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Abstract. Flush+Reload and Flush+Flush attacks target CPU caches
and allow malicious actors to leak confidential data across different CPU
cores. Typically, detection mechanisms against such attacks leverage
hardware performance counters to observe architectural and microar-
chitectural events. However, recent research has shown that state-of-
the-art security monitors can effectively be bypassed by camouflaged
Flush+Reload attacks. Thus, flush-based cache side-channel attacks are
still a significant threat to system security.
In this work, we present WaitGuard, a novel detection technique with a
>99.9% detection rate based on the userspace monitor and wait instruc-
tions. Our framework automatically profiles internal CPU interactions
of userspace monitor/waits with other unprivileged instructions. We use
WaitWatcher to analyze 7 different server and desktop-class x86 CPUs
from Intel and AMD. In our analysis, we uncover 5 spurious wakeup trig-
gers and 18 user-mode instructions that completely bypass the wakeup
mechanisms. Based on our analysis, we develop WaitGuard, a novel de-
tection mechanism that repurposes the recently introduced userspace
monitor and wait instructions to detect flush-based cache side-channel
attacks on modern x86 hardware. We implement WaitGuard as a drop-in
security monitor that reliably detects Flush+Reload and Flush+Flush
attacks with a detection rate of >99.9%, even when introducing heavy
system noise. Moreover, we find that WaitGuard also detects the previ-
ously invisible camouflaged Flush+Reload attacks. Finally, we demon-
strate the real-world applicability of WaitGuard by showing its effective-
ness in detecting Flush+Reload attacks on the OpenSSL AES T-table
implementation.
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1 Introduction

Computing systems require the strong isolation of shared system resources. For
instance, modern cloud computing systems co-locate mutually distrusted tenants
with code execution privileges on the same physical machine. While computer
systems offer strong architectural isolation for memory resources, i.e., through
process isolation, side-channel attacks still allow a malicious actor to leak secret
data. Concretely, side-channel attacks facilitate shared system resources (e.g.,
the cache) to extract secret information from software running on shared hard-
ware by observing measurable side effects caused by the victim’s execution.

Cache side-channel attacks take advantage of the shared cache between at-
tacker and victim on modern CPUs. Flush+Reload [34] and Flush+Flush [13],
in particular, flush cache locations that contain shared data or code, e.g., shared
libraries. Subsequently, by timing a memory access or a second flush operation
after executing the victim code, the attacker can learn whether the victim ac-
cessed the flushed location to infer secret information, such as cryptographic
key material [13, 34]. As modern CPUs utilize caches that are shared or can be
manipulated across cores, an attacker is not constrained to attacking victims on
the same core, thus significantly increasing the attack surface through potential
cross-core data leakage [13,34].

Common detection techniques for flush-based side-channel attacks rely on
hardware performance counters [3, 18], which measure low-level system events
such as cache evictions or TLB misses [3]. While these detection mechanisms were
assumed to be sufficient to detect Flush+Reload and Flush+Flush attacks, re-
cent research by Kosasih et al. [18] demonstrated that it is possible to circumvent
performance counter-based detection completely. They present a camouflaged
Flush+Reload attack that bypasses state-of-the-art detection mechanisms, suc-
cessfully leaking secret information from a victim.

In this work, we present WaitGuard, a novel approach for detecting flush-
based side-channel attacks by repurposing the userspace monitor and wait in-
structions on commodity x86 Intel and AMD machines. WaitGuard is capable
of detecting Flush+Reload and Flush+Flush attacks with a detection rate of
>99.9%. Furthermore, we introduce WaitWatcher, a framework for systemati-
cally analyzing the behavior of userspace monitor/wait instructions.

With WaitWatcher, we provide a framework that automatically analyzes the
recently introduced userspace monitor and wait instructions, originally intended
to reduce the CPU energy consumption of busy waits. We perform a comprehen-
sive study, analyzing 7 different server and desktop-class x86 CPUs from Intel
and AMD using WaitWatcher. Our study uncovers five different spurious wakeup
triggers and 18 instructions that completely bypass the wakeup mechanisms.

With WaitGuard, we present a drop-in security monitor for detecting flush-
based cache side-channel attacks by repurposing the unprivileged userspace mon-
itor and wait instructions. While these instructions are intended for detecting
writes to monitored addresses, we find that flushing the monitored addresses
also causes the wait to abort. Combining this address monitoring with an ac-
cess latency measurement after each wakeup allows us to detect flush-based at-
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tacks with an accuracy of >99.9%, even under heavy system load. Furthermore,
WaitGuard is capable of detecting camouflaged Flush+Reload attacks, which
can bypass traditional performance counter-based detection mechanisms [18].

We introduce two variants of WaitGuard that allow for flexible use of our de-
tection mechanism. First, we propose a self-contained variant in which a process
monitors its own memory using a dedicated monitor thread. This variant can
be implemented without involving the host operating system (OS) and allows
the process to determine whether it wants to continue execution in the case of
a potential attack. Second, we detail a delegated variant, which hands the mon-
itoring task to the operating system. The OS uses a dedicated thread to protect
the data of the victim process.

We implement the self-contained variant of WaitGuard and evaluate its ef-
fectiveness. Using three different Flush+Reload attacks, we find that WaitGuard
can reliably detect side-channel attacks with a detection rate of >99.9%. Fur-
thermore, we find that the rate of false positives is vanishingly low, thus under-
lining the feasibility of our approach.
Contributions. In this work, we make the following key contributions:

– WaitWatcher. We present WaitWatcher, an open-source1 framework that
automatically analyzes the behavior of the recently introduced x86 userspace
monitor and wait instructions.

– Insights on Monitor/Wait Instructions. We provide a comprehensive
study with overall 7 Intel and AMD CPUs with different microarchitectures,
showcasing undocumented CPU behavior, such as spurious wakeup triggers
and unprivileged instructions that can bypass the wakeup mechanisms.

– WaitGuard. We present a novel mechanism that reliably detects cache-
based side-channel attacks by repurposing the userspace monitor/wait in-
structions available on commodity x86 hardware.

– Proof-of-Concept and Evaluation. We evaluate WaitGuard, showcasing
the detection of flush-based side-channel attacks with a high accuracy of
>99.9%, including camouflaged Flush+Reload attacks.

Outline. The remainder of this work is organized as follows. Section 2 provides
the background of this work and discusses related work. Section 3 introduces
the WaitWatcher framework and presents the analysis results for 7 Intel and
AMD machines. In Section 4 we introduce WaitGuard, a novel drop-in security
monitor that detects flush-based cache side-channel attacks. Section 5 discusses
the implementation and evaluation of WaitGuard. Section 6 concludes this work.

2 Background and Related Work

This section provides the required background on cache side-channels, flush-
based side-channel attacks, and proposed detection mechanisms. Furthermore,
we discuss the recently introduced userspace monitor and wait instructions that
provide the foundation of our approach.
1 The WaitWatcher Framework

https://extgit.isec.tugraz.at/sesys/waitwatcher


4 L. Lamster et al.

2.1 Cache Side-Channels

The cache hierarchy of modern CPUs consists of multiple levels, which are cat-
egorized depending on their proximity to the CPU cores. The Level 1 (L1) and
Level 2 (L2) caches are usually small and deeply integrated in the core to allow
for minimal access latencies. While the L1 and L2 are not shared across physical
cores, with hyperthreading they can be shared across logical cores which share
the same execution engine. The last-level cache (LLC) is furthest away from the
cores, provides more storage space, and is typically shared across multiple phys-
ical cores. Cache side-channels exploit timing variations that depend on whether
data is cached or not, e.g., a load access that results in a cache hit is signifi-
cantly faster than a cache miss that results in a main memory access (i.e., the
DRAM) [34]. Through measuring timing differences, an attacker can determine
whether a value was recently accessed (i.e., cached) or not.

2.2 Flush-based Side-Channel Attacks

Flush-based cache side-channel attacks are based on flushing an address from the
cache, waiting for victim activity, and measuring whether the victim accessed
the address. This attack relies on the availability of shared memory between
the victim and the attacker to flush the victim address. While these attacks
are typically performed on shared libraries, they are also possible on arbitrary
memory and cross-VM due to page deduplication [27, 31]. Depending on how
the attacker determines whether the victim address was accessed, we distinguish
between Flush+Reload and Flush+Flush attacks [13,34].

Flush+Reload. In 2014, Yuval et al. [34] introduced a cache side-channel attack
dubbed Flush+Reload. They use the clflush instruction, which evicts victim
data from all cache levels, to build a cross-core attack. The basic principle of
Flush+Reload is to evict a shared address using clflush, wait for or trigger
victim execution, and measure the access latency for the evicted address. If the
access is fast (cache hit) the victim accessed the memory location. If the access
is slow (cache miss) the victim did not accessed the memory location.

In their proof-of-concept attack, they use Flush+Reload to leak the RSA
private key of GnuPG [1]. The targeted program executes different code paths
depending on the secret key bits. Thus, the execution behavior measured with
Flush+Reload allows the attacker to reconstruct the key bits.

Flush+Flush. Gruss et al. [13] refined Flush+Reload by timing the clflush in-
struction instead of a separate memory access and dubbed this attack Flush+Flush.
Flush+Flush is based on latency variations of the flush instruction that depend
on whether the flushed address is present in the cache. clflush has to per-
form significantly more work when a cache line is present as it has to evict it
from all cache levels. Thus, measuring the latency of clflush allows the at-
tacker to determine the cache state of the victim address. The attack consists
of a loop that executes clflush and measures the latency. Gruss et al. [13] also
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implement covert channels using Flush+Reload and Flush+Flush. Their evalua-
tion showcases that Flush+Flush achieves high transmission rates while staying
largely undetected. Furthermore, Flush+Flush does not have a blind spot, un-
like Flush+Reload, which can miss victim accesses if they occur between the
attackers memory access and the flush which restores the cache state [29].

2.3 Side-Channel Attack Detection

Due to the threat of side-channel attacks, researchers proposed a multitude of
possible solutions. One promising approach is to detect side-channel attacks us-
ing hardware performance counters (HPC) [4–6,9,10,19,21–23,28,33,36]. HPCs
monitor certain architectural and micro-architectural events occurring on a sys-
tem. Many defenses use the values reported by HPCs to assess the current state
of the system. Due to the distinct behavior of side-channel attacks, they either
cause detectable anomalies in the performance counter behavior or follow certain
signatures [3].

While HPCs were generally thought to allow for the accurate detection of
cache side-channel attacks, issues arise with this approach. Recently, Kosasih
et al. [18] introduced a camouflaged Flush+Reload attack that bypasses all
considered detection classifiers. Furthermore, the set of available performance
counters is hardware-specific, varies between CPU vendors, and also varies be-
tween CPU generations and families. It is, thus, challenging to provide a generic
detection mechanisms that does not require tedious adaption for each specific
hardware platform. Also, granting userspace programs access to low-level per-
formance counters can facilitate further side-channel attacks, by introducing
another potential attack surface [8, 12,32].

2.4 Userspace Wait Instructions

Recent AMD and Intel processor generations introduced new instructions for
reducing the CPU power consumption while waiting for certain events, such
as write accesses. Both vendors provide dedicated userspace monitoring and
waiting instructions [7, 16] that eliminate the need for busy waits by replacing
them with efficient alternatives. For Intel CPUs, the new instructions are dubbed
umonitor and umwait, while AMD denotes them as monitorx and waitx. They
allow userspace code to set up a monitor for a certain memory granule and
subsequently call the corresponding wait instruction to hint the CPU to enter a
low-power state. Write accesses to the monitored address wake up the waiting
thread. However, other events, such as non-maskable interrupts or a wait time
exceeding an operating-system-defined limit may cause spurious wakeups. In the
case of Intel CPUs, a flag indicates whether a wakeup was due to the operating
system timeout or any other source.

Recently, Zhang et al. [35] demonstrated that not only architectural write
accesses to the monitored addresses act as wakeup triggers. They find that
speculative write accesses also cause the waiting thread to exit its low-power
state. Thus, they illustrate that undocumented, implementation-specific sources
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can also act as a wakeup trigger for the novel wait instructions. In their work,
Zhang et al. [35] use these spurious wakeups to improve the leakage achieved with
speculative execution attacks and to perform website fingerprinting attacks.

Terminology. In the remainder of this work, we use the term monitor and wait
to refer to the userspace monitoring instructions of both Intel and AMD. In
cases where it is important to distinguish between vendor-specific behavior, we
use the corresponding instruction names, i.e., umonitor/umwait for Intel and
monitorx/waitx for AMD.

3 WaitWatcher Framework

Previous research explored specific parts of the new wait instructions. Despite
this, there is no openly available framework for analyzing how monitor and
wait instructions are influenced by other instructions on different CPUs. Fur-
thermore, there is no comprehensive study on wakeup triggers and the behavior
of the monitor/wait instructions across different CPU architectures. While the
corresponding documentations describe modification of the monitored memory
location as a wakeup trigger [7,16], we will show that this is not always the case.
Additionally, there might exist further undocumented wakeup triggers. As the
x86 instruction set architecture consists of thousands of instructions, a manual
analysis even on a single platform would require an extensive amount of time.
Thus, performing a manual analysis on multiple platforms and microarchitec-
tures is infeasible. Therefore, an automated approach for both Intel and AMD
systems is needed. To solve this issue, we develop the WaitWatcher framework.
Our WaitWatcher framework implements an automated analysis for finding in-
teractions between monitor/wait instructions and all other instructions avail-
able on the system under test. We base our implementation on the open-source
Minefield framework developed by Kogler et al. [17]. Their framework is designed
to test instructions for their susceptability to undervolting fault attacks. How-
ever, we find that Minefields’ instruction gathering and sample generation is a
suitable starting point for WaitWatcher.

3.1 Framework Design and Analysis Approach

The analysis performed by our framework can be divided into three distinct
steps. We denote these steps as Instruction Gathering, Sample Generation, and
Interaction Analysis. After executing these three steps, the framework produces
a list of instructions and how they interact with the monitor/wait instructions.

Instruction Gathering. First, we gather a list of all instructions that are available
on the target ISA, in this case x86. We obtain this data by using publicly available
sources provided by Abel et al. [2]. The data is provided as an XML file that
contains detailed information about the available instructions as well as their
source and destination operands. Furthermore, each instruction entry in the list
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Fig. 1: An overview of the Instruction Analysis step of our framework. The mon-
itor thread monitors a victim cache line and measures the time spent waiting in
a loop. The victim thread executes the instruction sample on the victim cache
line. The average waiting duration determines whether an instruction affects the
wakeup behavior.

contains information on the required privilege level and if the instruction is part
of an ISA extension. We consider this list as the ground truth for all further
steps of the analysis.

Sample Generation. Next, we generate a distinct dynamically loadable file for
each of the available instructions. During this step, we filter out instructions
that require a higher privilege level than CPL 3 (i.e., userspace mode). This
is due to the fact that we are only interested in analyzing the interaction of
userspace instructions and wait instructions. Based on the source and destina-
tion operands, our framework instruments the instructions with a prologue and
epilogue. Both of them are required to set up registers and memory locations
such that they are contextually meaningful for the analyzed instruction. This
is especially vital for instructions that interpret register values as addresses, as
a faulty setup will cause crashes. Due to the operand-dependent instrumenta-
tion, we consider operations with different operand types as distinct instructions.
Thus, a mov from register to memory and a mov from register to register are com-
piled into two separate files. Note that this step also compiles instructions that
may not be supported by the system under test. Reducing the set of compiled
instructions to potentially executable instructions is a possible optimization for
speeding up the sample generation step. However, the sample generation is only
executed once and, even on our slowest system, takes only minutes of execu-
tion time due to the parallel nature of our implementation. During this step,
the framework excludes instructions that are not supported by the currently
used compiler version. Instructions that are affected by this exclusion belong to
currently unimplemented extensions. Furthermore, we exclude instructions that
perform control-flow transfers as we only focus on data-oriented instructions.

Interaction Analysis. In the third step, we perform the actual analysis of the in-
teraction between instructions and the monitor/wait instructions. For that, the
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previously compiled and instrumented samples are dynamically linked by a test
program denoted as the corpus. The corpus handles the logic to detect an inter-
action between the currently analyzed instruction sample and the monitor/wait
instructions. Figure 1 illustrates how the corpus and the samples interact to de-
tect potential wakeup triggers. The corpus creates 1 a victim thread and 2
a monitor thread. It then sets up a shared memory region 3 and two aliases
( 4 , 5 ) to the region. As the instructions we want to analyze are compiled to a
shared object, they need to be loaded 6 by the victim thread. After the initial
setup phase, the monitoring thread repeatedly calls the monitor and wait in-
structions and measures the time between the invocation of the wait instruction
and the subsequent wakeup. When invoking the monitor instruction, the moni-
tor thread uses 4 the monitor alias for its target address. Meanwhile, the victim
thread executes the currently loaded sample in a tight loop. The samples are in-
strumented such that they use 5 the victim alias as their destination operand.
The victim thread halts once a configured number of iterations is reached. Once
the victim thread is finished, the monitor thread averages the latency values
measured during the monitoring phase.

Our framework uses the average wait duration to distinguish between the
samples that interact with wait (i.e., cause wakeups) and those that do not cause
wakeups. As the latency is significantly lower on wakeups, ambiguities in the form
of false positives and false negatives are highly unlikely. Combining the average
latency with a check that tests whether the monitored location was actually
modified after invoking the sample loop allows us to detect two types of atypical
behavior. A high average wakeup latency combined with a memory modification
indicates that the analyzed instruction does not act as a wakeup trigger and
bypasses the wakeup logic. Contrarily, a low average wakeup latency and an
unmodified victim memory imply that the analyzed instruction is a wakeup
trigger without actually writing to memory. We denote these instructions as
spurious triggers. Overall, we classify instructions into four categories based on
the averaged wait times and the state of the data after sample invocation. Besides
the atypical cases listed above, the other two categories contain the instructions
that behave according to their expected wakeup behavior.

At the end of the interaction analysis, our framework generates a report for
all instruction samples that were compiled during sample generation. For each
sample, we log the exact operation and operands, the averaged wakeup latency,
and the category in which the operation was classified. Furthermore, the report
contains information on which instructions are unimplemented on the current
system and which samples encountered runtime errors. We execute the analysis
in two configurations where the monitor and victim thread are either sibling
threads or pinned to unrelated cores.

Transient Execution. While the main focus of WaitWatcher lies on regular in-
struction execution, we also implement the analysis of transiently executed in-
structions. When using the transient execution mode, the instruction sample is
modified such that the analyzed instruction is never executed architecturally.
Thus, when measuring positive interaction with the analyzed instruction, we
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Table 1: The analysis results of our framework for architectural execution. De-
pending on the microarchitecture, multiple spurious wakeup triggers are identi-
fied. We also find that some instructions are able to modify data without causing
a wakeup. Results reported for AMD systems assume sibling threads.

CPU Generation
Analyzed Data Mod. No Data Mod.

Instructions 4 6 4 6

ø Zen 2 2996 385 14 4 2593
ø Zen 3 3005 399 0 4 2602
á Zen 4c 12 880 655 6 4 12 215
ø Alder Lake 3044 389 12 3 2640
ø Arrow Lake 3124 418 12 0 2692

á Sapphire Rapids 15 039 647 18/0† 5 14 369

á Emerald Rapids 15 040 647 18/0† 5 14 370

4 Wakeup Trigger 6 No Wakeup Trigger
á Server CPU ø Desktop CPU † Arbitrary Thread/Sibling Thread

can conclude that transient effects also act as wakeup triggers. Note that the
transient execution version of WaitWatcher may require manual optimizations
depending on the analyzed system due to differences in the underlying hardware.

3.2 Analysis Results

We find that our analysis approach and instruction instrumentation work reliably
for most of the instructions implemented on our tested systems. A small subset
of all instructions triggers runtime errors. This is usually the case for instructions
where the operands are contextually bound to a range that is not documented
in the ground truth used for instrumenting the instructions. As our framework
logs crashing instructions, they can be manually analyzed if required.

We execute our framework on multiple microarchitectures from both Intel
and AMD. In our analysis, we target an overall of seven systems containing
both server-grade and desktop CPUs. Table 1 lists the quantitative results of our
automated analysis. As in the sample generation step, we distinguish between
invocations of the same operation using different source and destination types
when counting instructions. The main focus of our analysis lies on instructions
that either modify data without causing a wakeup or, conversely, do not modify
data but act as wakeup triggers. We find that all considered systems except for
Arrow Lake CPUs have at least three spurious wakeup triggers. Furthermore, on
some of the analyzed systems, we find instructions that can completely bypass
the monitoring logic and modify memory without causing wakeups. A detailed
description of the results of our analysis is given below.

Spurious Wakeup Triggers. Our framework allows us to reproduce the find-
ings regarding undocumented wakeup triggers provided by previous work [35].
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However, we also observe previously unreported additional triggers. Specifically,
we find that clflush and clflushopt also cause wakeups on Intel Sapphire
Rapids and Emerald Rapids. Previous research only analyzed Intel desktop
CPUs and reported that clflush only causes wakeups for AMDs mwaitx instruc-
tions [35]. Furthermore, we find that on Emerald Rapids and Sapphire Rapids,
both prefetch and prefetchwt1 cause wakeups in addition to the previously
reported prefetchw instruction. Thus, for Emerald Rapids and Sapphire Rapids
we find an overall of five spurious wakeup triggers. Our measurements indicate
that on Intel server-grade CPUs, spurious triggers reliably cause a wakeup in-
dependently of the core on which the monitor and victim thread are running.
Furthermore, we find that Intel’s desktop CPUs do not experience the same
spurious wakeup triggers as their larger counterparts. On Alder Lake, we find
that prefetch, prefetchw, and prefetchwt1 cause spurious wakeups, while on
Arrow Lake, no spurious triggers are detected.

On AMD systems, clflushopt, clflush, clwb, and prefetchw cause spu-
rious wakeups. For AMD machines, we find no difference between server-grade
and desktop CPUs.

Undetected Data Modification. Besides spurious wakeup triggers, we also identify
instructions that bypass the monitoring functionality. We find that movnt* and
vmovnt* instructions allow for data modification without triggering the wakeup
of the wait instructions on all considered Intel machines. We observe this be-
havior for the regular and evex encoded instructions. However, we also find that
both vmovnt* and movnt* instructions do trigger wakeups when using the ZMM
register or running the victim and monitor threads on the same core, i.e., as
sibling threads. On Zen 4c, we find that vmovnt* instructions encoded using the
evex prefix modify data without triggering a wakeup of mwaitx.

Non-Conformant Behavior. Surprisingly, we find that on all analyzed AMD sys-
tems it is necessary to run the monitoring thread and the victim thread as sibling
threads. When pinning one of the two threads to a different core, no instruction
will reliably trigger a wakeup. This directly contradicts the description of the
mwaitx instruction given in the Architecture Programmer’s Manual, which states
that a store from another processor shall cause a wakeup of the instruction [7].

Contrarily, on the analyzed Intel machines, we find that the wakeup behavior
of most instructions does not depend on the cores on which the monitor and
victim thread are executed. Only the non-temporal move instructions discussed
above experience different behavior when executed on non-sibling threads.

Wakeups on Transient Execution. We find that transiently executed instructions
also cause spurious wakeups, thus confirming the results of Zhang et al. [35].
Interestingly, we find that not only write accesses trigger wakeups. Instructions
such as prefetchw, which do not actually perform a write, may also act as
transient spurious wakeup triggers. However, we find that transient invocations of
clflush do not trigger spurious wakeups. Note that while some data-modifying
instruction instructions cause wakeups when executed transiently, some fail to do
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so. We assume that this behavior depends on the latency of the instruction and
the size of the speculation window. Instructions that finish within the speculation
window cause wakeups while those that do not finish do not trigger wakeups.

4 Detecting Flush-based Side-Channel Attacks

In this section, we show how the insights gained in our analysis allow us to im-
plement a performance-counter agnostic detection method for flush-based side-
channel attacks on Intel CPUs.

First, we discuss the general idea of our new side-channel detection mech-
anism and introduce WaitGuard. WaitGuard is the first side-channel detection
using userspace wait instructions to detect Flush+Flush and Flush+Reload at-
tacks. We elaborate on the monitoring approach and show how WaitGuard can
detect malicious flush operations on monitored data on Intel CPUs. We then
propose two variants of WaitGuard and elaborate on their respective use cases.
Theoretically, the presented approach also applies to AMD systems given that
the behavior of mwaitx would reflect the description given in the architecture
programmer’s manual.

Attacker Model. For our detection approach, we assume a Flush+Reload or
Flush+Flush attacker that aims to extract secret information from a victim
process. The attacker can perform clflush operations on cache lines that the
attacker process shares with the victim process. Without loss of generality, we
assume that victim cache lines contain read-only data. We assume that the at-
tacker has full knowledge of the victim process. Furthermore, we assume that the
attacker process and the victim process are completely synchronized. Thus, the
attacker knows precisely which victim operations are currently being executed.
We do not consider attacks that use a contention-based approach to evict victim
cache lines. Attacks like Prime+Probe or Evict+Reload [14, 26] were relatively
straightforward to mount across cores on older machines using fully inclusive L3
caches. However, newer CPU generations, such as the ones supporting userspace
wait instructions, utilize L3 caches that are not fully inclusive. Evictions from
the shared L3 do not cause evictions from the private L1 and L2 caches of the
victim, making the eviction step of both Prime+Probe and Evict+Reload no
longer possible across cores. Additionally, accesses that can be served by the L1
or L2 do not result in the cache line being written into the L3. Therefore, the
probing step of Prime+Probe on the L3 can not detect memory accesses that
can be served from these private caches [30].

4.1 Design of WaitGuard

Our analysis results show that clflush acts as a wakeup trigger for both Intel
and AMD CPUs. Hence, we propose to use the monitor/wait instructions as
a detection mechanism for flush-based side-channel attacks. Given that we can
monitor a cache line using monitor and wait, a clflush instruction that targets
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this cache line will cause a wakeup without a write access. As clflush consti-
tutes the core operation of Flush+Reload and Flush+Flush attacks, it should
thus be possible to detect such attacks by observing the behavior of wait when
monitoring a currently targeted cache line. Based on this general idea, we de-
velop WaitGuard. WaitGuard is the first detection mechanism for flush-based
side-channels that leverages the novel monitor and wait instructions. While
doing so, our approach does not require access to any hardware performance
counters besides the time stamp counter (TSC).

Monitoring Logic. WaitGuard implements a monitoring logic which aims to
detect all flushes to a monitored cache line. The core of our monitoring logic is
a tight loop that calls monitor followed by a wait instruction. We measure the
time passed between executing the wait instruction and the subsequent wakeup.
This wait time is the first indicator on whether the cache line is being targeted
by a flush-based attack. The monitoring loop is, in this aspect, equivalent to the
loop used in our Interaction Analysis. However, we cannot purely rely on this
metric to detect flush-based attacks. There are multiple sources that can wake
up a waiting thread. Additionally to a write access to the monitored cache line,
interrupts and an OS-defined timeout can cause spurious wakeups [35]. Thus,
using a single measurement causes too many false positives as spurious wakeups
may be interpreted as write accesses. To avoid this issue, we use an additional
metric to improve the results of our detection: after the wakeup, we measure
the access latency to the monitored cache line. In the case of Flush+Reload or
Flush+Flush attacks, the access latency is high as the data was flushed and
must be fetched again from memory. Given that monitor performs a 1-byte
fetch operation, the monitored cache line is always cached [7,16]. Thus, accessing
the cache line after a wakeup due to a timer interrupt or any other trigger will
result in a fast access. We combine the access latency measurement with a rolling
average over the latest wakeup latencies to improve our detection reliability. This
allows us to detect anomalies due to the significant increase of flush operations
during Flush+Reload and Flush+Flush attacks.

4.2 WaitGuard Variants

We propose two variants of how WaitGuard can be implemented. When elab-
orating on the variants, we use the term victim process or cache line to refer
to the potential target of a side-channel attack. Figure 2 schematically depicts
both variants of WaitGuard.

Drop-In Variant. First, we propose a self-contained variant of WaitGuard, which
is illustrated in Figure 2 (a). This variant requires the victim process to be able
to create threads. The victim creates a list of cache lines that require monitoring.
This list can either be generated manually or by using a profiling approach such
as the one proposed by Gruss et al. [14]. For each of these cache lines the victim
spawns one thread that monitors the corresponding cache line 1 . Subsequently,
the monitoring thread calls monitor followed by a wait on the to-be-monitored
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Fig. 2: Two variants of WaitGuard. The drop-in variant can be deployed by
any process and does not require OS support. The delegated variant spawns a
dedicated monitoring thread which is managed by the OS.

cache line 2 . After waking up from the wait, the monitor thread checks how long
it was waiting and the access latency when reading from the monitored cache line.
Depending on the measured values, the monitor thread decides whether the cache
line was flushed. This approach has the advantage that it can be implemented
as a drop-in side-channel detection for userspace processes on off-the-shelf Intel
CPUs. Upon detection of clflush operations, the monitoring thread informs
the victim 3 . Thus, the process can decide how to react and whether it is safe
to proceed execution. Note, however, that one hardware thread can only monitor
one cache line at a time. Thus, monitoring multiple cache lines must either be
achieved by monitoring one cache line after the other or by spawning additional
monitoring threads.

Delegated Variant. The delegated version of WaitGuard relies on the operating
system, as shown in Figure 2 (b). Like in the drop-in variant, the victim process
creates a list of cache lines that require monitoring. This list is passed to the
operating system 4 which, in turn, creates one or multiple monitoring threads
5 that monitor the given victim cache lines 6 . Contrary to the drop-in variant,
the OS can take measures to isolate the victim from potential attackers (e.g., by
providing a non-shared mapping of the shared library under attack). However,
the delegated variant requires the operating system to be aware of the side-
channel detection approach. While it is possible to modify the Linux kernel,
using a kernel module would allow for easier integration in existing systems.

5 WaitGuard Implementation and Evaluation

In this section, we discuss our proof-of-concept implementation and evaluate the
detection rate of WaitGuard. We evaluate our implementation on a commodity
Intel system and achieve a detection rate of >99.9% for basic Flush+Reload at-
tacks. Furthermore, we show how WaitGuard can be configured to detect stealthy
attacks such as the ones proposed by Kosasih et al. [18].
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5.1 Implementation

Our proof-of-concept implementation consists of the drop-in variant of WaitGuard
and multiple victim processes. In our implementation, multiple cache lines are
monitored by spawning a dedicated monitor thread for each cache line. Monitor
threads are pinned to sibling threads. Our PoC uses the following logic to clas-
sify whether an attack is occurring or not. We implement a moving average over
the wait durations to smoothen the values in the presence of disturbances due
to interrupts and other spurious wakeups. After each wakeup, we additionally
measure the access latency to the monitored data. Combining both values, we
decide whether we were woken due to a clflush and flag such cases as potential
attacks. If the current average wait duration is below a critical wait duration and
the memory access latency is above a pre-defined threshold, a detection is logged.
Both the critical wait duration and the access latency threshold are measured
manually and are expected to vary across systems. Note that the requirement
for manual measurement is a limitation of our PoC and the calibration can be
automated. The PoC logs the timestamp at which the attack was detected. Our
implementation is parameterizable with regard to the moving average window
size and the critical wait duration.

To show the importance of combining our wait-based approach with memory
access timing measurements, we also implement a variant that does not use
monitor and wait instructions. Instead, it only measures the cache access latency
to determine whether an attack occurred. We refer to this variant as the measure-
only (MO) variant.

Victim Processes. We implement multiple victims, denoted as V1 to V3, to eval-
uate WaitGuard for Flush+Reload attacks under different attack scenarios. At
their core, all victims implement an AES encryption using OpenSSL 3.3.3 [25]
and are based on an open-source implementation of a Flush+Reload attack [24].
The cache lines targeted by the attacker hold the T-tables, which are a popular
target for side-channel attacks [11,13,15,20]. We compile OpenSSL without hard-
ware acceleration to enforce the usage of software-based T-tables. All victims
perform 300 000 encryptions. Depending on the victim, the attacker performs
one or multiple measurements for each encryption. We combine the attacker and
the victim in the same process to ensure synchronization and a minimal time
difference between flushing target cache lines, performing the OpenSSL AES
encryption, and measuring whether the relevant T-table entries were accessed.

The attacker in V1 leaks individual key bytes by attacking one T-table entry
at a time. V1 first performs a fixed number of encryptions where the attacker
exclusively targets the first T-table cache line. Next, the attacker targets the sec-
ond T-table entry. The attacker proceeds like this until all key bytes are leaked.
Victim V2 implements a more efficient attacker that first flushes all targeted
cache lines. Then, the victim executes its encryption operation. Subsequently,
the attacker measures the access latency for all previously flushed cache lines.
For V3, we implement a stealthy variant of V2. Each encryption iteration has a
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0.2% chance of actually performing the Flush+Reload attack. In all other cases,
the victim performs the encryption without being attacked.

5.2 Evaluation Setup

We use the previously described victims to gauge how well WaitGuard can de-
tect the implemented attacks. Each victim invocation executes for a set amount
of time and logs the begin and end timestamp of each Flush+Reload attack,
thus generating a list of time frames in which an attack occurred. Similarly,
WaitGuard logs the time stamps at which it detects an attack. We use the
system-wide timestamp counter for these measurements. Once the victim fin-
ishes, we compare the detection timestamps with the time frames at which at-
tacks were performed. We consider an attack as detected whenever the victim
logs at least one detection timestamp during the attack time frame. All victims
described above are implemented such that we introduce an artificial delay of
several milliseconds after each attack run. We use this delay to create a tempo-
ral separation between attack time frames to better catch spurious wakeups and
avoid a bias toward overly optimistic detection results.

We use the cpu stressor of stress-ng to evaluate our PoC under varying
system loads by generating additional noise. The imposed load increases from
0% to 90% in 10% steps. During our evaluation, we do not isolate the cores that
are executing the victim and the monitor code.

As mentioned in Section 4.1, our PoC uses a windowing approach to reduce
noise. We evaluate our implementation for different window sizes to measure
their impact on the detection rate. The tested window sizes range from two
samples to 256 samples. We perform our evaluation on a commodity Intel Xeon
Gold 6530 CPU with 32 cores and 64 threads. Our system is equipped with
512GB DDR5 DRAM and runs the Linux kernel version 6.8.0.

5.3 Detection Rate and False Positive Rate

The left column of Figure 3 illustrates the detection rates and false positives rates
for a 16-sample window PoC. The detection rate is computed as the ratio between
the number of actually performed attacks and the number of mounted attacks.
For V1 and V2 we achieve a >99.9% detection rate. However, we can not detected
stealthy attacks like the one implemented in V3 due to the averaging approach.
As the stealthy attack does not flush in every iteration, the computed average
waiting time will only drop slightly when seeing a wakeup due to the attack.
Thus, a 16-sample window is only suitable for detecting classical Flush+Reload
attacks. We find that window sizes that exceed 16 samples do not offer any
additional benefits.

Conversely, we find that when using a smaller window size of just two samples
we can detect >99.9% of stealthy attacks, as depicted in the right column of
Figure 3. The short sleep duration that is observed when the attack is actually
performed is enough to bias the average such that it falls below the detection
threshold. Thus, attacks like the one implemented by V3 can also be detected
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Fig. 3: The detection rate (DTR) and false positive rate (FPR) for WaitGuard
using a 16-sample and a 2-sample window. While V1 and V2 are detected in
both cases, V3 can only be detected by the 2-sample window configuration. The
Measure-Only (MO) false positive rate is infeasibly high.

using WaitGuard. Furthermore, we find that decreasing the window size does
not increase the false positive rate. As our PoC only flags an attack if both
the wakeup latency and the subsequent memory access latency are low, false
positives are rare. For all tested configurations we find that the rate of false
positives is vanishingly low. The measured false positive rates are well below the
1% mark, regardless of the imposed system noise. We find that a measure-only
variant (MO) is infeasible. While all attacks are flagged as detected, the amount
of false positives is overwhelming, as depicted by the dashed lines in Figure 3. We
observe large false positive rates, reaching up to 100%, across all noise levels. We
find that the high false-positive rate is due to the monitor claiming to see a large
number of attacks during the window between the attack rounds. Even without
an active attacker, the measure-only variant logs, on average, 15.6 attacks per
second. Contrarily, when using wait and monitor, we see no such behavior.

Scheduled Monitoring We furthermore investigate whether it is feasible to
monitor multiple cache lines using a single thread. For that, we extend the mon-
itor implementation such that each thread holds a list of monitored cache line
addresses. All measured and computed values such as the averaged wakeup du-
rations are unique for each monitored cache line. Thus, each monitored cache
line is handled independently from all other cache lines. We implement a pseudo-
random scheduling and a cache-line focused scheduling. When using the pseudo-
random scheduling, the monitor thread picks a cache line at random and installs
the monitor for the address at the beginning of each monitoring iteration. Af-
ter measuring the wakeup time the monitor thread picks the next cache line by
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Fig. 4: The detection rates when monitoring multiple cache lines using a single
thread. The detection rate drops steadily with the increasing number of moni-
tored cache lines. When focussing on an attacked cache line, the detection rate
remains high, even for multiple cache lines.

randomly selecting one from the given list. The cache-line focused scheduling
initially operates equivalently. However, as soon as a cache line that is likely
under attack is identified, the scheduling algorithm prioritizes this cache line.

Figure 4 illustrates the detection rates for both scheduling approaches. For
the pseudo-random scheduling, the detection rate declines with an increasing
number of cache lines being monitored by a single thread. The cache-line focused
scheduling performs significantly better, especially for V1 and V2 victims. Note
that all of the the given curves were measured using a 2-sample window size as
this configuration performed best in the previous experiments.

5.4 Wakeup Distribution

Besides the detection rate, we also determine the empirical distribution of wakeup
times within the attack time frames. The distributions are illustrated in Figure 5.
For V1 and V2 most of the wakeups occur at the beginning of the attack. Note
that V1 attacks the four victim cache lines sequentially. This is reflected in the
distribution of V1, which shows an increase of wakeups around the points in time
at which the attacker flushes the victim cache lines. For V3 we can observe that
the wakeup timings are uniformly distributed. This is due to V3 distributing its
attack phases across the whole attack window.

The distributions suggest that WaitGuard flags attacks early in the attack
process or close to the clflush invocations. When computing the distributions
for noise levels below 50% (not depicted in the figure), we observe even more pro-
nounced peaks in the distribution. This suggests that additional system noise has
a negative impact on the latency between the flush operation and the detection
by WaitGuard.

6 Conclusion

In this work, we presented WaitWatcher, an automated analysis framework that
determines how unprivileged instructions interact with the new umonitor/umwait
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and monitorx/waitx instructions. Contrarily to the work of Zhang et al. [35],
WaitWatcher analyzes all executable userspace instructions with and without
transient execution. We performed our analysis on 7 server and desktop-class
x86 CPUs, uncovering 5 spurious wakeup triggers as well as 18 instructions that
modify memory without causing wakeups. In addition, we found that, on AMD
systems, wakeups are only correctly triggered when the monitoring thread and
the thread performing the write access are sibling threads.

Based on the spurious wakeup triggers discovered in our analysis, we pro-
posed WaitGuard, a novel mechanism that leverages the umonitor/umwait in-
structions on Intel x86 hardware to detect Flush+Reload and Flush+Flush at-
tacks. Contrary to many existing detection approaches [3], WaitGuard oper-
ates without hardware performance counters and provides a drop-in solution
that can be easily included in userspace software. We implemented a proof-of-
concept of WaitGuard and evaluated its detection rate for different variants of
Flush+Reload, including a stealthy attack. We find that WaitGuard achieves
a detection rate of up to >99.9% while reporting close to zero false positives.
Furthermore, we find that WaitGuard is resistant to heavy system noise, i.e.,
the detection accuracy stays constant. Hence, our approach is feasible for detect-
ing flushes on vulnerable cache lines and, thus, Flush+Reload and Flush+Flush
attacks. Besides a high detection rate, we find that WaitGuard can detect cam-
ouflaged attacks that are not detected by existing side-channel detection ap-
proaches [18].
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