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Abstract. Modern computing systems have a strong need for security
and require protection against attacks such as control-flow hijacking, in-
formation leakage, or data manipulation. As a solution, academia and
industry propose essential security technologies operating on page gran-
ularity. Through metadata bits located in page table entries (PTEs),
these technologies provide security with high efficiency. While PTE bits
allow for highly efficient implementations, the reliance on spare bits is
not future-proof. Due to the steady increase in memory capacity and the
introduction of new security features, the spare bits are exhausted. Thus,
the implementation of new features is impossible while the security of
existing features is severely limited.
In this work we introduce FatPTE, a novel approach that enhances page
table entries with dedicated metadata regions for security features. Our
design provides up to 192 metadata bits, thus far exceeding the 7 reserved
bits of x86-64 and RISC-V. We perform a case study on academic and
commercial PTE-based control-flow integrity, memory protection, and
confidential computing features. Our findings show that FatPTE easily
accommodates all bits needed by the considered features, thus highlight-
ing the practical relevance of our design. We implement an x86-64 pro-
totype using the gem5 system simulator as well as a RISC-V FPGA pro-
totype using the CORE-V CVA6 processor. We evaluate FatPTE in four
configurations derived from the requirements identified in our case study.
Our evaluation using SPEC CPU 2017 workloads yields a geomean per-
formance overhead of 0.21% to 1.34% for the gem5 simulator and 0.51%
to 1.99% for the FPGA prototype.

1 Introduction

Software vulnerabilities allow attackers to hijack a program’s control flow, dis-
close secret information, corrupt victim data, or even take over the complete sys-
tem. Thus, strong security measures protecting against a range of attack vectors
are necessary. CPU vendors and academic researchers proposed a variety of secu-
rity features mitigating the increasing number of vulnerabilities [33,11,17,19,21].
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A core principle of such security features is memory protection. Memory
Protection Keys (MPK) efficiently isolate in-process memory through page-
granular access restriction [2,15,21]. Confidential computing technologies protect
memory through cryptographic isolation and facilitate secure virtual machines,
page-granular encryption, and the secure execution of mutually untrusted soft-
ware [13,14,2]. Shadow stacks provide control-flow integrity by confining return
addresses to access-protected memory regions [15,37]. Due to the strong need for
efficient page-granular protection, most security features implemented in com-
mercial processors store metadata in spare bits of the system’s page table entries
(PTEs) [33,11,17,19,21]. With the constant increase in system memory capacity
the number of spare bits is steadily decreasing. While repurposing PTE bits has
worked in the past, this approach has ultimately reached its limits in current
CPU generations. Not only does the scarcity of PTE bits prevent the imple-
mentation of additional PTE-based security features, it also severely limits the
security of existing features. The memory protection keys of AMD and Intel, for
example, are constrained to four bits per page, thus only allowing for 16 protec-
tion domains per page. Memory encryption schemes require up to 15 key identi-
fier bits, yet only 7 bits are available in x86-64 and RISC-V systems. Thus, they
repurpose physical address bits in the PTE and reduce the amount of address-
able system memory to a degree that is unsustainable for current-generation
server systems. Upcoming academic and commercial security features are un-
able to use PTE bits and must rely on more inefficient methods of storing the
required metadata. Hence, the adaptation of novel security features using PTE
bits is hindered and existing features are strongly limited.

In this work, we present FatPTE, a design that extends page table entries
such that all required security-critical metadata is co-located with the paging
information without repurposing any PTE bits. By increasing the size of PTEs
to explicitly account for security-critical metadata, we eliminate the limitations
imposed by the increase of system memory capacity and the growing number
of competing schemes. We propose two variants of FatPTE allowing for 64 or
192 metadata bits, which is a vast improvement over the 7 remaining bits in
existing x86-64 and RISC-V processors. We conduct a case study on commer-
cial and academic memory protection and confidential computing security fea-
tures [33,11,17,19,21]. Not only does FatPTE allow the implementation of all
considered page-granular security schemes without repurposing PTE bits, it also
increases the security of certain schemes, e.g., by increasing the number of avail-
able protection domains or the amount of encryption keys. Based on the case
study, we identify parameterizations that allow the efficient implementation of
existing security features using FatPTE. We use the gem5 computer architec-
ture simulator system [4] to implement an out-of-order prototype of FatPTE
for x86-64. Moreover, we implement an in-order FPGA prototype by integrat-
ing FatPTE into the CORE-V CVA6 application-class RISC-V processor. Our
prototypes allows us to perform a performance evaluation for the previously
identified configurations using SPEC CPU 2017.
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Our evaluation yields a maximum geomean performance overhead of 1.34%
for x86-64 and 1.99% for RISC-V, showcasing the feasibility of our approach.
We find that FatPTE allows to implement all the security schemes discussed in
our case study with minimal performance and memory overhead.
Contributions. We make the following key contributions:
– We present FatPTE, a lightweight hardware extension that enhances PTEs

with metadata regions, providing up to 192 bits for security features.
– We perform an extensive case study demonstrating that FatPTE enables the

integration of all discussed countermeasures while increasing the security of
most of them.

– We provide an x86-64 prototype based on the gem5 simulator and a RISC-V
FPGA implementation of FatPTE using the CORE-V CVA6 processor.

– We evaluate FatPTE, showcasing a maximum geomean overhead of 1.34%
and 1.99% for x86-64 and RISC-V, respectively.

Outline. The paper is structured as follows. Section 2 provides the background
on virtual memory in modern operating systems and hardware support for pag-
ing. Section 3 discusses the current issues faced when implementing schemes
that rely on spare PTE bits and motivates our approach. Section 4 presents the
design space and possible configurations of FatPTE. Section 5 conducts a case
study showing the wide applicability and feasible parameterizations of FatPTE.
Section 6 discusses the prototype implementations of FatPTE and provides the
respective evaluation. Section 7 compares FatPTE to related work, while Sec-
tion 8 concludes this work.

2 Background

In this section, we discuss virtual memory and paging in modern operating sys-
tems. Furthermore, we elaborate on hardware support for paging in modern
CPUs.

2.1 Virtual Memory and Paging

Virtual memory is a fundamental feature of modern computing systems. With
virtual memory, processes do not directly access to physical memory. Instead, the
OS provisions virtual addresses, which are translated to physical addresses upon
use. From an application’s perspective, virtual memory is a continuous range,
while the OS can allocate and map physical memory on demand in a fragmented
fashion. This provides an elegant solution to several problems that arise in mod-
ern multithreaded and multiprocessed environments. It enables efficient man-
agement of memory, allows for access permission control, and provides strong
isolation between processes that operate in disjunct virtual memory spaces.

Pages and Page Sizes. Modern virtual memory systems divide their physical
memory into pages, which serve as memory granules that are distributed to
processes by the operating system. This smallest provisioned memory granule is
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sometimes called the translation granule [3]. The actual granule and the number
of available page sizes depend on the instruction set architecture (ISA). In x86-
64 and RISC-V systems, the translation granule is 4KiB and regular pages hold
4KiB of data. On AArch64, the translation granule can be 4KiB, 16KiB, or
64KiB. Each virtual memory page has a virtual page number and maps to one
physical page in memory. While each virtual page points to exactly one physical
page, the opposite is not necessarily true. Through alias mappings, multiple
virtual addresses can refer to the same physical page, which enables features
such as shared memory or shared libraries.

Page Tables and Translation Tables. The mappings from virtual to physical
pages are stored in hierarchical data structures called page tables (PTs) or trans-
lation tables. A PT holds page table entries (PTEs), which contain a physical
page number (PPN) and its associated access permissions. Typically, one bit of
a PTE determines if the referred physical page is a leaf node, i.e., it holds data,
or if it contains another level of the paging hierarchy. The translation consists
of a multi-stage table lookup where parts of the virtual address are used as in-
dices for PTs. Depending on the number of layers n in the hierarchy, we talk
about n-level paging. In current x86-64 systems, a page table may consist of up
to five layers, allowing the operating system to provision virtual addresses with
at most 57 address bits. Since the translation requires a starting point, every
process is assigned a root page table as the base of virtual address translation.
Providing each process with a separate paging hierarchy isolates their views of
virtual memory against each other. Through these disjoint views, each process
can use the full virtual address space without interfering with other processes.

In modern systems, the PTEs in each layer are 64 bits wide. However, the
physical address indexing the underlying memory does not use the full number of
available bits. Current x86-64 CPUs allow up to 52-bit physical addresses, thus
theoretically supporting petabytes of main memory. However, in practice the
amount of supported DRAM is often limited to a few terabytes. The lowermost
12 bits of the physical address in a leaf PTE are not explicitly stored as they
determine the offset within the page and are instead taken from the virtual
address during memory accesses. The remaining PTE bits are typically used to
encode status and permission bits, while some bits remain unused.

Figure 1 illustrates 5-level paging with a 4KiB page size, as used by x86-64
or RISC-V processors. Each level in the paging hierarchy except for the last layer
(i.e., PTL4 to PTL0) represents a page table indexed by 9 bits of the virtual
address. With 9 index bits for each of the five layers and a 12-bit index for the
leaf page, the 7 topmost bits of each 64-bit virtual address remain unused. Thus,
current paging implementations of the Linux kernel for these ISAs support up
to 57-bit virtual addresses. Translating a virtual to a physical address requires
a sequential table lookup called page table walk. The paging structure’s root is
formed by the physical page number (PPN) of the root page table. This PPN is
stored in a control register (CR3 on x86-64, SATP on RISC-V, TTBR0 ELx on
ARM). The root page table holds the topmost entries of the paging hierarchy.
The least significant bits of the virtual address act as a byte-granular offset for
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Fig. 1: 5-level paging in x86-64. On the lowermost level, 12 bits are used to
address individual bytes within a page while the 9-bit values in the upper levels
act as indices that select 64-bit entries within page tables.

the leaf page. Note that the number of offset bits equals the base-2 logarithm of
the number of bytes per leaf page.

Huge Pages. Virtual memory systems often support huge pages, which cover
a larger continuous memory region than the basic translation granule [34]. A
huge page can be mapped by removing a translation layer and extending the
offset bits with the former page table index bits. For instance, in a 4KiB virtual
memory system, a 2MiB page can be mapped by removing the final translation
layer and extending the 12-bit offset to a 21-bit offset using the 9 bits that
were used as an index for the final page table. Depending on the translation
granule and the presence of hardware support, varying sizes of huge pages can
be mapped. Mapping huge pages reduces the metadata required for continuous
memory regions and can improve performance for large allocations.

2.2 Hardware Support for Paging

In the case of 5-level paging, a single memory access may entail six loads from
memory as each layer must be fetched sequentially. The first five loads fetch
the PTEs, while the sixth memory load fetches the accessed memory location.
Loading data from main memory frequently has a detrimental performance im-
pact as DRAM is significantly slower than the on-chip caches. Memory-related
operations such as loading data, checking access permissions, and performing
address translations are handled by the memory management unit (MMU). Due
to the high frequency of memory operations and their performance-critical na-
ture, this component is deeply integrated into the CPU. When performing an
address translation, the page table walker (PTW), which is a part of the MMU,
iteratively fetches the PTEs according to the page tables of the current process.
To further reduce the performance impact of address translations, recently used
mappings are cached in the translation lookaside buffer (TLB). Modern CPUs
use multiple TLBs in different layers of the caching hierarchy. A TLB entry maps
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a combination of an address space identifier (ASID), which is required to distin-
guish processes, and a virtual page number, to a physical page and its associated
permissions. When accessing a virtual address the CPU checks if the required
translation can be directly served from the TLB. If a valid entry is present, a
TLB hit occurs and the costly page table traversal is completely avoided.

3 The Need for Larger PTEs

Historically, PTEs consisted of a physical page number, permission bits, and a
set of software-defined bits. This only left a small number of bits available for
future use. 64-bit systems increase the PTE size from 32 bits to 64 bits, increase
the size of the PPN field, and add more page attributes and permission bits such
as the no-execute bit. Modern Intel x86-64 CPUs with 5-level paging allow for
up to 53 physical address bits [15]. Combined with the other PTE bits in use,
PTEs that map 4KiB pages only provide seven bits for future use. Similarly,
RISC-V’s Sv57 format provides seven reserved bits for future use [23].

The introduction of security features like control-flow integrity, memory pro-
tection keys, and confidential computing [17,19,15] has decreased the number of
available PTE bits drastically. Memory Protection Keys (MPK) use four bits to
tag a page with a protection key and allow quick page permission modifications
from userspace without a context switch [15,2]. Intel’s Total Memory Encryption
requires up to 15 bits to be stored in the PTE and currently repurposes physical
address bits to store their key identifiers [15]. Intel Control-Flow Enforcement
Technologies (CET) [33] introduces a shadow stack whose pages are identified
by an unused combination of permission bits in the PTEs. Confidential com-
puting architectures like Intel TDX [12,14] and AMD SEV [1] both require one
PTE bit to indicate whether a memory page is encrypted or not [17]. This bit is
also taken from the physical address, thus further reducing the physical address
space.

Besides commercially available security features, a range of academic designs
proposes repurposing the available PTE bits for added security. For example,
PT-Guard [24] co-locates a MAC to detect Rowhammer attacks, and Multi-Tag
stores a memory tag for memory safety [36].

All features requiring PTE bits compete for the few available spare bits.
This hinders the adoption of new features, limits the achievable security, and
ultimately slows the progress of innovation. Intel’s shadow stack already resorts
to using a special encoding of the regular permission bits to avoid using an
additional PTE bit [15]. Features like TME-MK must repurpose physical address
bits, thus limiting the amount of usable DRAM [11]. Finally, Intel’s Sub-Page
Write-Permission (SPP) feature requires 64 bits to be stored per page [15]. This
per-page metadata must be fetched on-demand and accessed through a number
of indirections, similar to existing page tables.

Clearly, per-page metadata is essential for many security features. The ex-
isting PTE structure is the ideal location for metadata, as it contains all other
paging information. Furthermore, for most security features the metadata must
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be fetched and checked synchronous to the associated PTEs. Hence, there is a
clear need for larger PTEs that can co-locate security-critical metadata.

4 Design

In this section, we discuss the design principles of FatPTE. When discussing
page tables and their modifications, we must distinguish between the different
levels in the paging hierarchy. We refer to the lowest hierarchy level as the last
layer and to the highest level as the first layer, according to the order in which
they are fetched during a page table walk. A layer is considered above another
layer if it is fetched first when traversing the hierarchy. We use PTE to refer to
all entries of the paging structure, regardless of the layer. For clarity, we refer
to the PTEs modified by our approach as fat page table entries (FPTEs). An
FPTE consists of a legacy PTE and the associated metadata. A leaf PTE or
leaf node refers to an entry that does not point to another translation layer but
to a page containing arbitrary data. Upon reaching a leaf node, the translation
is finished. In our design exploration, we identify four key parameters P1 to P4.

4.1 Metadata Region Size P1

The main goal of FatPTE is to extend the available number of bits for security
features. Our approach enhances PTEs with a dedicated page table entry meta-
data region (PTE-MR), thus transforming them to FPTEs. Assuming a constant
page size, using FPTEs instead of legacy PTEs reduces the overall number of
entries that fit on a single page. Thus, the amount of mappable memory covered
by the same number of hierarchy levels is also reduced. As each PTE points
to a single page, using FPTEs which are twice as large halves the size of the
memory region that can be mapped by an entry in the layer directly above (cf.
Figure 2). Note that the overall amount by which the mappable memory de-
creases is independent of the layer at which FPTEs are used. It only depends on
the number of layers with FPTEs and the size difference between FPTEs and
PTEs. Increasing the size of FPTEs too much increases memory overheads as
more entries are required to map the same amount of memory.

Each doubling in FPTE size halves the number of mappable memory and
decreases the number of available virtual address bits by one. Thus, we are
bound to power-of-two sizes. Using any other factor results in a mapping scheme
requiring complex encodings of virtual addresses. Ultimately, this would lead to
issues in pointer arithmetic and greatly increase the complexity of the PTW.

Given the constraints of a power-of-two size increase and the implications on
the amount of mappable memory, we propose two parameterizations.

64-bit PTE-MR. First, we consider the case in which the additional metadata
region holds 64 bits. With this configuration, the overall size of each FPTE
equals 128 bits. We can illustrate the consequences of this size increase through
a concrete example. Consider replacing the last-layer PTEs of a system with
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4KiB pages by FPTEs. The page containing the last-layer PTEs originally holds
512 64-bit entries. This number decreases to 256 FPTEs as the page size stays
constant. A single 4KiB page of PTEs originally maps a memory range of 2MiB.
When using FPTEs, the mappable memory decreases to 1MiB (cf. Figure 2).

In commodity CPUs, the memory system operates on a 512-bit (cache line)
granularity. Thus, a single 4KiB page encompasses 64 cache lines. With the
above configuration, we provide one metadata bit per cache line of the page,
which can already be suitable for simple schemes at cache line granularity.

4 kB

PTE 0

PTE 1

PTE 2

PTE 3

PTE 4

PTE 511













...
2
M
B

(a) A 4KiB page contains 512 64-bit
PTEs and can map 2MiB.

4 kB

FPTE 0

FPTE 1

FPTE 255







...

1
M
B

(b) Only half as many FPTEs fit on the
same page which can map 1MiB.

Fig. 2: Using FPTEs reduces the amount of mappable memory. For an x86-
64 system with 4KiB pages, a single page of last-level PTEs can map 2MiB.
Doubling the size of each entry decreases this amount to 1MiB.

192-bit PTE-MR. In this configuration, we further increase the size of the meta-
data region to hold up to 192 bits. This results in 256-bit FPTEs. As we further
increase the size of the FPTEs, the number of FPTEs per page continues to
decrease. Thus, with this configuration, a single page of FPTEs can only map
a quarter of the memory that was originally mappable by the same number of
entries. While this parameterization reduces the amount of mappable memory
more significantly than the 64-bit variant, it simultaneously allows for the im-
plementation of more complex schemes. The 192-bit variant provides three bits
per cache line on 4KiB pages, thus allowing for more complex schemes.

4.2 Metadata Region Layout P2

When enhancing PTEs with additional metadata, we cannot use a dedicated
metadata storage region akin to tagged memory architectures. As we associate
metadata with PTEs, the required metadata memory changes during runtime.
Hence, we cannot statically reserve a memory region for metadata during system
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initialization. Storing the metadata in a disjunct location causes further issues,
as the PTW must fetch the metadata during page table walks. This can only
be achieved using a lookup table or a shadowed paging structure dedicated to
locating the associated metadata. Both cases require additional memory transac-
tions with potentially poor spatial locality. To avoid such issues, FatPTE always
co-locates PTEs and metadata within the same memory page.

When co-locating mapping information with metadata, the layout of the
PTEs and the associated metadata regions within a page can be chosen arbi-
trarily. However, a complex mapping function for the metadata region may have
a detrimental impact on the system performance and would require additional
logic in the PTW. It is, thus, favorable to keep the layout as simple as possi-
ble. When discussing the layout of PTEs and metadata regions within the same
page, we use the term index to refer to their 64-bit aligned locations in the page.
Thus, index 0 denotes the first byte on the page, index 1 the 8th byte, and so
on. We consider two variants of how the FPTEs are stored within a page.

Split-Page Layout. In the first variant the upper part of the page exclusively
accommodates legacy PTEs. Thus, this portion of the page is equivalent to the
case of using unmodified PTEs. The metadata for each entry is located on the
remaining portion of the page. We denote this type of layout as the split-page
layout due to the content of the page being clearly divided. When accessing a
FPTE, the PTE and the corresponding metadata are fetched from their respec-
tive parts of the page. While this layout has the advantage that the PTW can
directly use the index extracted from the virtual address to access the FPTE,
it also entails disadvantages. As the index of the metadata region is determined
by the formula given above, the PTW must implement additional logic to de-
termine the location from which the metadata must be fetched. Furthermore,
separating the PTE and the metadata may cause additional latency due to low
spatial locality as the metadata may reside in a different cache line.

Cache-Line Localized Layout. In modern systems, the memory subsystem oper-
ates on cache line granularity, which spans 512 bits. Thus, a single cache line
can hold eight 64-bit legacy PTEs. For 64-bit metadata regions, a cache line
can accommodate four FPTEs. For the 192-bit metadata regions, the number
of FPTEs per cache line decreases to two. Organizing the PTEs and their as-
sociated metadata such that they are co-located in the same cache line has the
advantage that all data can be fetched in one single memory transaction. Fur-
thermore, the fact that the metadata is directly co-located to the PTE simplifies
the function computing the indices in the PTW. By co-locating the PTE and
the metadata in the same cache line, the additional pressure imposed on the
memory subsystem is kept to a minimum, as no additional memory requests are
required.

4.3 Affected Levels P3

Only using FPTEs on the last paging level limits the usage of security-relevant
metadata to the case where default-sized pages are used. As modern systems
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allow to directly map a leaf page instead of the next-lower table (i.e., huge
pages), one must decide on the layer up to which FPTEs are supported. We
denote a configuration in which only the last-level page table supports FPTEs
as a PTL0 configuration. Consequently, a configuration supporting FPTEs in
the last level and the level directly above is called a PTL1 configuration (cf.
Figure 1). This naming scheme continues for all layers of the hierarchy and we
assume the configurations includes all lower levels.

PTL0 Configuration. The PTL0 configuration is the most straightforward con-
figuration, as only one layer in the paging hierarchy is modified. As only the last-
level PTEs are replaced by FPTEs, the PTW only requires additional fetches
in the last translation stage in the case of the split-page layout. Also, the vir-
tual address bit decrease is minimized as even a 192-bit PTE-MR only causes
an overall decrease of two bits. However, a PTL0 configuration limits security
schemes to requiring metadata on the smallest paging granule. Larger mappings
consequently cannot utilize any of the additional bits, which may be a limiting
factor for certain features.

PTL1 Configuration. With a PTL1 configuration, FPTEs are available on the
second-to-last layer and on the last layer of the paging hierarchy. Thus, this
configuration allows for the implementation of security schemes even in the case
of huge pages. A single entry in the second-to-last layer maps a larger continuous
virtual memory range than an entry in the last layer. Hence, the granularity on
which this metadata is assigned is coarser than for PTL0 configurations. Security
schemes that require fine-grained metadata may consequently not profit from
PTL1 configurations. Furthermore, the memory overhead of such a configuration
is also increased compared to PTL0 as the number of FPTEs increases. As the
PTEs of the last two layers are modified in a PTL1 configuration, the amount
of available virtual address bits decreases by at least two bits. In the case of
192-bit PTE-MR, the overall decrease sums up to four bits.

Depending on the implemented scheme, it may be possible that even more
levels of the paging hierarchy use FPTEs. In such cases, the memory overhead
increases with each additional level and the number of available virtual address
bits decreases further. We do not consider implementing FPTEs on a higher
level without including all levels below as this would introduce the same address
space reductions while yielding a coarser granularity of metadata bits.

4.4 TLB Entry Size P4

As each FPTE consists of a legacy PTE and associated metadata, we must
consider whether to increase the size of the TLB entries as well. Each TLB
entry holds a mapping from a virtual page to the associated physical page and
the accompanying permission bits. Furthermore, each entry holds a tag and
potentially additional data.

The exact number of required additional metadata bits in each TLB entry is
dictated by the implemented security scheme. If the metadata is only relevant
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during the initial translation process, i.e., when performing a page table walk, no
additional TLB bits are required. If, however, the additional bits are checked on
every access, the relevant bits must be stored in the TLB entries, thus increasing
their size. This size increase necessitates a tradeoff between the overall TLB area
and the number of TLB entries. As the TLB is implemented in hardware, its size
is static and the TLB entry size cannot be configured during runtime. Consider
the case in which the size of each TLB entry is doubled and assume that each
entry only consists of storage and no additional logic. Keeping the number of
TLB entries constant roughly doubles the overall storage space requirements
of the TLB. Contrarily, doubling the entry size while halving the number of
entries keeps the overall TLB size constant. However, reducing the number of
TLB entries has a detrimental impact on the system performance as the number
of page table walks due to TLB misses increases. At the same time, increasing
the TLB size is increasingly costly due to its close proximity to the core and L1
caches. In our design, we consider both options to underline the tradeoff between
performance and area overhead resulting from modifying the TLB.

5 Case Study

The main objective of FatPTE is to support as many security schemes depend-
ing on additional metadata located in the page table entries as possible. We
perform a case study to showcase the applicability of FatPTE for commodity
and academic security features. In our case study, we provide a detailed compar-
ison of security features and demonstrate that their required metadata can be
effectively stored using FPTEs. Furthermore, we analyze whether each scheme
would benefit from an even larger number of metadata bits. For each security
scheme, we investigate whether additional TLB bits are required and, if neces-
sary, the number of additional bits. Additionally, we explore how the findings
influence our choice of the design parameters P1 to P4.

Considered Applications. Various academic designs and commercial security fea-
tures rely on metadata located in page table entries. These designs utilize PTE
bits to associate metadata for essential security technologies, such as control-
flow integrity (CFI), memory protection, and confidential computing. Table 1
provides a concise overview of the analyzed security technologies, which are dis-
cussed below. In our study, we discuss commercial security features and academic
designs separately. A scheme is designated as a commercial product if it is present
in commodity off-the-shelf CPUs or will be available in upcoming CPU genera-
tions. We do not consider schemes using tagged memory architectures [16], i.e.,
store metadata in a dedicated tag storage, such as ARM MTE [31] as physical
memory tagging is an orthogonal technology to implement security features.

5.1 Commercial Security Features

Intel Control-Flow Enforcement Technologies (CET) [33] introduce the indirect
branch tracking (IBT) and shadow stack (SHSTK) features to protect forward-
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Table 1: A comparison of commercial and academic designs that use PTE meta-
data to enable key security technologies.

Mechanism Application ISA # PTE bits
C
o
m
m
er
ci
a
l Intel CET SHSTK [33] Access Permission x86-64 1-bit†

ARM BTI Legacy Compatibility ARMv8.5 1-bit
Intel MPK [21] Protection Key x86-64 + 4-bit
ARM Domains [39] Protection Key ARMv7 + 4-bit

Intel TME-MK [13] Key Identifier (KeyID) x86-64 + 15-bit‡

A
ca
d
em

ic

IMIX [9] Access Permission x86-64 1-bit
Donky [29] Protection Key RISC-V + 10-bit
Multi-Tag [36] Page-granular Tag x86-64 + 16-bit
PT-Guard [24] Cryptographic MAC x86-64 + 12-bit
SecWalk [25] Redundancy Code RISC-V + 25-bit

+ Profits from additional bits † Implicitly encoded ‡ Up to 15-bit

edge and backward-edge control-flow transfers. The shadow stack protects return
addresses and, thus, mitigates attacks like return-oriented programming [6,32].
As the shadow stack holds security-critical data, it must be protected from unau-
thorized access. This is achieved by uniquely marking shadow stack pages using
a previously unused combination of the read/write bit and the dirty bit in the
PTE. Shadow stack pages can only be accessed using dedicated instructions, such
as the wrss instruction. Other architectures, such as ARM and RISC-V, provide
comparable features to enforce control-flow integrity. The RISC-V SHSTK also
relies on memory protection using a new, previously unused, page type. This
type is encoded by setting the page permissions in the PTE to write-only. The
ARM guarded control stack (GCS) implements a shadow stack feature for the
ARM architecture by leveraging a memory attribute for page protection. ARM
branch target instructions (BTI) also provide landing pads for forward-edge CFI.
However, ARM BTI leverages the GP-bit in the translation table to enable com-
patibility with legacy binaries. For all of the above schemes, it is essential to
include the access permissions for the page in the TLB entry.

Apart from control-flow integrity, fine-grained and efficient control over page-
granular access permissions can protect against memory safety issues. Intel mem-
ory protection keys (MPK) [21] leverage a 4-bit protection key encoded in the
PTE to enforce read and write access policies during runtime. Memory protec-
tion is achieved by comparing the protection key with the user space protection
keys register (PKRU), reflecting the currently active access permissions. PKRU
implements read and write permission bits for each distinct protection key and is
software-controlled from user space. MPK reduces performance overheads when
partitioning the virtual address space through logical integrity checks, as no
context switch is required to change permissions. ARM memory domains [39]
introduce a 4-bit domain identifier for page-granular memory protection. As the
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memory protection keys and the domain identifiers are checked on every access,
they both must be included in the corresponding TLB entries.

Transparent memory encryption technologies like Intel Total Memory En-
cryption (TME) [11] and AMD Secure Memory Encryption (SME) [17] have
been available in commodity CPUs for several generations. However, TME and
SME only allow for one encryption key when encrypting DRAM data. Recent
CPUs introduce new features, allowing for multiple encryption keys, thus paving
the way for cryptographically isolated domains. Intel total memory encryption
multi-key (TME-MK) [13] provides up to 15 key identifiers (keyID) bits located
in the PTE for DRAM encryption. Intel TME-MK is used to encrypt guest
memory for Intel’s confidential computing technology [7]. To encode the keyIDs,
TME-MK changes the specification of the physical address, i.e., physical address
bits are repurposed to encode the keyID into the PTE, thus reducing the overall
addressable physical memory. The secure memory encryption (SME) feature of
AMD uses a single bit in the physical address to indicate whether a page is en-
crypted or not. This C-bit thus reduces the available physical address size by one
bit. Building on SME, AMD secure encrypted virtualization (SEV) [1] leverages
the same C-bit to identify encrypted pages but provides per-VM encryption keys
to cryptographically isolate virtual machines against each other and the host.
As the keyID and the C-bit are part of the physical address, they are implicitly
stored in the TLB entries.

We find that FatPTE increases the achievable security of certain commer-
cial security features. Intel MPK is often criticized for allowing only 16 unique
keys [30,29]. Schemes that use MPK for in-process isolation are thus constrained
to 16 domains, which can be a limiting factor for their applicability. FatPTE
facilitates the usage of more PTE bits for security and, thus, allows for an in-
creased number of protection domains. This enables a more fine-grained com-
partmentalization of the application, resulting in increased security properties.
Similarly, the security of ARM memory domains would improve by offering more
domain identifiers. Consider, for example, a configuration with 64-bit PTE-MR.
By providing 64-bit identifiers, we support a number of isolation domains that
far exceeds the currently possible maximum of 16. In its current form, Intel
TME-MK, which is essential for the cryptographic isolation of VMs, introduces
a trade-off between the number keyIDs and addressable physical memory. While
this approach works in current generations, future CPUs may require a larger
number of keyIDs. As each additional keyID bit comes at the cost of halving
the available physical address space, the maximum number of keyIDs is inher-
ently limited. Through FatPTE, it is possible to increase the number of key bits
without forfeiting any of the physical address bits.

5.2 Academic Designs

Security researchers proposed various security features that repurpose PTE bits
[5,9,29,36,24,25]. Like the commercial features discussed above, academic schemes
suffer from the same limitations due to the scarcity of spare PTE bits.
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Donky [29] proposes the extension of MPK to use 10-bit protection keys
on the RISC-V platform. Here, MPK greatly benefits from an increased num-
ber of protection keys, e.g., 10-bit protection keys enable the use of more than
1000 memory domains. Additionally, multiple designs leverage Intel TME-MK
memory encryption for security beyond VM memory encryption [26,20,35,27].
However, the number of available keys is platform-specific. Schemes based on In-
tel TME-MK significantly benefit from an increased number of available keyIDs.
Due to the steady increase in physical memory capacity, it is vital to allow for
a large number of keyIDs without reducing the addressable physical memory.

Multi-Tag [36] proposes a multi-granular tagging strategy combining tagged
memory with PTE-based tags to perform logical integrity checks for memory
safety. As the integrity checks are performed at every access, Multi-Tag must
use TLB entries for the page-granular tag bits. PT-Guard [24] repurposes 12
PTE bits for a cryptographic MAC that protects the integrity of the PTE it-
self. In the case of PT-Guard, the MAC is only required when performing the
page table walk to detect tampering of the paging structures. Once the PTE is
stored in the TLB, it is considered valid and does not require additional authen-
tication. SecWalk [25] requires 25 bits in the PTE (thus significantly reducing
the addressable physical memory) to provide fault protection with redundancy
codes. Furthermore, SassCache [10] explores the use of available PTE bits for
their secure randomized cache architecture.

Other academic designs rely on a single-bit in the PTE to enforce dedicated
security policies and protect memory resources. IMIX [9] leverages one bit in
the PTE for in-process isolation to mark security-critical memory. Similarly,
CETIS [37] repurposes Intel CET SHSTK protection for in-process isolation.
Cornucopia Reloaded [8] proposes the extension of one PTE bit to block capa-
bility loads, which is beneficial for implementing a fast memory sweep.

These academic designs highlight the strong need for more feature-specific
PTE bits. Similar to commercial security features, FatPTE improves the secu-
rity for several of the presented designs. While Donky proposed extending the
protection key size from 4 to 10 bits, FatPTE allows for an even larger amount
of protection domains. FatPTE also allows Multi-Tag to increase the number
of tag bits beyond 16 bits without reducing the addressable physical memory.
PT-Guard greatly benefits from FatPTE in terms of security and performance as
it can compute a single MAC for each PTE, thus eliminating the need for addi-
tional fetches. When using 192-bit PTE-MR, the probability of a MAC collision
becomes vanishingly small, thus providing exceedingly strong security against at-
tacks. Similarly, SecWalk’s security is significantly increased by allowing larger
redundancy codes, resulting in stronger fault detection capabilities.

5.3 Insights

Our case study underlines the need for dedicated PTE bits for essential security
features. In current CPU generations the spare PTE bits of major CPU manu-
facturers, such as Intel, are exhausted. Due to PTE size constraints, promising
academic designs requiring additional PTE bits are hard to adopt for industry
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use. Not only can FatPTE provide enough bits for all of the considered security
features, it even allows the implementing multiple features without compromis-
ing on their security. Thus, FatPTE is an effective approach that facilitates easy
adaptation and combination of commercial and academic security technologies.
Furthermore, we find that 7 out of the 10 investigated security features benefit
from additional PTE bits, thus underlining the relevance of adding security-
specific bits to page table entries.

While the parameterization of FatPTE depends on the implemented security
feature, we find that many of these features share common characteristics and
requirements. We find that most schemes profit strongly from a 64-bit PTE-MR.
The schemes with further security gains from using 192-bit PTE-MR are PT-
Guard and SecWalk. Thus, we conclude that a 64-bit metadata region is feasible
for all of the analyzed security features. All of the investigated security schemes
can, in theory, operate on the granularity of huge pages. However, the effective-
ness of schemes like Multi-Tag suffers when using larger mappings due to the
coarser granularity of the metadata. We thus consider both a PTL0 configuration
and a PTL4 configuration as feasible. However, note that none of the schemes
requires the metadata to be present in all layers at the same time. The metadata
is only required if a FPTE is a leaf entry, i.e., if it points to a page and not
another level in the hierarchy. Thus, even in the case of a PTL4 configuration,
only one additional memory transaction for the metadata is necessary.

6 Implementation and Evaluation

To evaluate the performance impact of FatPTE, we create exemplary prototype
implementations for x86-64 and RISC-V. Both variants implement 4KiB pages
and a 64-bit PTE-MR. It is not possible to include FatPTE’s hardware changes
on commodity x86-64 hardware. Thus, we use the gem5 system simulator [4]
to implement FatPTE for the x86-64 ISA. We modify the PTW so that the
number of index bits fits the number of entries in each level. In the case of the
PTL0 configuration we change the indexing used for last-level pages such that
the lowest level uses 8 instead of 9 index bits. We implement both the split-
page and the cache-line localized layout. When using the split-page layout, our
modified PTW fetches the metadata associated with a PTE by accessing the
64 bits located 256 indices lower on the same page. For the cache-line localized
layout, the fetches are cache-line aligned and the fetch width increases to 512
bits. We implement the PTL4 configuration by modifying the PTW such that
the index modification applies to all levels of the hierarchy.

Besides the gem5 prototype we also implement FatPTE for RISC-V using the
CVA6 core [38], which uses 39-bit virtual addresses. We extend the core’s PTW
to support the additional fetches required by FatPTE and synthesize it for a
Digilent Genesys 2 FPGA board. Here, we assume the cache-line localized layout
with 64 bits of metadata, analogous to the x86-64 prototype. Our implementation
supports configurable metadata fetching at all layers which we can control using
a dedicated control and status register (CSR). The metadata of intermediate
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layers can be checked directly after it was fetched and we store the metadata
of the last translation layer in the TLB. We synthesize our prototype using a
Digilent Genesys 2 FPGA board.

Depending on the feature implemented with FatPTE, it is necessary to extend
the TLB entries by a certain number of bits. Thus, TLB entries increase in size
as the amount of metadata bits increases. We implement two TLB configurations
for the simulator prototype and the hardware prototype. The first configuration
extends the size of each TLB entry by 64 bits while keeping the number of TLB
entries constant, thus increasing the overall TLB area. The second configuration
increases the TLB entry size while reducing the number of TLB entries to model
the case in which the TLB area is limited.

6.1 Performance Evaluation

We evaluate the performance of FatPTE using the SPEC CPU 2017 benchmark
suite. Our evaluation consist of multiple configurations to exemplify the design
choices discussed above.

Simulation Setup. For our simulation, we model an x86-64 system with 4KiB
pages. We implement FPTEs on the lowest level of the hierarchy (PTL0) and
on all levels (PTL4). Each FPTE holds 64 bits of metadata. We implement the
cache-line localized and the split-page layout and investigate two TLB configura-
tions. In the full-TLB configuration (TLB-F), the amount of TLB entries stays
constant, which represents the case in which the TLB area increases. For the
half-TLB configuration (TLB-H), we reduce the number of TLB entries by halv-
ing it, thus representing the case in which the area is limited. We base our gem5
configuration on the CPU model used by LeMay et al. [18] which represents cur-
rent Intel Ice Lake CPUs. We use the out-of-order (O3) CPU model as this is the
most accurate gem5 CPU model. We evaluate four variants of FatPTE (PTL0
TLB-F, PTL0 TLB-H, PTL4 TLB-F, PTL4 TLB-H). Our baseline system uses
legacy PTEs, 128 iTLB entries, and 64 dTLB entries.

As the simulation duration using the O3 CPU can become infeasibly high for
complex workloads, we use simpoints [22]. The simpoints tool identifies represen-
tative regions within the workload for its different execution phases. Simulating
these regions and computing a weighted sum of the partial results provides a per-
formance estimation for the complete workload. We use cycles per instruction
(CPI) as the performance metric. Each simulation interval consists of a constant
number of instructions. Thus, CPI values of different runs are normalized to the
same instruction count.

Hardware Evaluation. We use our hardware prototype in two different configu-
rations to evaluate the performance implications of FatPTE. Both models im-
plement a PTL0 configuration and differ in the number of TLB entries. Our
baseline features 64 iTLB and 32 dTLB entries and does not fetch metadata.
While the TLB-F configuration leaves the TLB size unchanged, TLB-H reduces
the number of iTLB entries to 32 and the number of dTLB entries to 16.
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Fig. 3: The simulated and measured overheads using the SPEC CPU 2017 bench-
mark suite. The geomean overheads range from 0.21% to 1.99%.

For both evaluation platforms, we exclude SPEC CPU 2017 benchmarks that
fail to compile, crash due to runtime issues, or do not finish within a reasonable
amount of time (e.g., less than 100 hours).

6.2 Performance Evaluation Results

Figure 3 illustrates the relative performance overheads for our simulation and
our FPGA prototype. For the simulation, we consider PTL0 TLB-F and PTL4
TLB-H using a cache-line localized layout. For our hardware prototype, we use
a PTL-0 configuration with TLB-F and TLB-H. We select these configurations
as they are the lowest and highest overheads, respectively.

We find that using FPTEs has an overall low impact on the system perfor-
mance with geomean overheads ranging from 0.21% to 1.34% and most bench-
marks experience overheads below one percent. For the benchmarks that show
larger overheads, the performance impact is still within a reasonable range. We
find that the number of TLB entries (P4) has a far stronger impact on the mea-
sured performance overhead than the paging levels on which the PTEs are ex-
tended (P3). This is mainly due to the fact that performing cache-line aligned re-
quests synergizes with the granularity of the memory subsystem and the caching
layers. Furthermore, reducing the number of TLB entries increases the amount
of TLB misses and, thus, the need for costly page table walks. For the split-page
layout, we observe larger overheads ranging from 1.04% for the (PTL0, TLB-F)
configuration to 2.66% when using a (PTL4, TLB-H) configuration.

Similar to the simulation, the performance impact on the FPGA is low, with
a geomean of 0.51% for TLB-F and 1.99% for TLB-H. Note that our hardware
implementation requires an additional fetch during the page table walk to fetch
the required metadata. While we use a cache-line localized layout, the hardware
operates on word-sized granularity. As we run our benchmarks using a PTL0
configuration, the additional fetch is performed at the end of the walk. The
given results suggest that FatPTE imposes feasible overheads, even in the case
of resource-constrained systems with lower TLB capacity and smaller caches.
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Table 2: FPGA Utilization of our modified CVA6 core. The TLB-Full config-
uration increases the number of lookup tables (LUTs) and flipflops (FFs). For
TLB-Half, the total area decreases slightly compared to an unmodified system.

iTLB dTLB LUTs FFs

Base 64 32 Total 45626 29843
TLB 7072 8990

TLB-F 64 32 Total 51700 ( +13.3%) 36152 ( +21.1%)
TLB 11040 ( +56.1%) 15134 ( +68.3%)

TLB-H 32 16 Total 45544 ( -0.2%) 28519 ( -4.4%)
TLB 3801 ( -46.3%) 7566 ( -15.8%)

6.3 Memory and Area Overhead

Increasing the size of PTEs also increases the memory footprint of the paging
structures which scale with the amount of mapped virtual memory. We compute
the relative overhead introduced by the different parameterizations assuming 64-
bit PTE-MR metadata, 5-level paging, 4KiB pages and that memory pages are
mapped in virtually contiguous regions. Mapping a single page requires a PTE in
each of the five layers and causes an overhead of 0.98%. As the amount of mapped
memory increases, the overhead converges to a lower bound of 0.196%. When
using FPTEs on the last layer (PTL0 configuration), the overhead converges to
0.391%. In a PTL4 configuration, this limit further increases to 0.392%. When
using 192-bit PTE-MR, the overheads increase to 0.783% and 0.787% for PTL0
and PTL4, respectively.

For most of the security features analyzed in Section 5, the metadata bits are
checked on every access and, thus, cached in the TLB. A TLB entry typically
consists of the the PTE bits and additional information for TLB lookups and
security checks. Keeping the number of entries constant while increasing the
entry size increases the total area of the TLB. Alternatively, an area-constrained
TLB can provide larger entries at the cost of a reduced overall number of entries.
The CVA6 CPU uses 135-bit TLB entries. Adding a 64-bit PTE-MR increases
the required bits by 47% but does not necessarily translate to an area increase
of that same amount.

Table 2 shows synthesis results with different numbers of TLB entries. The
values are relative to the unmodified CVA6 (Base). Most of the area overheads
stem from caching the extra metadata in the TLB. The TLB itself grows by
56% and 68% in lookup tables (LUTs) and FlipFlops (FFs), respectively. When
halving the TLB (TLB-H), the area stays roughly the same compared to the
baseline. Hence, when the TLB is constrained by area, the number of entries
would have to be halved to cache the full 64-bit PTE-MR.
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7 Related Work

SPEAR-V [28] implements enclaves for RISC-V using a page-granular tagged
memory architecture. In contrast to FatPTE, SPEAR-V associates metadata
with physical memory pages by reserving an access-restricted fixed memory re-
gion. FatPTE associates metadata with virtual memory, thus scaling better in
terms of memory overhead. Furthermore, FatPTE profits from increased spatial
locality as metadata is co-located with the paging information.

Intel Sub-Page Write-Permission (SPP) allows granting write-access for 128-
byte memory regions within a read-only page [15]. The used metadata is fetched
on-demand since current PTEs cannot accomodate it. SPP metadata is accessed
through a number of indirection layers which are traversed on every write access.
Thus, SPP may cause non-negligible overheads in the case of frequent write ac-
cesses to protected pages. Note that FatPTE can directly encode such permission
bits in the PTE metadata, thus eliminating the need for additional lookups.

ARMv9 introduced a new translation table format that increases each de-
scriptor’s size to 128 bits. Similarly to FatPTE, this allows for a larger address-
able physical memory size and new attribute fields. However, the translation
descriptors of ARM can only provide a subset of the available bits for security-
critical features. In its current form, it is not possible provide one metadata bit
for each cache line of a 4KiB page. Thus, schemes that scale with the number
of bits (e.g., PTGuard) may not be usable due to a loss of security. In contrast,
FatPTE provides at least 64 metadata bits per PTE, thus allowing for at least
cache-line granular metadata and the efficient implementation of schemes requir-
ing a certain lower bound of bits for them to be effective. Furthermore, the PTE
layout of FatPTE does not depend on the layer at which the entry resides.

8 Conclusion

In this work we introduced FatPTE, a design that facilitates the implementation
of security features relying on metadata bits in page table entries.

As the number of spare PTE bits is exhausted the adoption of new features
is hindered and the security of existing features is limited. FatPTE transforms
PTEs to FPTEs by enhancing them with dedicated metadata for security-critical
bits (PTE-MR). We identify the metadata region size, the metadata layout, the
number of affected levels, and the modification of TLB entries as possible param-
eters for our design. By performing a case study on commercial and academic
security features we uncover suitable parameterizations of FatPTE.

We implement an x86-64 software prototype using gem5 and a RISC-V hard-
ware prototype to evaluate our design. Using the insights gained in our case
study, we configure and benchmark multiple parameterizations of FatPTE using
workloads of the SPEC CPU 2017 benchmark suite.

We find that the imposed performance overheads are low, ranging from 0.21%
to 1.34% for our simulated prototype and from 0.51% to 1.99% on our hardware
implementation. Furthermore, we show that our design imposes negligible page
table storage overheads.
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