that
can guarantee safety. We propose to automatically synthesize
patches for an existing BC to adapt it to work correctly for
new states. This will allow the 𝑆r region to be extended to
these states and thus improve the performance of the AC.

A patch 𝑝 = (𝑆𝑠𝑡𝑎𝑟𝑡 , 𝑡) consists of a set of start states 𝑆𝑠𝑡𝑎𝑟𝑡
and a finite sequence of actions 𝑡 ∈𝑈𝑚 where 𝑚 is the length
of the patch sequence. For a patch to be correct, it needs
to end in the known recoverable region 𝑆r . Repairing a BC
for a state requires three parts: searching patch sequences,
verifying a patch, and integrating the patch in the existing
controller. We will start by looking at the verification of a
patch candidate.

6.1 Verifying patch candidates

To verify a patch, we translate it into a hybrid automa-
ton and use reachability analysis. In Algorithm 3 this is
done by ReachPatch. It creates an automaton that con-
sist of a chain of locations where each transition corre-
sponds to one action of the patch sequence which is ex-
ecuted when changing locations. The automaton H𝑇 gen-
erated for 𝑝 has 𝑚 + 1 locations and 𝑚 edges. The lo-
cations are Loc = {ℓ1, . . . , ℓ𝑚+1}, the edges are Edge =
{(ℓ𝑖 , {𝑡𝑖𝑐𝑘} ∪ 𝑡𝑖 , ℓ𝑖+1) | 𝑖 ∈ 1, . . . , 𝑚} and the jumps are
Jump((ℓ𝑖 , {𝑡𝑖𝑐𝑘} ∪ 𝑡𝑖 , ℓ𝑖+1)) = {(𝑠, 𝑡𝑖 (𝑠)) | 𝑠 ∈ 𝑆}. The invari-
ant of every location is true and there are no variables or flow.
Let 𝑆𝑖 = 𝑝𝑟𝑜 𝑗H(𝑟𝑒𝑎𝑐ℎ

H×H𝑇

=𝑖 ·𝛿 (𝑆𝑠𝑡𝑎𝑟𝑡)) be the set of states
the patch 𝑝 can reach after 𝑖 cycles, where 𝑝𝑟𝑜 𝑗H projects
a set states from H ×H𝑇 to its H component. Given the
state sets found by ReachPatch, it can be determined if
a patch is correct. None of the reached states may intersect
with 𝑆𝑏𝑎𝑑 . Additionally, the patch must end in some BC state
𝑠𝑡𝑎𝑟𝑔𝑒𝑡 ∈ 𝑆𝐵𝐶 such that 𝑆𝑖 × {𝑠𝑡𝑎𝑟𝑔𝑒𝑡 } ⊆ 𝑆r for some 𝑖, or it
has to include its own fixpoint, i.e., there are 𝑖 and 𝑗 such
that 𝑆𝑖 ⊆ 𝑆 𝑗 . A patch sequence ends in the known recover-
able region, but it might end in a BC state that is different
from its starting state.

6.2 Patch generation

The synthesis of patches relies on a way to generate patch
candidates, i.e., a finite sequence of actions for a given set of
start states. Different implementations can be used for this
step.

To effectively enumerate candidates, the possible actions
have to be discretized. This is only a minor limitation as
most BC use discrete actions anyway and for others an ap-
propriate discretization can be chosen to get patches for most
correctable states.

One way is to enumerate all sequences up to a given
length. This can be improved by providing domain-specific
templates that limit the search space to sensible action se-
quences.

Another option is to use the actions suggested by the
advanced controller. The plant is simulated using the AC’s
action for one cycle, one state is chosen out of the resulting
states and the AC is queried again. Repeating this for a fixed
number of control cycles results in a sequence of actions
that is close to the behavior the AC would show without
corrective actions. The idea behind this is that if the AC is
safe and reaches the recoverable region we can copy this
behavior to the BC.

6.3 Applying a patch

Once a patch has been found and verified the BC needs to
be updated to the new behavior. This should strictly increase
the known recoverable region, i.e., no prior proof should be
invalidated. We also want to intercept longer patch sequences
on the way. If a state that is part of a patch sequence is reached
the verification result should be usable, even if the state is
not part of the start state set of the patch.

Although the verification of the patch is done using
one location per cycle, the patch can be integrated into
the BC without adding new locations. For every step in
the patch sequence, a new jump is added to the automa-
ton. Let ℓ𝑠𝑡𝑎𝑟𝑡 be the BC location in the start set 𝑆𝑠𝑡𝑎𝑟𝑡

Springer

B. Maderbacher et al.

of the patch. For simplicity, we assume that all states in
𝑆𝑠𝑡𝑎𝑟𝑡 are from the same location, if this is not the case
the process needs to be repeated for every location. The
edges get extended by adding a self-loop in the start location
Edge′ = Edge∪ {(ℓ𝑠𝑡𝑎𝑟𝑡 , {𝑡𝑖𝑐𝑘}, ℓ𝑠𝑡𝑎𝑟𝑡)}. First, the guards of
all existing transitions are restricted to exclude the newly
added jumps Jump′ ((ℓ𝑠𝑡𝑎𝑟𝑡 , {𝑡𝑖𝑐𝑘}, ℓ)) = {(𝑠, 𝑠′) | (𝑠, 𝑠′) ∈
Jump((ℓ𝑠𝑡𝑎𝑟𝑡 , {𝑡𝑖𝑐𝑘}, ℓ)) ∧ 𝑠 ∉ 𝑆𝑛 ∧ 𝑛 ∈ 1, . . . , 𝑚}. Next, the
jump relation is extended to Jump′ ((ℓ𝑠𝑡𝑎𝑟𝑡 , {𝑡𝑖𝑐𝑘}, ℓ𝑠𝑡𝑎𝑟𝑡)) =
{(𝑠, 𝑡𝑛 (𝑠)) | 𝑠 ∈ 𝑆𝑛 ∧ 𝑛 ∈ 1, . . . , (𝑚 − 1)}. The last jump
might lead to a different BC location. Jump′ ((ℓ𝑠𝑡𝑎𝑟𝑡 , {𝑡𝑖𝑐𝑘},
ℓ𝑡𝑎𝑟𝑔𝑒𝑡)) = {(𝑠,_), (𝑡𝑚(𝑠), 𝑠𝑡𝑎𝑟𝑔𝑒𝑡)) | 𝑠 ∈ 𝑆𝑚}. The last jump
of the patch sequence moves from ℓ𝑠𝑡𝑎𝑟𝑡 to the target location
ℓ𝑡𝑎𝑟𝑔𝑒𝑡 that was reached in 𝑆r and also set the internal state
of the BC to match the state 𝑠𝑡𝑎𝑟𝑔𝑒𝑡 .

Proposition 2 (Repair preserves verified states and recov-
erable region invariance)
Let 𝐵𝐶′ and 𝑆′r be the controller and recoverable region
computed by Repair (𝐵𝐶, 𝑆r, 𝑠) then 𝑆r ⊆ 𝑆′r and

(𝑆r ∩ 𝑆bad = ∅ ∧ 𝑟𝑒𝑎𝑐ℎ
H×H𝐵𝐶
∞ (𝑆r) ⊆ 𝑆r)

⇒ (𝑆′r ∩ 𝑆bad = ∅ ∧ 𝑟𝑒𝑎𝑐ℎ
H×H𝐵𝐶′

∞ (𝑆′r) ⊆ 𝑆′r).

The Repair function modifies 𝑆r by adding additional
states ensuring 𝑆r ⊆ 𝑆′r . Verifying the patch candidate using
reachability analysis guarantees that none of the added states
are in 𝑆bad , therefore 𝑆′r ∩ 𝑆bad = ∅ holds. For any state in 𝑆′r ,
𝐵𝐶′ defines an action as either the action in 𝐵𝐶 or the action
defined in the patch 𝑝. The proof for recoverable region
invariance is via induction on control cycles. Every state in
𝑆r reaches a state in 𝑆r at the end of the control cycle which
is also in 𝑆′r because 𝑆r ⊆ 𝑆′r . Every state added by the patch
𝑝 reaches a state that is either in another set added by 𝑝 or
in 𝑆r , which are all part of 𝑆′r . Thus by induction, any state
in 𝑆′r remains in 𝑆′r for infinite time when following 𝐵𝐶′.

7 Experimental evaluation

We implemented a prototype of our method in C++ using the
hybrid automata reachability analysis tool HyPro [25] to
perform the reachability queries. Two case studies were used
to evaluate our method, a coupled water tank system and an
autonomous racing car.

7.1 Watertanks

As a first evaluation example, we use a well-known textbook
example of a coupled water tank system [5], as illustrated in
Fig. 9. Using this example, we will outline how we construct
the Simplex architecture from a given safety specification in

STL and a given baseline controller in the form of a hybrid
automaton. In this case study we focus on the extension or
training part of our methodology and use a fixed BC.

Plant P. The plant consists of two tanks that are connected
by a pipe that is located at a height of 0.2 me from the floor.
The left tank has an inflow that can be adjusted by a controller.
The right tank has an outflow pipe that constantly drains
water. The plant with the two connected water tanks can be
modeled by the hybrid automaton H𝑃 given in Fig. 8. The
automaton has two state variables 𝑥1 and 𝑥2, corresponding
to the level of water in the left and right tank, respectively, and
one control dimension 𝑢 ∈ [0,0.0005] influencing how much
water is added to the left tank. The four locations reflect the
two modes with different dynamics, the connected dynamic
is applied to three locations, as otherwise the location would
have a nonconvex invariant which is not supported by our
tool. If the water in any of the tanks is higher than 0.2 m,
water can flow through the connecting pipe and the levels in
the two tanks equalize. Otherwise, the tanks are isolated and
evolve only according to their dynamics.

Safety specification 𝜑. The safety specification 𝜑 = 𝜑1 ∧

𝜑2 requires that the following two properties 𝜑1 and 𝜑2 are
satisfied:

1. The water tanks may not be filled beyond their maximum
filling height of 0.8 m. This property can be expressed in
STL via 𝜑1 =G (𝑥1 ≤ 0.8∧ 𝑥2 ≤ 0.8).

2. If the water level of the right tanks falls below 0.12 m,
it has to be filled up to at least 0.3 m within the
next 30 time units. This is written in STL as 𝜑2 =
G
(
𝑥2 ≤ 0.12→ F[0,30] (𝑥2 ≥ 0.3)

)
.

A safety specification 𝜑 in STL can be transformed into a
hybrid automatonH𝜑 as described in Sect. 2.2.

Baseline controller. We use the baseline controller that
is given by the hybrid automaton H𝐵𝐶 in Fig. 8. Here H𝐵𝐶
consists of two locations open and closed. At the end of a
cycle (𝑡 = 1), the controller observes 𝑥1 and 𝑥2 to determine
whether to stay in its current location or switch to the other.
The baseline controller H𝐵𝐶 remains in open as long as
𝑥1 ≤ 0.7 and in closed as long as 𝑥2 ≥ 0.35. After every
transition, the value of 𝑢 is set to either 0 or 0.0002 depending
on the target location.

Static verification for a conservative Simplex architec-
ture. In the first step, we verify the baseline controllerH𝐵𝐶
acting within the plant H𝑃 with respect to the specification
H𝜑 for the initial states of the plant 𝑥1 ∈ [0.35,0.45] and
𝑥2 ∈ [0.25,0.35]. To compute the initial recoverable region,
we compute the fixpoint of reachable states while checking
that no bad state defined byH𝜑 is contained in the reachable
states. We verified the baseline controller using the reach-
ability analysis tool HyPro [25]. Figure 10(a) illustrates
the initial recoverable region. The blue squares depict the
initially known recoverable region. The orange trajectory

Springer

Adaptive simplex architecture

Fig. 8 Hybrid automaton model of the water tank plant H𝑃 and the automaton H𝐵𝐶 implementing the baseline controller

Fig. 9 Illustration of the water tank system

shows the behavior of the plant when controlled by the base-
line controller, for a single point in the set of initial states. The
red squares show the nodes of the hyperoctree data structure,
used to allow efficient lookups in the recoverable region.

Adapting to the advanced controller via proof on de-
mand. In the second step, we run the Simplex architecture for
500 control cycles and evolve the recoverable region during
runtime. Figure 10(b)–(d) shows the growth of the recover-
able region over time for different advanced controllers. In
each figure, the green trajectory shows the behavior of the
plant when being controlled by the corresponding advanced
controller. The plots only show the known recoverable region
at the end of each control cycle. Points where the trajectory
exits the blue region are between control cycles and have
been verified safe, but they are not stored for efficiency rea-
sons. In these experiments, we check the safety of states
outside of the recoverable region on the fly and immedi-
ately add them to the recoverable region if they are safe.
The switching logic only switches to the baseline controller
if the advanced controller visits unsafe states that cannot
be added to the recoverable region. The first advanced con-
troller tries to minimize the amount of water in the tanks

and sets 𝑢 to 0 constantly. Figure 10(b) shows this result in
an extension of 𝑆r downwards, with the BC periodically in-
tervening to ensure the bounded liveness specification. The
second advanced controller (Fig. 10(c)) sets 𝑢 to 0.0004 con-
stantly to maximize the amount of water. This results in a
few extensions for high values in the first tank and ultimately
rapid switching between AC and BC with nearly full tanks.
The third advanced controller (Fig. 10(d)) is used to show
how our method works with chaotic AC actions. It picks
𝑢 ∈ [0.0001,0.0005] equally distributed with a 10% proba-
bility, and sets 𝑢 = 0 otherwise.

Results and observations. The results of our experiments
allow for several interesting observations. Throughout the
experiments, we recorded the set of safe regions along with
trajectories (see Fig. 10), as well as data on the frequency of
BC-invocations (in case the AC cannot guarantee safety) and
the frequency of proofs on demand. Those data are summa-
rized in Fig. 11.

After an initial analysis to determine a safe region based
on the selected random initial state, the number of required
proofs on demand over time generally decreases.

Our method shows a periodic behavior when using the
constant zero controller. The water level 𝑥2 drops below
0.12, but the AC does not attempt to raise it again. The BC
intervenes at the last moment before the deadline can no
longer be achieved since the switching logic (SL) prioritizes
the AC as long as possible while maintaining satisfaction of
the specification. This long period of the combined AC and
BC results in slower convergence and an oscillation in the
number of extensions depending on the state of the plant.

The constant controller which outputs 0.0004 quickly con-
verges to zero proofs per 20 cycles. The number of BC invo-
cations stabilizes at high values as the BC has to constantly

Springer

B. Maderbacher et al.

Fig. 10 Water tank case study: visualization of the initial recoverable region and adapted recoverable regions of the different advanced controllers
for variables 𝑥1, 𝑥2 (Color figure online)

close the inflow valve to prevent an overflow. Even for the ran-
dom controller, a saturation of the recoverable region could
be observed; this can be attributed to the bounded random-
ness of the controller.

As expected, for both constant controllers, the BC is in-
voked periodically, since its output will only lead to unsafe
behavior in a certain region of the state space, which is visited
periodically due to the periodic nature of the system.

7.2 Autonomous racing car

We evaluate our approach using a controller for an au-
tonomous racing car. This case study uses both verification

extensions with a more complex BC and repair with a very
simple initial BC.

The car is modeled as a point mass, observables are the
position (𝑥, 𝑦), the heading (𝜃), and its velocity (𝑣). The car
can be modeled by a hybrid automaton with a single loca-
tion and nonlinear dynamics. For simplification, we allow
instantaneous changes of the velocity and do not model ac-
celeration. To obtain a linear hybrid system, we discretize 𝜃

and replace it with a representative such that the transcen-
dental terms become constants (see Fig. 12a); the number of
buckets for this discretization is parameterized and induces
multiple locations (one for each bucket for each discretized
variable, see Fig. 12b). The experiments are done with a
discretization of 36 𝜃-buckets.

Springer

Adaptive simplex architecture

Fig. 11 Successful extensions of 𝑆r per 20 cycles for the water tanks
system. The plot shows the average from 200 random initial states

Fig. 12 Modeling approach for the discretized car for 8 buckets

The car is put on different circular racetracks where the
safety specification is naturally given by the track bound-
aries. Each track is represented as three collections of
convex polygonal shapes 𝑃in, 𝑃out, 𝑃curbs ⊆ R

2 which de-
fine the inner and outer boundary of the track (see yel-
low area in Fig. 13a), as well as the curbs on the border
of the track. Whenever the car enters the curbs, it must
exit them within 2 time units. The curbs 𝑃curbs ⊂ 𝑃in are
defined as the left and right 10% of the road. Formally,
the specification is 𝜑 =G ((𝑥, 𝑦) ∈ 𝑃in) ∧G ((𝑥, 𝑦) ∉ 𝑃out) ∧

G
(
((𝑥, 𝑦) ∈ 𝑃curbs) → F[0,2] ((𝑥, 𝑦) ∉ 𝑃curbs)

)
.

Baseline controller. To model the baseline controller,
each track is subdivided into an ordered sequence of straight
segments. The actions of the baseline controller drive the
car to the center line of the current segment, turn it parallel
to the road, and stop. To model this behavior, each segment
is subdivided into several zones with different dynamics,
depending on the relative position of the zone to the center
of the segment.

Advanced controller. The advanced controller imple-
ments a pure pursuit controller [3] that is equipped with a set
of waypoints along the track. Waypoints are either given by
points in the middle of the track between two segments (AC
1) or obtained by a race line optimizer tool [9] (AC 2).

Results and observations. For evaluation, we consider
linearizations of two F1 racetracks: Spielberg in Austria and
Silverstone in the UK.

The baseline controller is relatively conservative, it pri-
oritizes safety over progress as it steers the car toward the
center line of the track and then stops. This behavior en-
ables fast computation of unbounded safety results, but as a
drawback does not allow for large extensions of 𝑆r during a
single training run. To show the influence of proofs on de-
mand, we synthesized 𝑆r for the center area of a whole track
a priori.

Depending on the selection of waypoints for the advanced
controller, naturally, the usefulness of the initial 𝑆r varies.
AC 1 with waypoints in the middle of the road tends to induce
fewer extensions of 𝑆r than the set of waypoints generated by
the raceline optimizer (AC 2), which selects points allowing
a path with less curvature that can get very close to the edge
of the road.

Figure 13 shows how online verification is performed for
a small segment of the Spielberg race track. Figure 13a visu-
alizes the optimized trajectory, 𝑆r , as well as its extensions.
We recorded the invocations of adaptive proofs over time
and the distance to the boundary in Fig. 13b. The car starts at
the center of the road and thus far away from the boundary.
During the first few control cycles the car remains in the
verified region (the dark blue area in Fig. 13a), but reduces
its distance to the boundary. As can be seen in Fig. 13b, the
early cycles use the advanced controller without additional
verification. Once the car exits the preverified region train-
ing is performed to keep using the advanced controller. The
extensions of the verified region are shown in light blue in
Fig. 13a and the cycles where an extension is performed are
marked as dark green in Fig. 13b. When the car gets to close
to the boundary, the dynamic verification fails and the base-
line controller has to be used to steer the car away from the
boundary (orange in Fig. 13b). The remainder of the turn is
also shown in Fig. 13.

Figure 14 shows the results for ten rounds on the Spiel-
berg and Silverstone race tracks. Controllers based on two
sets of waypoints are used, where AC 1 corresponds to the

Springer

B. Maderbacher et al.

Fig. 13 Execution of the race car with online verification (Color figure online)

Table 1 Bloatings used for proofs on demand affect the success of this
approach (15000 cycles/ 7.5 laps, no initial recoverable region, only
verification extension)

bloating BC invocations extensions

0.25 123 2945
0.5 142 1329
0.75 189 1133
1.0 268 803

standard waypoints and AC 2 corresponds to the optimized
waypoints. The results for the repair method (AC 1 repair) are
discussed in the next section. We can observe, that initially
many proofs are required to saturate 𝑆r in the first lap. Later
laps require fewer adaptations, and the number of proofs
stabilizes at around 40 proofs per lap. This results from the
controller not ending up perfectly in its starting position from
the lap before so that evolving 𝑆r is necessary to use the ad-
vanced controller as often as possible. In the long run, the
number of proofs per lap is expected to reach zero. The ini-
tial position used to generate proofs on demand is bloated to
allow larger extensions of 𝑆r at a time. Our experiments with
different bloating parameters (Table 1) show two opposing
effects with increasing bloating: (1) fewer requests for exten-
sions due to the larger extension, and (2) more invocations
of the baseline controller as fewer extensions are successful
due to the attempt of more aggressive expansion. This obser-
vation is in line with our expectations, as attempts for more
aggressive extension of 𝑆r due to larger bloating may lead,
if successful, to fewer requests for further extensions. Other-
wise, if those attempts are not successful, the consequence is
more invocations of the baseline controller. Selecting a very

large bloating parameter can result in a situation where the
stop action is actually executed because the suggested action
can not be proven safe. A user can choose an appropriate
trade-off between verification time and how conservative the
safety check is.

On a standard desktop computer, the computation of the
initial recoverable region takes about 20 minutes, performing
a proof on demand to extend the recoverable region takes
less than a second, and testing whether to switch without
extending takes about 10 milliseconds.

7.2.1 Repair

To evaluate our BC repair method we adapted the racetrack
examples. Instead of using a complete BC, only some clearly
safe situations are defined, and the remaining BC and re-
coverable region are synthesized. The initial BC consists of
the states within 1.0 units of the center line with a heading
that matches the orientation of the road. All of these states
are associated with the stop action. This controller trivially
satisfies the requirement that the car remains inside the track
for infinite time, for all states where it is defined. Starting
with the simplex architecture obtained from this BC we use
adaptive repair to improve the BC and extend the recoverable
region to allow for better performance of the AC.

Patch templates. We use patch templates and enumera-
tion to generate patch candidates for states that are not han-
dled correctly by the BC. The template is general enough to
apply to most driving scenarios while eliminating nonsensi-
cal driving patterns such as rapidly switching between two
headings.

Each patch candidate consists of the following sequence:
turn to heading ℎ1 and continue for 𝑡1 cycles then turn to

Springer

Adaptive simplex architecture

Fig. 14 Successful extensions of 𝑆r (top: blue) per lap for the Spielberg
and Silverstone race tracks. Starting from a moderately large known re-
coverable region for two sets of waypoints (standard = AC 1, optimized

= AC 2) using verification training and using repair for the standard
waypoints (Color figure online)

heading ℎ2 and continue for 𝑡2 cycles. The car can only turn
one theta bucket in each control cycle. When changing the
heading, the car turns one step towards the target heading
each cycle and if there is time remaining it continues to
follow the target heading. The possible parameters for the
template parameters are every third heading for ℎ1 and ℎ2,
the values 1, 6, 11, 16 for 𝑡1, and 𝑡2 = 5. This template can
generate most U- and S-shaped turns.

Results and observations. The results of applying our
repair methodology to the two race tracks can be seen in
Fig. 14. We can observe similar results as with verification
extensions. The first few laps need a large number of re-
pair extensions. However, once the recoverable region has
adapted to the AC, the number of repairs is greatly reduced.
Compared to a given BC, this decreases slower and requires

more adaptations. The number of BC invocations decreases
slightly in the later laps as fewer interventions happen due
to an insufficiently large recoverable region. As can be ex-
pected, repairing a BC in this way takes significantly more
time than verifying an existing BC. A simulation with online
repair of 10 laps took 4 h for the Spielberg track and 18 h for
the Silverstone track. The repair methodology should thus
be used in combination with a simulator which is used to
compute an adapted BC and recoverable region for a given
AC, before deploying the resulting simplex architecture on
the real system.

Using automatic repair of the BC allows expending more
computation time to obtain comparable AC performance
while spending less time designing a baseline controller.

Springer

B. Maderbacher et al.

8 Conclusion

We have presented a method to incorporate proofs on de-
mand in a fully automated Simplex architecture toolchain to
ensure controllers obey a given temporal specification. Our
method operates incrementally, fitting the recoverable region
to the behavior of the running advanced controller, by using
verification extensions and automatic repair. Since our Sim-
plex architecture adapts to the advanced controller, it allows
performance increases by avoiding unnecessary switches to
the baseline controller and invokes fewer verification queries
at later stages of the execution phase.

One direction for future work is to use the robustness val-
ues of the STL specification to fine-tune the switching mech-
anism from the baseline controller to the advanced controller.
Furthermore, we want to combine our Simplex architecture
with reinforcement learning such that the architecture guides
the learning phase via reward shaping and, at the same time,
ensures correctness during training.

Acknowledgements This project has received funding from the Eu-
ropean Union’s Horizon 2020 research and innovation program under
grant agreement № 956123 – FOCETA, the Austrian research pro-
motion agency FFG projects ADVANCED (№ 874044) and FATE
(№ 894789), the TAIGER WWTF project ICT22-023, the Graz Uni-
versity of Technology LEAD Project Dependable Internet of Things
in Adverse Environments, and the State Government of Styria, Austria
– Department Zukunftsfonds Steiermark. This research was funded in
whole, or in part, by the Austrian Science Fund (FWF) 10.55776/ZK-
35. For the purpose of open access, the author has applied a CC BY
public copyright licence to any Author Accepted Manuscript version
arising from this submission.

Funding Open access funding provided by Graz University of Tech-
nology.

Open Access This article is licensed under a Creative Commons At-
tribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S.,
Topcu, U.: Safe reinforcement learning via shielding. In: AAAI,
pp. 2669–2678. AAAI Press, Menlo Park (2018)

2. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid au-
tomata: an algorithmic approach to the specification and verifica-
tion of hybrid systems. In: Hybrid Systems, pp. 209–229. Springer,
Berlin (1992). https://doi.org/10.1007/3-540-57318-6_30

3. Amidi, O., Thorpe, C.E.: Integrated mobile robot control. In: Mo-
bile Robots V, vol. 1388, pp. 504–523. SPIE, Bellingham (1991).
https://doi.org/10.1117/12.25494

4. Bak, S., Manamcheri, K., Mitra, S., Caccamo, M.: Sandbox-
ing controllers for cyber-physical systems. In: ICCPS, pp. 3–12.
IEEE Comput. Soc., Los Alamitos (2011). https://doi.org/10.1109/
ICCPS.2011.25

5. Belta, C., Yordanov, B., Aydin Gol, E.: Formal Methods for
Discrete-Time Dynamical Systems. Springer, Berlin (2017).
https://doi.org/10.1007/978-3-319-50763-7

6. Chutinan, A., Krogh, B.H.: Computational techniques for hybrid
system verification. IEEE Trans. Autom. Control 48(1), 64–75
(2003). https://doi.org/10.1109/TAC.2002.806655

7. Crenshaw, T.L., Gunter, E.L., Robinson, C.L., Sha, L., Kumar,
P.R.: The simplex reference model: limiting fault-propagation due
to unreliable components in cyber-physical system architectures.
In: RTSS, pp. 400–412. IEEE Comput. Soc., Los Alamitos (2007).
https://doi.org/10.1109/RTSS.2007.34

8. Frehse, G., Kekatos, N., Nickovic, D., Oehlerking, J., Schuler,
S., Walsch, A., Woehrle, M.: A toolchain for verifying safety
properties of hybrid automata via pattern templates. In: ACC,
pp. 2384–2391. IEEE (2018). https://doi.org/10.23919/ACC.2018.
8431324

9. Heilmeier, A., Wischnewski, A., Hermansdorfer, L., Betz, J.,
Lienkamp, M., Lohmann, B.: Minimum curvature trajectory plan-
ning and control for an autonomous race car. Veh. Syst. Dyn.
58(10), 1497–1527 (2020). https://doi.org/10.1080/00423114.
2019.1631455

10. Henzinger, T.A.: The theory of hybrid automata. In: Verification of
Digital and Hybrid Systems, pp. 265–292. Springer, Berlin (2000).
https://doi.org/10.1007/978-3-642-59615-5_13

11. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decid-
able about hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124
(1998). https://doi.org/10.1006/jcss.1998.1581

12. Ionescu, T.B.: Adaptive simplex architecture for safe, real-time
robot path planning. Sensors 21(8), 2589 (2021). https://doi.org/
10.3390/s21082589

13. Johnson, T.T., Bak, S., Caccamo, M., Sha, L.: Real-time reachabil-
ity for verified simplex design. ACM Trans. Embed. Comput. Syst.
15(2), 26:1–26:27 (2016). https://doi.org/10.1145/2723871

14. Maderbacher, B., Schupp, S., Bartocci, E., Bloem, R., Nickovic, D.,
Könighofer, B.: Provable correct and adaptive simplex architecture
for bounded-liveness properties. In: Model Checking Software –
29th International Symposium, SPIN 2023, Proceedings, Paris,
France, April 26-27, 2023, pp. 141–160 (2023). https://doi.org/10.
1007/978-3-031-32157-3_8

15. Maler, O., Nickovic, D.: Monitoring temporal properties of contin-
uous signals. In: FORMATS/FTRTFT. Lecture Notes in Computer
Science, vol. 3253, pp. 152–166. Springer, Berlin (2004). https://
doi.org/10.1007/978-3-540-30206-3_12

16. Marta, D., Pek, C., Melsión, G.I., Tumova, J., Leite, I.: Human-
feedback shield synthesis for perceived safety in deep reinforce-
ment learning. IEEE Robot. Autom. Lett. 7(1), 406–413 (2022).
https://doi.org/10.1109/LRA.2021.3128237

17. Meagher, D.: Geometric modeling using octree encoding. Comput.
Graph. Image Process. 19(2), 129–147 (1982). https://doi.org/10.
1016/0146-664X(82)90104-6

18. Mehmood, U., Stoller, S.D., Grosu, R., Roy, S., Damare, A.,
Smolka, S.A.: A distributed simplex architecture for multi-
agent systems. In: SETTA. Lecture Notes in Computer Science,
vol. 13071, pp. 239–257. Springer, Berlin (2021). https://doi.org/
10.1007/978-3-030-91265-9_13

19. Mehmood, U., Stoller, S.D., Grosu, R., Smolka, S.A.: Collision-
free 3D flocking using the distributed simplex architecture. In:
Formal Methods in Outer Space. Lecture Notes in Computer Sci-
ence, vol. 13065, pp. 147–156. Springer, Berlin (2021). https://doi.
org/10.1007/978-3-030-87348-6_9

Springer

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1117/12.25494
https://doi.org/10.1109/ICCPS.2011.25
https://doi.org/10.1109/ICCPS.2011.25
https://doi.org/10.1007/978-3-319-50763-7
https://doi.org/10.1109/TAC.2002.806655
https://doi.org/10.1109/RTSS.2007.34
https://doi.org/10.23919/ACC.2018.8431324
https://doi.org/10.23919/ACC.2018.8431324
https://doi.org/10.1080/00423114.2019.1631455
https://doi.org/10.1080/00423114.2019.1631455
https://doi.org/10.1007/978-3-642-59615-5_13
https://doi.org/10.1006/jcss.1998.1581
https://doi.org/10.3390/s21082589
https://doi.org/10.3390/s21082589
https://doi.org/10.1145/2723871
https://doi.org/10.1007/978-3-031-32157-3_8
https://doi.org/10.1007/978-3-031-32157-3_8
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1109/LRA.2021.3128237
https://doi.org/10.1016/0146-664X(82)90104-6
https://doi.org/10.1016/0146-664X(82)90104-6
https://doi.org/10.1007/978-3-030-91265-9_13
https://doi.org/10.1007/978-3-030-91265-9_13
https://doi.org/10.1007/978-3-030-87348-6_9
https://doi.org/10.1007/978-3-030-87348-6_9

Adaptive simplex architecture

20. Phan, D.T., Grosu, R., Jansen, N., Paoletti, N., Smolka, S.A.,
Stoller, S.D.: Neural simplex architecture. In: NFM. Lecture Notes
in Computer Science, vol. 12229, pp. 97–114. Springer, Berlin
(2020). https://doi.org/10.1007/978-3-030-55754-6_6

21. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems
using barrier certificates. In: HSCC. Lecture Notes in Computer
Science, vol. 2993, pp. 477–492. Springer, Berlin (2004). https://
doi.org/10.1007/978-3-540-24743-2_32

22. Romdlony, M.Z., Jayawardhana, B.: Stabilization with guaranteed
safety using control Lyapunov-barrier function. Automatica 66,
39–47 (2016). https://doi.org/10.1016/j.automatica.2015.12.011

23. Schupp, S.: State Set Representations and Their Usage in the
Reachability Analysis of Hybrid Systems. PhD thesis, RWTH
Aachen University, Aachen (2019). https://doi.org/10.18154/
RWTH-2019-08875

24. Schupp, S., Ábrahám, E., Chen, X., Makhlouf, I.B., Frehse, G.,
Sankaranarayanan, S., Kowalewski, S.: Current challenges in the
verification of hybrid systems. In: International Workshop on
Design, Modeling, and Evaluation of Cyber Physical Systems,
pp. 8–24. Springer, Berlin (2015). https://doi.org/10.1007/978-3-
319-25141-7_2

25. Schupp, S., Ábrahám, E., Makhlouf, I.B., Kowalewski, S.: HyPro:
a C++ library of state set representations for hybrid systems reach-
ability analysis. In: NFM. Lecture Notes in Computer Science,
vol. 10227, pp. 288–294 (2017). https://doi.org/10.1007/978-3-
319-57288-8_20

26. Seto, D., Krogh, B., Sha, L., Chutinan, A.: The simplex architecture
for safe online control system upgrades. In: ACC, pp. 3504–3508.
IEEE (1998). https://doi.org/10.1109/ACC.1998.703255

27. Sha, L.: Using simplicity to control complexity. IEEE Softw. 4,
20–28 (2001). https://doi.org/10.1109/MS.2001.936213

28. Shivakumar, S., Torfah, H., Desai, A., Seshia, S.A.: SOTER on
ROS: a run-time assurance framework on the robot operating
system. In: RV. Lecture Notes in Computer Science, vol. 12399,
pp. 184–194. Springer, Berlin (2020). https://doi.org/10.1007/978-
3-030-60508-7_10

29. Simão, T.D., Jansen, N., Spaan, M.T.J.: Alwayssafe: reinforce-
ment learning without safety constraint violations during training.
In: Dignum, F., Lomuscio, A., Endriss, U., Nowé, A. (eds.) AA-
MAS’21: 20th International Conference on Autonomous Agents
and Multiagent Systems, Virtual Event, United Kingdom, May
3–7, 2021, pp. 1226–1235. ACM, New York (2021). https://doi.
org/10.5555/3463952.3464094

30. Yang, J., Islam, M.A., Murthy, A., Smolka, S.A., Stoller, S.D.: A
simplex architecture for hybrid systems using barrier certificates.
In: SAFECOMP. Lecture Notes in Computer Science, vol. 10488,
pp. 117–131. Springer, Berlin (2017). https://doi.org/10.1007/978-
3-319-66266-4_8

Publisher’s Note Springer Nature remains neutral with regard to ju-
risdictional claims in published maps and institutional affiliations.

Springer

https://doi.org/10.1007/978-3-030-55754-6_6
https://doi.org/10.1007/978-3-540-24743-2_32
https://doi.org/10.1007/978-3-540-24743-2_32
https://doi.org/10.1016/j.automatica.2015.12.011
https://doi.org/10.18154/RWTH-2019-08875
https://doi.org/10.18154/RWTH-2019-08875
https://doi.org/10.1007/978-3-319-25141-7_2
https://doi.org/10.1007/978-3-319-25141-7_2
https://doi.org/10.1007/978-3-319-57288-8_20
https://doi.org/10.1007/978-3-319-57288-8_20
https://doi.org/10.1109/ACC.1998.703255
https://doi.org/10.1109/MS.2001.936213
https://doi.org/10.1007/978-3-030-60508-7_10
https://doi.org/10.1007/978-3-030-60508-7_10
https://doi.org/10.5555/3463952.3464094
https://doi.org/10.5555/3463952.3464094
https://doi.org/10.1007/978-3-319-66266-4_8
https://doi.org/10.1007/978-3-319-66266-4_8

	An adaptive, provable correct simplex architecture
	Abstract
	Introduction
	Related work

	Background
	Reachability analysis of hybrid systems
	Temporal specification

	Synthesizing adaptive simplex architectures
	Setting and problem statement
	Plant
	Safety specification
	Baseline controller
	Advanced controller
	Problem statement

	Offline computation of a provable correct simplex architecture
	Online adaptation of the simplex architecture

	Offline synthesis of the simplex architecture
	Computing a recoverable region with fixpoint verification

	Extending the recoverable region online
	Repair of the baseline controller
	Verifying patch candidates
	Patch generation
	Applying a patch

	Experimental evaluation
	Watertanks
	Autonomous racing car
	Repair

	Conclusion
	References

